
On the Feasibility of Attribute-Based Access Control Policy Mining

Shuvra Chakraborty1, Ravi Sandhu2 and Ram Krishnan3

1,2,3Institute for Cyber Security
1,2Department of Computer Science, 3Department of Electrical and Computer Engineering

1shuvra.chakraborty@utsa.edu, 2ravi.sandhu@utsa.edu and 3ram.krishnan@utsa.edu
University of Texas at San Antonio, San Antonio, Texas, USA

Abstract

As the technology of attribute-based access control
(ABAC) matures and begins to supplant earlier models such
as role-based or discretionary access control, it becomes
necessary to convert from already deployed access control
systems to ABAC. Several variations of this general prob-
lem can be defined, some of which have been studied by
researchers. In particular the ABAC policy mining problem
assumes that attribute values for various entities such as
users and objects in the system are given, in addition to the
authorization state, from which the ABAC policy needs to be
discovered. In this paper, we formalize the ABAC RuleSet
Existence problem in this context and develop an algorithm
and complexity analysis for its solution. We further intro-
duce the notion of ABAC RuleSet Infeasibility Correction
along with an algorithm for its solution.

1 Introduction

The attribute-based access control (ABAC) policy min-
ing problem [9, 12] requires the discovery of ABAC policy
from a given authorization state and given attribute values
for users and objects. We use the terms ABAC policy and
ABAC rule set interchangeably. Various means of provid-
ing authorization input data have been considered, includ-
ing RBAC [10], log data [11] and sparse log [2]. The pre-
vious literature has primarily focused on the detailed me-
chanics of generating ABAC policy rules from the provided
input. Here we develop a more abstract and general char-
acterization of this problem. To the best of our knowledge,
this is the first such study of ABAC policy mining.

The fundamental question investigated in this paper con-
cerns the feasibility of finding a suitable ABAC policy, as-
suming there is no limit to the sophistication of the ABAC
policy language. Consider two extreme cases. In the first,
all users have identical attribute values and likewise for all

objects. Rules based on attribute values thereby cannot dis-
tinguish any two user, object pairs and can only give uni-
form authorization for all such pairs, which is hardly useful
in practice. At the other extreme assume user identity and
object identity are included as attribute values for users and
objects respectively, where identity is globally unique. Ev-
ery user, object pair is thereby distinguishable from every
other pair, so authorization for each pair can be differen-
tiated. In general, the inclusion of identity attributes will
guarantee the existence of ABAC policy rules even if all
other attributes are ignored. We believe that identity at-
tributes are antithetical to the spirit of ABAC and we dis-
allow them, which makes the feasibility question germane.

Rest of the paper is organized as follows. Section 2 for-
malizes the ABAC RuleSet Existence problem. Section 3
develops a solution for this problem with associated proofs
and analysis. Section 4 discusses the treatment of unrepre-
sented attribute value combinations. Section 5 introduces
the ABAC RuleSet Infeasibility Correction problem and
provides a solution. A brief discussion of related works is
presented in Section 6.

2 ABAC RuleSet Existence Problem

We consider access control systems that mediate access
of users to objects. We specifically omit the user-subject
distinction, e.g. as in [4]. Given that a user requests to per-
form an operation on an object, every access control system
must define a checkAccess function to decide whether or
not this operation should be permitted or denied.

Definition 1 checkAccess
checkAccess: U×O×OP→ {True, False}where, U, O, and
OP are finite sets of users, objects, and operations, respec-
tively. A user u ∈ U is allowed to perform operation op ∈
OP on object o ∈ O if and only if checkAccess(u, o, op) is
True.

In general, the checkAccess function changes with the

system state. Since our focus is on a single state we omit
explicit mention of the state. The specification of checkAc-
cess, typically as a logical formula, depends upon the de-
tails of the underlying access control model. A simple au-
thorization system, where user-object-operation tuples are
used directly to control access is as follows.

Definition 2 Enumerated Authorization System (EAS)
An EAS is a tuple 〈U, O, OP, AUTH, checkAccessAUTH〉
where, U, O, and OP are finite sets of users, ob-
jects and operations, respectively. Here, AUTH ⊆
U × O × OP, is a specified authorization relation and
checkAccessAUTH(u, o, op) ≡ (u, o, op) ∈ AUTH.

