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Abstract 

The participation of residents plays a key role in 

residential energy saving strategies because they make 

decisions on how to operate building heating and cooling 

systems. Eco-feedback is an effective tool to motivate 

energy conserving behaviours (ECBs) by providing 

information on energy efficiency and associated benefits. 

The main purpose of this study is to develop an online 

data-driven building energy model to evaluate heating and 

cooling-related behaviour changes for eco-feedback 

design in a multifamily residential building. A grey-box 

state-space model is presented that is updated with real-

time data using a particle filter approach. The model 

accounts for the evolution of parameters and captures the 

unobserved inter-unit heat transfer without modelling the 

whole building thermal network through sequential 

Bayesian update. The model is developed and validated 

using data collected in an actual multifamily residential 

building.  

Introduction 

While there have been various energy efficiency 

strategies such as advanced heating, ventilation, and air-

conditioning (HVAC) systems and their optimal control 

to reduce energy consumption and demand without 

compromising comfort and productivity in commercial 

buildings, research in residential sector is often focused 

on energy benchmarking (Roth & Jain, 2018), asset 

ratings and cost analysis of building upgrades (Bourassa, 

Rainer, Mills, & Glickman, 2012), and peak demand 

control (Hammerstrom et al., 2007). 

The recent development of WiFi-enabled smart devices 

provides an opportunity to home owners to track the 

energy consumption associated with different devices 

such as heating and cooling equipment, appliances, and 

lighting (Ford, Pritoni, Sanguinetti, & Karlin, 2017). 

However, consumption data may not be sufficient for the 

residents to evaluate their behaviour. Various forms of 

eco-feedback such as peer-comparison (Jain, Taylor, & 

Peschiera, 2012), historic comparison, energy 

benchmarking, and setpoint scheduling (Pisharoty, Yang, 

Newman, & Whitehouse, 2015) are often provided 

together with data to lead people towards energy-efficient 

behaviours (Karlin, Zinger, & Ford, 2015). 

In addition, it has been reported that explaining the 

benefits and providing actionable feedback can help 

residents understand the relative importance between 

various energy-related behaviours (Ehrhardt-Martinez, 

2015). Thermostat control (i.e., setpoint schedule) 

provides opportunities for significant energy savings as 

heating and cooling accounts for 51% of the site energy 

consumption in residential houses in the U.S. (EIA, 2015) 

(EIA, 2015), and it has a standard form of behaviour, a 

setpoint schedule. 

There have been many efforts on thermal modelling of 

houses for various applications such as optimal control 

(Ellis & Alanqar, 2018), energy prediction (Siemann, 

2013), etc. However, not many studies have been 

conducted on multifamily residential building modelling 

for behavioural-feedback design. One of the main 

challenges is the heat transfer between different units, 

which requires complex building-level thermal network 

models. In this paper, we present a novel data-driven 

modelling technique for multifamily residential buildings. 

It includes a unit-level grey-box model with online 

learning of parameters and hidden states through 

Sequential Bayesian update to account for unobserved 

boundary conditions and evolution of parameters. 

Field study 

Building overview 

Our test-bed is a fully-remodelled multifamily residential 

building, located in Indiana, United States. The building 

has 49 occupied units (40×1-bedroom and 9×2-bedroom 

units) located on the 2nd, 3rd, and 4th floors while one 2-

bedroom unit and amenities (multi-purpose room, 

laundry, PC room, storage rooms) are located on the 1st 

floor. All building materials were replaced during the 

remodelling except for the main concrete floor slabs, 

columns, and the south wall façade. The external walls 

and inter-unit walls include 6-inch fiberglass insulation 

(R19). The roof has 5-inch polyiso insulation (R30), and 

there is no insulation in the main concrete floor slabs. The 

restored south wall façade is composed of old brick 

without additional insulation. The apartments are aligned 

along the west and east side of the building and the units 

have windows facing west or east. Units on the west side 

have a balcony with sliding doors in the living room. The 

balconies on the 2nd floor are located on the ground and 

look like a backyard (since the 1st floor is underground 

on the west side) while the balconies on the 3rd and 4th 

floors are non-protrusion type, and the units have smaller 

floor area. The units on the east side have operable awning 

windows in the living room with vinyl frame. Also, units 

on both east and west side have operable awning windows 



in bedrooms with vinyl frame. Each unit is conditioned 

with a dedicated air handler (with a heat pump outdoor 

unit at the rooftop) as shown in Figure 1. Although two 

neighbouring units share a mechanical room, the air 

handler is a closed-loop system, so there is no significant 

air mixing between units. There is R19 insulation between 

adjacent units but no insulation in the floor and ceiling 

concrete slabs except for the roof and ground. The 

hallway is conditioned by multiple air handlers.  