For instance, user Paul can read F if and only if (Paul,
F, read)∈AUTH, whereby checkAccessAUTH is True. We
require that the authorization state in the ABAC policy min-
ing problem be given as an EAS. Note that however check-
Access is specified in an access control system, an equiva-
lent AUTH relation can be computed for finite sets of users,
objects and operations. So this is a reasonably general as-
sumption.

Our ABAC model is adapted from [4] with two ma-
jor deviations. Firstly, as mentioned above we omit the
user-subject distinction. Secondly, attributes in [4] can be
atomic-valued or set-valued. For example, the age attribute
of a user is atomic valued. On the other hand a user’s depart-
ment attribute could be atomic valued if only one depart-
ment is permitted or set-valued if a user can be in multiple
departments. Note that set-valued attributes can be replaced
by atomic-valued attributes by simply enumerating all com-
binations and assigning a symbol for each. For simplicity
we assume all attributes are atomic valued.

In ABAC, authorization of whether a user can do an op-
eration on an object is decided using the attributes value
assignments of both user and object. (Many ABAC systems
also include contextual attributes, which we ignore in this
paper.) The core of ABAC is a set of rules, which constitute
the ABAC policy.

Definition 3 ABAC policy
An ABAC policy, POLABAC is a tuple, 〈OP, UA, OA,
RangeSet, RuleSet〉 where,

• OP is a finite set of operations, and UA and OA are
finite sets of user and object attribute function names
respectively. We assume UA ∩ OA = ∅.

• RangeSet = {(att, value) | att ∈ (UA ∪ OA) ∧ value ∈
Range(att)} where, Range(att) specifies a finite set of
atomic values.

• RuleSet is a set of rules, where, for each operation op,
RuleSet contains a single rule, Ruleop. Formally, Rule-
Set = {Ruleop | op ∈ OP}. Each Ruleop is specified

using the grammar below.
Ruleop ::= Ruleop∨ Ruleop | (Atomicexp)
Atomicexp::=Atomicuexp∧Atomicoexp|Atomicuexp|

Atomicoexp | True | False
Atomicuexp ::= Atomicuexp ∧ Atomicuexp | uexp
Atomicoexp ::= Atomicoexp ∧ Atomicoexp | oexp
uexp ∈ {ua(u) = value | ua ∈ UA ∧ value ∈
Range(ua)}
oexp ∈ {oa(o) = value | oa ∈ OA ∧ value ∈
Range(oa)}

Each Ruleop is specified with user u and object o as for-
mal parameters. The semantics of Ruleop, evaluated for an
actual user a and object b is given in Definition 4. For exam-
ple, ABAC rule for read operation is denoted by, Ruleread
and given by (rank(u) = manager ∧ type(o) = attendance
log) ∨ (rank(u) = manager ∧ type(o) = Annual report). Here
any user in U with rank = manager can read both types of
objects, attendance log and annual report.

A complete ABAC system defines authorization based
on ABAC policy as follows.

Definition 4 ABAC system
An ABAC system is a tuple, given by, 〈U, O, UAValue,
OAValue, POLABAC, checkAccessABAC〉 where,

• U and O are finite sets of users and objects, respec-
tively. OP, UA, OA, RangeSet and POLABAC are de-
fined as in Definition 3.

• UAValue = {UAValueua | ua ∈ UA} where,
UAValueua : U→ Range(ua) such that UAValueua(u)
returns the value of attribute ua for user u. For conve-
nience, we understand ua(u) to mean UAValueua(u).

• OAValue = {OAValueoa | oa ∈ OA} where,
OAValueoa : O→ Range(oa) such that OAValueoa(o)
returns the value of attribute oa for object o. For con-
venience, we understand oa(o) to mean OAValueoa(o).

• checkAccessABAC(a:U, b:O, op:OP) ≡ Ruleop(a:U,
b:O) where Ruleop is as stated in Definition 3. Given
any user a ∈ U along with attribute value assignments
ua(a), where ua ∈ UA and an object b ∈ O along with
attribute value assignment oa(b), where oa ∈ OA, the
expression Ruleop(a, b) is evaluated by substituting the
values ua(a) for ua(u) and oa(b) for oa(o) in the Ruleop
expression. User a is permitted to do operation op on
object b if and only if Ruleop(a, b) evaluates to True.

We also define a partially defined ABAC system to be a
tuple, 〈U, O, UAValue, OAValue, POLABAC–RuleSet〉 where
POLABAC–RuleSet is a tuple 〈OP, UA, OA, RangeSet〉where
OP, UA, OA, and RangeSet are as in Definition 3 and Rule-
Set is undefined.

Table 1. Example data set 1

(a) UAValue
User ua1 ua2
u1 F C
u2 F B
u3 F C
u4 G D

(b) OAValue
Object oa1

o1 F
o2 G

(c) Range
ua1 {F, G}
ua2 {B, C, D}
oa1 {F, G}

Definition 5 Equivalency
An EAS, 〈U, O, OP, AUTH, checkAccessAUTH〉, and an
ABAC system, 〈U, O, UAValue, OAValue, POLABAC,
checkAccessABAC〉 with identical U, O, and OP are said
to be equivalent iff, checkAccessAUTH(u, o, op) ⇐⇒
checkAccessABAC(u, o, op) for all u ∈ U, o ∈ O, and
op ∈ OP.

Based on the foregoing, ABAC RuleSet Existence prob-
lem is defined as follows.

Definition 6 ABAC RuleSet Existence problem
Given, an EAS 〈U, O, OP, AUTH, checkAccessAUTH〉 and a
partially defined ABAC system 〈U, O, UAValue, OAValue,
POLABAC–RuleSet〉 where U, O and OP are identical to the
given EAS, does there exist a RuleSet so that the resulting
ABAC system is equivalent to the given EAS? Such a Rule-
Set, if it exists, is said to be a suitable RuleSet.

To illustrate the ABAC RuleSet Existence problem
consider the example data in Table 1, where U =
{u1, u2, u3, u4}, O = {o1, o2}, UA = {ua1, ua2} and OA
= {oa1}. Table 1(c) specifies the attribute ranges while Ta-
bles 1(a) and (b) gives attribute values for users and objects
respectively. All of this specifies a partially defined ABAC
system. Suppose we are given an EAS with AUTH={(u1,
o1, op)}. A suitable RuleSet cannot exist since users u1
and u3 cannot be distinguished based on their attribute val-
ues. However, if AUTH={(u1, o1, op),(u3,o1,op)} then a
suitable Ruleop is ua1(u)=F ∧ ua2(u)=C ∧ oa1(o)=F.

3 ABAC RuleSet Existence Solution

The essential concept to solve the ABAC RuleSet Exis-
tence problem is that the attribute name, value combinations
induce a partition on the set of user, object pairs. We for-
malize this intuition as follows.

Definition 7 Binary relation R
Given, a partially defined ABAC system, 〈U, O, UAValue,
OAValue, POLABAC–RuleSet〉, the binary relation R on set
UO = U× O is defined as
R ≡ {((u1, o1), (u2, o2)) | (∀ua ∈ UA.ua(u1) = ua(u2)) ∧
(∀oa ∈ OA.oa(o1)=oa(o2))}

�����

�����

�����

�����

�����

�����

�����

�����

����������

	
����

Figure 1. Partition set example.

Lemma 1 R is an equivalence relation.
Proof: Trivial by inspection.

The resulting partitions induced by R on UO are formally
referred to as follows.