 

Figure 1: Room and heating/cooling system layout 

In this building, Wi-Fi-enabled smart thermostats 

(Ecobee3, https://www.ecobee.com/) and sub-circuit 

power meters (GreenEye Monitor, 

http://www.brultech.com/greeneye/) were installed to 

collect disaggregated energy usage data. All smart 

features of the thermostats were disabled and thus, there 

is no functional difference besides the ability to collect 

measured data. Temperature, occupancy heating/cooling 

control signal, and setpoint data are being collected via 

web API to our cloud server. Power consumption is being 

monitored by using multiple current transformers with a 

WiFi-enabled sensor box. The sensor box was installed 

behind the electrical panel. The box is sending data to our 

cloud server every 30 seconds. A weather station (Davis 

Pro 2) was installed to monitor outdoor air temperature, 

humidity, and solar radiation on the rooftop. All the 

collected raw data is being stored into a cloud server and 

is uploaded after pre-processing every day. The study was 

approved by the Institutional Review Board (IRB 

Protocol #: 1702018811). 

Observations 

Figure 2 shows yearly (Jan-Dec 2018) electric energy 

consumption data for heating and cooling along with the 

average temperature in each unit. Although the units are 

exposed to the same weather and have similar mechanical 

systems, floor areas, and building materials, their energy 

consumption shows significant variations even in the case 

of similar average setpoint temperatures. 

In our previous work (Ham & Karava, 2018), we have 

found that such variations can be explained by the 

differences in the locations within the building, different 

building characteristics as well as other disturbances such 

as internal heat gains. For example, a unit can be adjacent 

to other household units, unconditioned storage, and may 

have less exposed area to the ambient air if it is located in 

the middle or top floor of the building. Also, units have 

different layout (balcony door with large glazing or small 

windows), and thus, the required amount of heating to 

reach a certain setpoint can be different. To normalize 

these effects, in our previous work (Ham & Karava, 2018) 

we proposed a Bayesian mixture model to identify groups 

of units that have similar building characteristics and 

boundary conditions. Through this approach, we can 

evaluate the observed energy behaviour (i.e., setpoint 

schedule) by comparing the energy consumption within 

the normalized group of data. However, this method is 

limited to the evaluation of past data. In this study, we 

present an online data-driven model to estimate the 

energy consumption for a potential future behaviour 

change.  

 

Figure 2: Yearly heating and cooling energy 

consumption data in different units (Jan. – Dec. 2018) 



Modelling Methodology 

Overall approach 

Heating and cooling energy consumption of a certain 

period is the outcome of sequential dynamical interactions 

of building characteristics, mechanical system operation 

with control input (i.e., setpoint schedule), weather, and 

internal heat gains (e.g., body heat, appliance use, etc.). 

To answer the question of how much energy is consumed 

for heating and cooling given a behavioural intervention, 

i.e., the setpoint schedule, all other variables need to be 

sequentially estimated for the future evaluation period. 

Since the building characteristics of each unit vary 

according to the location and boundary conditions 

(adjacent spaces), it is difficult to make reliable future 

predictions with new setpoint scenarios using a black-box 

model for a dynamical system. Even if we capture the 

physical processes through a grey-box model, the 

unobserved boundary conditions (i.e., temperature of 

neighbouring spaces) are hard to be captured unless the 

model includes all spaces in a building. Finally, it is 

necessary to calibrate model multiple times with different 

dataset to identify season-dependent parameters such as 

efficiency of heat pump for cooling, heating, and defrost 

operation. 