Definition 8 Partition set P
Let P = {P1, P2, ..., Pn} be the equivalence classes of R.
Each Pi ∈ P is called a partition element (or simply parti-
tion) and P is called the partition set. Each Pi ∈ P is identi-
fied by a unique collection of (attribute name, value) pairs,
given by PV(Pi) where,
PV(Pi) ≡ For any (u1, o1) ∈ Pi, (UV(u1) ∪ OV(o1))
UV(u:U) ≡ {(ua, value)|ua ∈ UA ∧ value = ua(u)}
OV(o:O) ≡ {(oa, value)|oa ∈ OA ∧ value = oa(o)}

For instance, using the example data in Table 1, UO =
{(u1, o1), (u1, o2), (u2, o1), (u2, o2), (u3, o1), (u3, o2),
(u4, o1), (u4, o2)}. The resulting partition set is shown in
Fig. 1. The PV set for the partition containing (u1, o1) and
(u3, o1) is {(ua1, F), (ua2, C), (oa1, F)}.

Finally, we introduce the following notion.

Definition 9 Conflict-free partition
Given an EAS, 〈U, O, OP, AUTH, checkAccessAUTH〉 and
partition set P, a Pi ∈ P is conflict-free with respect to a
specific op ∈ OP iff the following statement is true,
(∀(u, o) ∈ Pi.(u, o, op) ∈ AUTH)∨(∀(u, o) ∈ Pi.(u, o, op) 6∈
AUTH)
Pi has conflict with respect to op ∈ OP otherwise. Parti-
tion set P is conflict-free iff for all op ∈ OP, every Pi ∈ P
is conflict-free with respect to op. P is called a conflicted
partition set, otherwise.

An example of conflict-free partition set is presented in Fig.
1 where, user-object pairs in bold black belong to AUTH
with respect to OP = {op}, while others are not. By inspec-
tion, all partitions in Fig. 1 are conflict-free with respect to
given AUTH and op ∈ OP. Hence, resulting partition set is
conflict-free. The concept of conflict-free partitions is used
to solve ABAC RuleSet Existence problem as follows.

Theorem 1 Given an ABAC RuleSet Existence problem
instance, a suitable RuleSet exists iff P is conflict-free.
Proof:
Only if part is proved by contraposition. If P is not conflict-
free, by definition, a conflict partition Pi ∈ P with re-
spect to a specific op ∈ OP, contains some (u, o) ∈ Pi
which are permitted in AUTH, while others are not. Since
all (u, o) ∈ Pi are represented by same PV(Pi), these two
logical parts of Pi cannot be separated using UAValue and
OAValue. Thereby, Ruleop generation is not possible. Note
that this only if proof is independent of the actual policy
language for Ruleop.
If part is proved by constructing a suitable RuleSet and
showing that, if P is conflict-free then resulting ABAC sys-
tem with generated RuleSet is equivalent to EAS. By defi-
nition, RuleSet contains a Ruleop, for each op ∈ OP. For a
op ∈ OP, Ruleop is given by:

Ruleop =
∨

Pi×{op}⊆AUTH

(uexp(PV(Pi)) ∧ oexp(PV(Pi)))

uexp(PV(Pi)) =
∧

(ua,value)∈PV(Pi)

(ua(u) = value)

oexp(PV(Pi)) =
∧

(oa,value)∈PV(Pi)

(oa(o) = value)

To prove equivalency between the resulting ABAC system
with RuleSet and EAS, it is necessary and sufficient to show
that, for a specific op in OP, (a, b, op) ∈ AUTH ⇐⇒
Ruleop(a, b), for all a ∈ U, b ∈ O.
To prove the only if part: by inspection, each (u, o) ∈ U×O
belongs to only one partition in P. Let (a, b) ∈ Pi. Since P
is conflict-free, corresponding Pi × {op} must be a subset
of AUTH. By construction, Ruleop includes a conjunctive
clause for every Pi × {op} ⊆ AUTH, which evaluates to
True for any user-object pair in Pi. Since Ruleop is a dis-
junction of such conjunctive clauses, thereby, Ruleop(a, b)
evaluates to True. Hence, only if part is proved.
To prove if part: by inspection, if Ruleop(a, b) evaluates to
True, then there must be a conjunctive clause of Ruleop,
which is evaluated to True. By construction, each such con-
junctive clause in Ruleop is representing a specific Pi ∈ P
where, Pi × {op} ⊆ AUTH. Since P is conflict-free, ev-
ery user-object pair in corresponding Pi is permitted with
respect to op, thus belongs to AUTH. Thereby, (a, b, op) ∈
AUTH, which proves if part.
Hence, given P is conflict-free, generated suitable RuleSet
completes the ABAC system equivalent to given EAS.