Therefore, we chose a unit-level grey-box structure with 

online-parameter learning filter. Previous studies (Alam, 

Rogers, Scott, Ali, & Auffenberg, 2018; Fux, Ashouri, 

Benz, & Guzzella, 2014; Radecki & Hencey, 2012) 

applied various Kalman filters for a grey-box building 

thermal model by augmenting parameters to the state-

space (Simon, 2006). In this model, both parameters and 

states are filtered (i.e., prediction and then update) in real-

time according to their noise variances when new data 

come in through Bayes rule, and this structure of model 

can provide uncertainties in the prediction by quantifying 

the posterior of hidden states. However, the posterior of 

parameters can diffuse because the variance of parameters 

would accumulate for every filtering step (Liu & West, 

2001). In other words, the one-step ahead filtering of 

parameters with diffused variance can end up with 

incorrect values and predictions. Furthermore, they 

become worse if the filter starts with wrong initial 

distributions of parameters. 

To overcome this limitation, we adopt two strategies: (1) 

the variances of parameters need to be corrected for every 

filtering step, and (2) the parameter filter needs to start 

with good initial values. We choose Liu-West particle 

filter (Liu & West, 2001) to correct the diffusion of 

variance, and the initial condition of parameters are 

estimated through a system identification technique. 

The overall process of our online model is shown in 

Figure 3. First, the initial values of building physical 

parameters are obtained using a system identification 

technique (i.e., optimize parameters to minimize 

prediction errors). Once the initial parameter values are 

identified, then they are updated with new data by using 

the Liu-West particle filter (Liu & West, 2001). After the 

parameter update, next week’s energy consumption is 

predicted based on a scenario for a future behaviour 

change (i.e., new setpoint schedule). 

 

Figure 3: Model Process 

Model structure 

A grey-box model structure (Figure 4) is used to model 

one household unit in the building. All variables are 

described in Table 1. 

 

Figure 4: Model structure 

Table 1: Variables and parameters in a model 

Name Description 

𝑇a [℃] Outdoor air temperature 

𝑇i [℃] Indoor air temperature 

𝑇e, 𝑇m 

𝑇s [℃] 
Exterior wall, interior mass, and thermostat 

sensor temperature 

𝑇n [℃] Overall temperature of neighbouring spaces 

𝑦𝑇s[℃] Measured thermostat sensor temperature 

𝑅ea, 𝑅ie, 𝑅in 

𝑅nm, 𝑅is[k/W] 
Thermal resistance between temperature 

nodes 

𝐶e, 𝐶i, 𝐶m 

𝐶s[J/K] 
Thermal capacitance of each node 

�̇�sol[W] Solar gains through glazing 

�̇�ig [W] Internal device heat gain 

�̇�hc [W] 
Heat/Cool supply rate from the heating and 

cooling device 

The model (Figure 4) can be expressed as a set of 

differential equations for the state (𝐱) transition (Eq. 1) 

and observation (𝑦) without noise (Eq. 2). 

 �̇�(𝑡) = 𝐀𝐱(𝑡) + 𝐁𝐮(𝑡) (1) 

 𝑦(𝑡) = 𝐂𝐱(𝑡) (2) 

 𝐱(𝑡) = [𝑇e(𝑡), 𝑇i (𝑡), 𝑇m(𝑡), 𝑇s(𝑡), 𝑇n(𝑡)]
T (3) 

 𝑦(𝑡) = [𝑦𝑇s(𝑡)] (4) 

 𝐮(𝑡) = [𝑇𝑎(𝑡), �̇�sol(𝑡), �̇�ig(𝑡), �̇�cal,hc(𝑡)]
T
 (5) 
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 𝐂 = [
0 0 0 1 0
0 0 0 0 0

] (8) 

In our model, the incoming solar radiation (�̇�sol(𝑡) =

𝐴𝑊�̇�rad(𝑡))  is modelled with a single parameter (𝐴𝑤). 

�̇�rad(𝑡) is the global horizontal irradiance at the weather 

station, and 𝐴𝑤  includes the overall effective window 

area and its solar heat gain coefficient. The actual heat 

flow rate (�̇�hc(𝑡)) is calculated by multiplying a constant 

efficiency parameter (𝜂ℎ𝑐(𝑡)) to the calculated heat flow 

rate (�̇�cal,hc(𝑡)). �̇�cal,hc(𝑡) is the calculated heat flow rate 

of heating/cooling system from the measured power 

consumption data. We use calculated values because we 

do not measure the actual heating/cooling rate but a 

sequence of binary signals along with the power 

consumption of the heat pump system. The 

heating/cooling system in our test-bed has 4 operation 

modes: (1) heat pump heating (htg), (2) auxiliary heating 

(aux), (3) heat pump heating with defrost cycle (df), and 

(4) heat pump cooling (clg). The operation mode 
(𝑖hc(𝑡) ∈ {htg, aux, df, clg})  is decided based on the 

thermostat setting and outdoor air condition.  

 𝜂hc(𝑡) =

{
 
 

 
 𝜂htg if 𝑖hc(𝑡) = htg

𝜂aux if 𝑖hc(𝑡) = aux

𝜂df if 𝑖hc(𝑡) = df

𝜂clg if 𝑖hc(𝑡) = clg

 (9) 

The actual heat flow rates (�̇�hc(𝑡)) are: 

{
 
 

 
 

�̇�htg = 𝜂htg�̇�cal,htg = 𝜂htg𝑘htgCOPhtg𝑃nom,htg

�̇�aux = 𝜂aux�̇�cal,aux = 𝜂aux𝑘aux𝑃nom,aux

�̇�df = 𝜂df�̇�df = 𝜂df(𝑘aux,df𝑃nom,aux + 𝑘htg,dfCOPhtg𝑃nom,htg)

�̇�clg = 𝜂clg�̇�clg = 𝜂clg𝑘clgCOPclg𝑃nom,clg 

 (10) 

where 𝑃nom,htg, 𝑃nom,clg, and 𝑃nom,aux are nominal power 

of heat pump heating, heat pump cooling, and auxiliary 

heating. 𝑘htg , 𝑘aux , 𝑘df  and 𝑘clg  are effectiveness times 

part-time-load factor ratio. 𝑘 × 𝑃nom  is the measured 

power, which is used to predict the power consumption 

given a setpoint change. COPhtg and COPclg  are the 

coefficient of performance values of heat pump for 

heating and cooling respectively.  This is acquired from 

manufacturer’s catalogue data and modeled as a linear 

function of outdoor air temperature (𝑇a). 

The continuous system [𝐀(𝜽), 𝐁(𝜽), 𝐂(𝜽)] is discretized 

[𝐀d(𝜽d), 𝐁d(𝜽d), 𝐂d(𝜽d)]  using 5-minute time-step 

where (𝜽 ={𝐶e , 𝐶m , 𝐶i , 𝐶h , 𝑅ea , 𝑅im , 𝑅ie , 𝑅ih , 𝐴w , 𝑘ig , 

𝑘htg , 𝑘aux , 𝑘df , 𝑘clg , 𝝈𝑥 , 𝜎𝑦}). Then, the discrete state-

space model can be expressed as the following 

probabilistic form (Eqs. 11–14) with noise parameters 

(𝝈𝑥 , 𝜎𝑦). Here, measurement error noise 𝜎y is set to 0.5℉ 

according to thermostat sensor accuracy. 

 Pr(𝐱𝑡+1|𝐱𝑡) = 𝒩(𝐱𝑡+1|𝑓(𝐱𝑡 , 𝐮𝑡 , 𝜽d), 𝝈𝑥) (11) 

 Pr(𝑦𝑡|𝐱𝑡) = 𝒩(𝑦𝑡|𝑔(𝐱𝑡 , 𝐮𝑡 , 𝜽d), 𝜎𝑦) (12) 

 𝑓(𝐱𝑡 , 𝐮𝑡 , 𝜽d) = 𝐀d𝐱𝑡 + 𝐁d𝐮𝑡 (13) 

 𝑔(𝐱𝑡, 𝜽d) = 𝐂𝑑𝐱𝑡 (14) 

Initial parameter learning 

For a discrete state-space model, the expectation of 𝑡 -step 

ahead prediction (𝐱𝑡|1:𝑡−1  and 𝑦𝑡|1:𝑡−1)  can be 

sequentially estimated through Eqs. 15 and 16 from 𝐱1 

and 𝑦1. 

𝔼[𝐱𝑡|1:𝑡−1|𝐱𝑡−1|1:𝑡−2, 𝐮𝑡−1] = 𝑓(𝐱𝑡−1|1:𝑡−2, 𝐮𝑡−1, 𝜽d)

= 𝐀d𝐱𝑡−1|1:𝑡−2 + 𝐁d𝐮𝑡−1 
(15) 

𝔼[𝐲𝑡|𝐱𝑡|1:𝑡−1] = 𝑔(𝐱𝑡|1:𝑡−1, 𝜽d) = 𝐂d𝐱𝑡|1:𝑡−1 (16) 

The 𝑡-step ahead predictions with unknown state values 

are compared with measured data. The initial parameters 

are found based on the minimization of the sum of square 

errors (Eq. 17). Sets of parameters are obtained by using 

a differential evolutionary global optimization method 

with random initialization (Mullen, Ardia, Gil, Windover, 

& Cline, 2011). The best parameter set is chosen by 

calculating the same 𝑡 -step ahead prediction for next 

week’s data. 