Based on this result, a formal algorithm for ABAC Rule-
Set existence problem is presented in Algorithm 1.

Corollary 1 Complexity of Algorithm 1 is O(|OP| × |U| ×
|O|).

Algorithm 1 ABAC RuleSet Existence Algorithm
Require: EAS, Partially defined ABAC system where U,

O, and OP are identical to EAS
Ensure: Partition set P and SUCCESS or FAILURE

1: Partition P := ∅
2: while ∃(u, o) ∈ U× O do
3: if ∃Pi ∈ P.PV(Pi) = (UV(u) ∪ OV(o)) then
4: Pi := Pi ∪ {〈u, o〉}
5: else
6: Create new Pi = {〈u, o〉}
7: P := P ∪ Pi
8: U× O := U× O – {〈u, o〉}
9: while ∃op ∈ OP.∃Pi ∈ P.!((Pi × {op} ⊆ AUTH) ∨

(Pi × {op} ⊆ AUTH)) do
10: return FAILURE
11: return SUCCESS

Proof:
Given an equivalence relation R as in definition 7, the com-
plexity of partition set P generation is O(|U| × |O|), con-
sidering partition creation, search, and insertion operations
take constant time. For each op ∈ OP, checking whether
P is conflict-free or not, requires O(|OP| × |U| × |O|) as
the maximum number of possible partition is (|U| × |O|).
Hence, the overall complexity is O(|OP| × |U| × |O|). Note
that the size of any attribute range does not impact this com-
plexity.

Simple rule generation will be illustrated with an exam-
ple presented in Fig. 1. Since P is conflict-free with respect
to given AUTH, using the rule construction procedure listed
in Theorem 1, corresponding conjunctive clauses for each
Pi ∈ P where Pi × {op} ⊆ AUTH in Fig. 1 are < ua1(u) =
F∧ua2(u) = C∧oa1(o) = F >, < ua1(u) = F∧ua2(u) = B∧
oa1(o) = F >, < ua1(u) = G ∧ ua2(u) = D ∧ oa1(o) = F >,
and < ua1(u) = G ∧ ua2(u) = D ∧ oa1(o) = G >. By
construction, Ruleop consists of disjunction of all the con-
junctive clauses listed here. Now, any rule simplification
approach can be used for further minimization.

4 Unrepresented partitions

Given range of attributes and a specific set of attribute
value assignment to users and objects, it is quite possible
that some attribute value combinations will not show up
while generating partition set. We call these partitions as
“unrepresented”, since the range of attributes clearly allows
presence of those, but due to the peculiarity in the given user
and object attribute value assignment, these partitions re-
main empty. For instance, all possible attribute value com-
binations (each one represents a possible partition) for Ta-
ble 1 data is given by {FCF, FBF, GDF, GDG, FCG, FBG,

FDF, FDG, GBF, GCF, GBG, GCG}, considering an or-
der of < ua1, ua2, oa1 >. Only first six combinations of
this set are present, while the remaining six are unrepre-
sented according to the given data. The ABAC policy min-
ing approaches in [9, 12] ignore unrepresented partitions,
whereby the generated rules may or may not authorize these
attribute value combinations to have access. If these unrep-
resented partitions get populated in future, this may lead to
unexpected checkAccess decisions.

To have an insight using the same data set for ABAC
policy mining where authorizations are presented in Fig. 1,
[12] derives two rules without user and object id, <true,
true, {op}, {ua1=oa1}> and <ua1={G}, true, {op}, ∅>.
Since [12] works fine for all possible user-object pair, first
four of the attribute value combinations are allowed, while
FCG and FBG are denied. Amongst unrepresented attribute
value combinations, {GCG, GBG, FDF} satisfies the first
clause of the rule, and {GBF, GCF, GBG, GCG} are ac-
cepted by the second clause. Only {FDG} gets rejection
according to the generated rules! The question of unrepre-
sented attribute combinations is treated as a rule simplifi-
cation concern, rather than a security concern in [12]. An-
other approach in [9] generates two rules, < (oa1 = F) >
and < (ua2 = D) > and works fine for given authorizations.
In case of unrepresented partition, {FDF, FDG, GBF, GCF}
gets acceptance, while {GBG, GCG} is denied. This mixed
response shows “don’t care” for unrepresented attribute
value combinations again. The security architect should
be at least aware of these unrepresented combinations. He
might decide to don’t care, or take suitable action based on
his expertise. In our approach of the previous section unrep-
resented partitions are assumed to have deny access which
is a conservative and safe security posture.