 𝜽d,init = argmin
𝜽𝐝

∑[𝔼[𝑦𝑡|𝐱t|1:𝑡−1, 𝐮1:𝑡] − 𝑦𝑡]
2

𝑁

𝑡=2

 (17) 

In the Table 2, the bounds of parameter range and the 

estimation results are shown. The solutions of Eq. 17 are 

not unique according to their starting points though the 

optimization results are similar. Thus, we repeated the 

optimization 50 times and calculated the ranges that were 

used to generate initial particles for the Liu-West filter. 

The mean values are chosen based on best prediction for 

next week’s data while the ranges are acquired from the 

other solutions.  

  



Table 2: Parameter values (SI unit in parenthesis) 

Parameter (𝜃, 𝜁) 
Lower 

bound 

Upper 

bound 

Estimation result 

(Mean±SD) 

𝑇𝑒0[℉](℃) 30(-1) 70(21.1) 30 ± 10 (−1± 5.5) 

𝑇i0, 𝑇m0, 𝑇s0, 𝑇𝑛 

[℉](℃) 

50  

(15.5) 

80 

(26.7) 

73 ± 5 (22.8 ± 2.78) 

74.5 ± 5 (23.6 ± 2.78) 

72 ± 5 (22.2 ± 2.78) 

72 ± 5 (22.2 ± 2.78) 

𝐶e [BTU F⁄ ](kJ/K) 
100 

(190) 

10000 

(19000) 
1850 ± 200 (3513 ± 380) 

𝐶i [BTU F⁄ ](kJ/K) 
5 

(9.49) 

5000 

(9495) 
1050 ± 200 (1995 ± 380) 

𝐶m [BTU F⁄ ](kJ/K) 
25000 

(47477) 

65000 

(123441) 

35000 ± 10000  

(66468 ± 18991) 

𝐶s [BTU F⁄ ](kJ/K) 
5 

(9.5) 

500 

(950) 
400 ± 50 (759 ± 95) 

𝑅ea, 𝑅ie 

[F ⋅ S BTU⁄ ](K kW⁄ ) 

5 

(2.6) 

100 

(52.6) 

20 ± 5 (10.5 ± 2.6) 

60 ± 10 (31.6 ± 5.3) 

𝑅is, 𝑅im, 𝑅n 

[F ⋅ S BTU⁄ ](K kW⁄ ) 

1e-4 

(5.2⋅1e-5) 

10 

(5.26) 

5 ± 2 (2.6 ± 1) 

0. 025 ± 0.01 (0.013 ± 0.005) 

2.5 ± 1 (1.3 ± 0.5) 

𝐴w[−] 0 1 0.03 ± 0.005 

𝜂ig, 𝜂htg, 𝜂aux 

𝜂df, 𝜂clg[−] 
0 1 

𝜂ig : 0.55 ± 0.1 

Others: 0.3 ± 0.05 

Particle filter update 

Liu-west filter (Liu & West, 2001) is one type of particle 

filter (i.e., Sequential Monte Carlo method), which 

updates the posterior of state variables at current time (𝑡) 
based on previous data (1: 𝑡 − 1) but is also capable of 

updating the parameters at the same time (Liu & West, 

2001). The joint distribution of state variables and 

parameters (Pr(𝐱𝑡 , 𝜽|𝐲1:𝑡)) is updated on every iteration 

from the previous data (Eq. 18). 

Pr(𝐱𝑡 , 𝜽|𝐲1:𝑡) ∝ Pr(𝐲1:𝑡|𝐱𝑡 , 𝜽) Pr(𝐱𝑡 , 𝜽|𝐲1:𝑡−1) 
  ∝ Pr(𝐲1:𝑡|𝐱𝑡, 𝜽) Pr(𝐱𝑡|𝐲1:𝑡−1, 𝜽) Pr(𝜽|𝐲1:𝑡−1 ) 

(18) 

While the total 𝑁 number of state particles (𝐱𝑡
(1:𝑁) ) are 

updated through the auxiliary particle filtering method 

with sampling weight (𝜋𝑡
(1:𝑁)), the parameters of each 

particle (𝜽𝑡
(𝑛))  are updated by adding noise ( 𝜁𝑡

(𝑛)
) 

generated by zero mean gaussian with diagonal noise 

matrix (𝐖𝑡) (Eq. 19).  

 
𝜽𝑡
(𝑛) = 𝜽𝑡−1

(𝑛) + 𝜁𝑡
(𝑛) 

𝜁𝑡
(𝑛)~𝒩(𝟎,𝐖𝑡) 

(19) 

However, putting the parameters into the state vector ends 

up with diffused variance, so the variance needs to be 

corrected so that Var(𝜽𝑡+1|𝑦1:𝑡) = Var(𝜽𝑡|𝑦1:𝑡) = 𝐕𝜽,𝑡 . 

By approximating the marginal posterior of parameter 

distribution (Pr(𝜽𝑡|𝑦1:𝑡−1)) using a multivariate normal 

gaussian kernel, the parameters can be updated as Eq. 20.   

 

Pr(𝜽𝑡|𝐲1:𝑡−1) ≈ 

∑𝑤𝑡−1
(𝑖) 𝒩(𝜽𝑡|𝝁𝜽,𝑡|𝑡−1

(𝑖) , (𝑰 − 𝐒𝜽,𝑡
2 )𝐕𝜽,𝑡−1)

𝑁

𝑖=1

 
(20) 

 

Figure 5. Modified Liu-West Algorithm for online-

building model 

The details of calculation are shown in Figure 5. In this 

research, the original algorithm is slightly modified as 

follows: 

(1) We split the building physical parameters (𝜽RC) , 

input-related parameters (𝜽u) , and standard deviation-

related parameters (𝜽sd), and then, 𝜽RC are sampled from 

the covariance of previous values of all parameters while 

the others (𝜽u, 𝜽sd) are sampled from the variance of each 

parameter as shown in Figure 5. It should be noted that 

𝜽RC  are related to each other through the heat transfer 

process in each timestep while 𝜽u  are not always 

dependent to each other as 𝐮 are not always involved in 

the process at every timestep. 

(2) For the same reason, 𝜽u  are not always updated as 

shown in line 22 and 23 of Figure 5. For example, during 

the heating process, 𝑘clg should not be updated. 

(3) We use a fixed noise matrix for parameter updates to 

specify the update ranges of each timestep as 5% and 10% 

of parameters’ standard deviations. 

𝐖𝜽RC,u,𝑡
= diag(𝟎. 𝟎𝟓2),𝐖𝜽sd,𝑡

= diag(𝟎. 𝟏2) (21) 

We subtract the mean and divide by the standard deviation 

(Table 2) to the real parameter values so that they are 

sampled from similar gaussian distribution. Although the 

original algorithm (Liu & West, 2001) derived a 

simplified version of variance update/correction rule by 

using a single discounting factor, we use the original 



update rule with 𝐖𝜽  (line 7, 14 in Figure 5) to specify 

update ranges (Eq. 21). 

(4) When there is missing data in 𝑦t  or 𝐮𝑡 , 𝐱𝑡  and 𝜽𝑡 
particles are not updated until new data comes in. 

Prediction 

Figure 6 is a schematic diagram of the prediction process 

with this model. With the recent states and updated 

parameters from the particle filter, the next week’s energy 

consumption is predicted based on a proposed setpoint 

schedule and weather forecast.  

In this model, the heating and cooling operation signal 

(𝑖hc(𝑡)) is decided every time step based on the setpoint 

and the predicted indoor temperature (𝑇i) at the current 

timestep. The thermostat model is composed of multiple 

if-then-else rules, and some key rules in our thermostat 

are outlined below: 

• Heat pump heating is disabled when outdoor 

temperature is lower than 5℉ (−15℃). 

• Auxiliary electric heating is disabled when outdoor air 

temperature is higher than 55℉ (12.8℃). 

• When the setpoint is not met for 30 minutes with 

heatpump heating, the auxiliar heating is activated. 

• When outdoor temperature is lower than 32℉ (0℃), 

the deforst cycle is activated. But, the cycling interval 

is determined by sensor in outdoor unit. 

• The minimum heatpump cycling time is 5 minute. 