5 ABAC RuleSet Infeasibility Correction

We know from Section 3 that if the partition set is con-
flicted a suitable RuleSet cannot exist. There are at least
two approaches to dealing with this situation in practice.
One approach is to construct RuleSets that are only approx-
imately equivalent to the given AUTH relation. Various no-
tions of approximation can be defined and their security im-
plications analyzed. The second approach, which we study
in this paper, is to introduce additional attributes to recon-
cile the conflicted partitions. This leads us to introduce the
following notion.

Definition 10 ABAC RuleSet Infeasibility Correction
problem
Given, EAS 〈U, O, OP, AUTH, checkAccessAUTH〉 and a
partially defined ABAC system with unspecified RuleSet
where, U, O, and OP are identical to the given EAS such
that the partition set P is conflicted, the ABAC Ruleset In-
feasibility Correction problem is to 1) add new attributes

UA and/or OA, and 2) assign appropriate values to the
added new attributes, so that it is possible to generate a suit-
able RuleSet.

Ideally, the newly added attributes should have seman-
tic significance grounded in the underlying application do-
main, and should be assigned meaningful values appropri-
ate to different users and objects. This will presumably re-
quire expert input from security architects, perhaps aided
by artificial intelligence, machine learning and other auto-
mated techniques. Study of such approaches is beyond the
scope of this paper. Here we investigate a purely automated
approach which introduces new “artifical” attributes with
“artificial” values.

We note that conflict-free partitions that are authorized
for access with respect to an operation op can have rules
generated as explained in the proof of Theorem 1, ignoring
consideration of any new attributes. However, the conflicted
partitions need to be further refined by means of these new
attributes to remove the conflict. There can be many ways to
do this. Clearly the minimum possible split of a conflicted
partition is into two refined partitions, one with all user-
object pair permitted for op while the second contains the
denied ones. The maximum possible split is to put each tu-
ple in the conflicted partition into its own refined partition.
One possible approach to constructing appropriate refine-
ments is described below.

Given ABAC RuleSet Infeasibility Correction instance,
consider a Pi ∈ P which is conflicted with respect to some
op ∈ OP. Define the binary relation RPi on Pi as:
RPi ≡ {((u1,o1), (u2,o2))|∀o ∈ O.∀op ∈ OP.((u1, o, op)∈
AUTH⇔(u2, o, op)∈ AUTH) ∧ ∀u ∈ U.∀op ∈ OP.((u, o1,
op)∈AUTH⇔(u, o2, op)∈AUTH)}

Lemma 2 RPi is an equivalence relation.
Proof: Trivial by inspection.

Hence, RPi induces a partition on Pi.

Definition 11 Partition set Si
Let Si be the partition on Pi induced by RPi and denoted by
Si = {Si1, Si2, ..., Sim}, where 1 ≤ m ≤ |Pi|. Each Sik ∈ Si
is called a partition element (or shortly partition) and Si is
called partition set. By definition of RPi, each Sik ∈ Si is
represented by a collection of (attribute name, value) pairs,
PV(Sik) where,
PV(Sik) ≡ For any (u1, o1) ∈ Si, (UV(u1) ∪ OV(o1))

The concept of conflict-free partition from Section 3 is ex-
tended to Si.