 

 

Figure 6:Prediction process 

Modelling results 

Initial parameter learning 

One-week (2018/01/22–2018/01/28) training data of one 

household unit with outdoor conditions ranging from 30 

to 50℉  is selected for learning the initial building-

physical parameters (Table 2). With the bounds shown in 

Table 2, we run the optimizer to get initial ranges of 

parameters with 50 random initial starting points to 

minimize the objective function (Eq. 17). The best set of 

parameters are chosen based on the temperature 

prediction for next five days (2018/01/29–2018/02/02). 

The best set is used as the mean of the initial parameters, 

and the other sets are used to specify the ranges as shown 

in Table 2. Figure 7 presents a comparison of predicted 

indoor temperature (𝑇i) and measured data (𝑦𝑇i)  based 

on the initial parameters. The left side (2018/01/22–

2018/01/28) corresponds to the training period, and the 

results show good agreement with measured data. The 

right side (2018/01/29–2018/02-02) is the prediction 

period. Although the model captures the overall 

temperature profile of the building response, oscillations 

with an average of 1℃  are observed. Unobserved 

disturbances such as infiltration or human body heat could 

be associated with this discrepancy, but the overall 

temperature of neighbouring spaces (𝑇n) (yellow line) it 

is expected to be the main cause because it is identified as 

a single constant and not updated. 

  

Figure 7: Temperature prediction in training period  

Particle filter 

With initial parameter ranges, 10000 particles of 

parameter and state samples are generated and updated on 

new data through Liu-West Particle filter. Figure 8 shows 

the particle filter update for the beginning of the dataset. 

The distribution of filtered sensor temperature state (𝑇s) 
(2.5, 50, and 97.5% quantiles with blue and black lines) is 

shown with measured data. Since the filter starts with 

good initial parameters, the filtered state is in good 

agreement with the measured data. In addition, the 

median profile of interior mass  (𝑇m)  and overall 

neighbouring space (𝑇n)  temperature states are shown 

with the green and yellow line, respectively. One of the 

advantages of filter is the update of states distribution 

every time step. Specifically, in this model (Eqs. 11–14), 

𝑇n is modelled as unobserved fixed temperature for each 

time step. However, its value would change for the next 

time step. By updating the state distribution with new 

data, the filter identifies the unobserved changes of 𝑇n as 

shown in the yellow line of Figure 8. 

 

Figure 8. Particle filter for states 

Figure 9 shows as an example the update process for one 

parameter distribution (𝑅ea). From the initial parameter 

range, the samples are updated through the filter. This can 



be viewed as posterior distribution of parameter with the 

data before the current time step (Eq. 18). 

 

Figure 9. Particle filter for parameter update 

Parameter learning for cooling operation 

The particle filter is online model, so it can learn new 

parameters. Figure 10 shows the learning process of 

cooling efficiency parameter (𝜂clg) . As the initial 

parameters are learned from the heating season, we do not 

have information regarding 𝜂clg . In April, the green 

period (1) in Figure 10 shows the first cooling operation 

of the year in this unit. During period (1), the distribution 

is significantly different, and then it slowly changes in 

period (2).  

 

Figure 10. Learning new parameter (𝜂𝑐𝑙𝑔) 

Approximation of future 𝑻𝒏 

In Figure 8, the particle filter can identify unobserved 

profiles of the overall neighbouring space temperature 
(𝑇n). However, the profiles are historic, and thus, it is 

necessary to predict future profiles. Since this is the result 

from the complex thermal dynamics of multiple 

household units with different settings and behaviours, it 

is impossible to predict the exact profiles for the future 

without information from all the spaces in the building. 

However, this temperature profile is related to the unit’s 

sensor temperature (𝑇s)  because the changes in unit’s 

temperature would affect neighbouring spaces’ 

temperature, too. Considering the impact of neighbouring 

spaces to the unit is a slow process due to the large internal 

mass (𝐶m) and changes in 𝑇n  within small ranges during 

the whole season (i.e., 21–24℃) . However, we can 

approximate �̂�n with �̂�s. Figure 11 shows the relationship 

between identified 𝑇n  and 𝑇s  for one household via 

particle filter during Jan–Aug 2018. Although there are 

variations, they show a clear positive correlation. Thus, 

we use a linear function to approximate the relationship 

of predicted �̂�n,𝑡+1 by predicted �̂�s,𝑡+1 as shown in Figure 

11. In other words, based on current input (𝐮𝑡)  and 

predicted states (�̂�𝑡), the next states �̂�𝑡+1  are predicted 

first, and then �̂�n,𝑡+1 is corrected with �̂�s,𝑡+1 (Eq. 22). 

�̂�n,𝑡+1 = 13.5 + 0.416�̂�s,𝑡+1 (22) 

 

Figure 11. Approximation of neighbouring space 

temperature from indoor temperature 

Model validation via prediction 

In Figure 12, the mean temperature prediction results 

from the fixed model (green line, initial parameters from 

system identification technique) and the updated model 

(black line, updated parameters with particle filter) are 

compared. In order to visualize the effect of the online 

approach, we updated the model from the winter period 

and the compared the predictions on summer data. Both 

predictions start with the same filtered states from the 

previous week but different system parameters and 

neighbouring space model. For the fixed model, fixed 

neighbour temperature and initial parameters are used. 

The updated model uses an approximate model for the 

neighbouring space temperature and updated parameters. 

The fixed model’s root mean squared temperature 

prediction error (RMSE) is 1.2℃, which is significantly 

higher than the 0.35℃ RMSE of the update model.  

 

Figure 12. Comparison of updated and fixed model of 

mean temperature prediction for a week during summer 

season 

Eco-feedback scenario 

In future work by the authors, the developed online model 

will be integrated in smart user-interactive eco-feedback 

systems with information visualization or voice control. 

Such smart systems will be integrated in multi-unit 

residential buildings to help residents make informed 

decisions about their setpoint schedule considering the 



predicted energy use. In addition, this model will be 

considered in the design of personalized feedback 

messages and incentives to motivate energy conserving 

behaviours. In this section, we present a simple scenario 

to demonstrate the use of the model. With the updated 

model from the previous week, residents can estimate 

their expected energy consumption for next week if they 

adopt a new setpoint schedule. Figure 13 shows the 

predicted energy consumption from three setpoint 

scenarios with uncertainties. The model is updated from 

2018/01/01 to 2018/01/21, and the energy consumption of 

2018/01/21–28 is estimated. The green distribution is the 

energy consumption when the residents keep using the 

current setpoint schedule (i.e., Home 23.3℃ , Away 

21.7℃). The vertical line (63kWh) is the measured power 

consumption of this period, and the prediction results are 

63.5–69.8kWh (2.5–97.5% quantiles). These values are 

quite close, and the small discrepancy comes from the 

thermostat model error, unmeasured disturbances, 

neighbouring space temperature, etc. The blue 

distribution is based on an efficient setpoint scenario (i.e., 

Home 21.1℃, Away 18.3℃). Although this scenario is 

during the winter period, only a small amount of heating 

is required to maintain this setpoint. The red distribution 

indicates the energy consumption for a wasteful setpoint 

scenario (i.e., Home 26.1℃, Away 24.0℃). This is about 

4 times higher than the current setpoint settings. It should 

be noted that in this building, the heating energy 

consumption in a unit is affected by the neighbouring 

spaces. For example, without any heating, the unit’s 

temperature is maintained near 20℃ during the winter 

because hallway and adjacent neighbours are all 

conditioned. Also, the location of thermostat in Figure 1 

can explain this. The thermostat is far away from the 

building’s exterior wall, so the average indoor 

temperature could be lower than the thermostat 

temperature. Finally, when the setpoint is not met for a 

certain time (30 minutes) or the outdoor temperature is 

low, the auxiliary electric heater is used instead of the heat 

pump. This leads to extra energy consumption. For 

example, in wasteful setpoint scenario, the heating energy 

consumption is very large because the rate of temperature 

increase becomes slower when the indoor temperature is 

higher than the neighbouring spaces, and this leads to 

extra energy consumption due to continuous operation of 

the auxiliary heater. 

 
Figure 13. Predicted energy consumption with 

uncertainty 

Conclusions 

In this paper, we presented a data-driven modelling 

approach to predict the energy consumption with a new 

thermostat behaviour (setpoint schedule) in a multifamily 

residential building. The online grey-box model captures 

the unobserved building boundary conditions and 

evolution of parameters by using Liu-West particle filter. 

The Bayesian sequential update feature of this model 

allows estimation of the energy consumption based on a 

new setpoint schedule, and it can be used for real-time 

eco-feedback design. 
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