Definition 12 Conflict-free partition set Si
Given an EAS, 〈U, O, OP, AUTH, checkAccessAUTH〉 and
partition set Si stated in definition 11, a Sik ∈ Si is conflict-
free with respect to a specific op ∈ OP and given AUTH in

Table 2. Example data set 2

(a) UAValue
User uat1
u1 F
u2 F
u3 F
u4 G
u5 G

(b) OAValue
Object oat1

o1 F
o2 F
o3 F
o4 G

(c) Range of attributes
uat1 {F, G}
oat1 {F, G}

������

������

������

������

�����	

�����	

�����

�����

����������

	
��

������

�	����

������

�����	

�	����

�	���	

������

�����	

������ ������

������

�	����

Figure 2. Refined partition set example.

EAS, iff the following statement is true:
(∀(u,o) ∈ Sik.(u,o,op) ∈ AUTH) ∨ (∀(u,o)∈ Sik.(u,o,op) 6∈
AUTH)
Sik has conflict with respect to op ∈ OP otherwise. Partition
set Si is conflict-free with respect to given AUTH in EAS iff
for all op ∈ OP, every Sik ∈ Si is conflict-free with respect
to op.

Fig. 2 shows the resulting partitions for Table 2 where,
bold black user-object pairs belong to AUTH with respect to
OP = {op} and rest are not. Here, U = {u1, u2, u3, u4, u5},
O = {o1, o2, o3, o4}, UA = {uat1}, OA = {oat1}, and Ta-
ble 2 shows user attribute value assignment (UAValue), ob-
ject attribute value assignment (OAValue), and range of at-
tributes in (a), (b), and (c), respectively. To make visual
comparison, the dotted rectangles in Fig. 2 shows partition
set P for Table 2 as defined in Section 3. The leftmost con-
flicted parition is refined into four sub-partitions.

Lemma 3 Given a conflict partition Pi ∈ P with respect to
op ∈ OP, the following holds:

a. Si is conflict-free

b. Si refines Pi

c. For all Sik ∈ Si, PV(Sik) is the same

Proof:
By inspection of definition Si, it is conflict-free. Si refines

Pi because for each Sik ∈ Si, Sik ⊆ Pi. Since each Pi ∈ P
is identified by an unique PV(Pi) and Si does the refinement
only, therefore, for all Sik ∈ Si, PV(Sik) is same and (c)
follows.

Definition 13 Given a partition Pi ∈ P, let uListi and
oListi denote the sets of users and objects present in Pi.
Let uListi be further partitioned as follows: any two users
u1, u2 ∈ ulisti belong to same partition iff ∀op ∈ OP.∀o ∈
O.(u1, o, op) ∈ AUTH ⇐⇒ (u2, o, op) ∈ AUTH. Let
this assumption split uListi into q partitions, denoted by
{uli1, ..., uliq}. Similarly let oListi be partitioned as follows:
any two objects o1, o2 ∈ olisti belong to same partition iff
∀op ∈ OP.∀u ∈ U.(u, o1, op) ∈ AUTH ⇐⇒ (u, o2, op) ∈
AUTH. Let this assumption split oListi into r partitions,
denoted by {oli1, ..., olir}.

Lemma 4 Si = {uli1, ..., uliq} × {oli1, ..., olir}.
Proof: Trivial by inspection of definitions.

Definition 14 Introducing new user and object at-
tributes
If Pi is a conflict partition, the following steps are proposed
where, UND specifies “Unknown” status of an attribute
value assignment.

1. UA = UA∪ exU and OA = OA∪ exO where, exU and
exO are new user and object attributes, respectively.
Initially, for all u ∈ U, exU(u) := UND and for all
o ∈ O, exO(o) := UND.

2. To ensure clarity, PVnew(Sik ∈ Si) is introduced.
PVnew(Sik) ≡ For any (u1, o1) ∈ Sik, (UVnew(u1) ∪
OVnew(o1))
UVnew(u:U)≡ {(ua, value)|ua ∈ (UA∪exU)∧value =
ua(u)}
OVnew(o:O)≡ {(oa, value)|oa ∈ (OA∪exO)∧value =
oa(o)}
Here, Range(exU) and Range(exO) are sets of unique
random values where Range(exU) ∩ Range(exO) = ∅.
The sets of random values are chosen so that new at-
tribute and corresponding range can be added in an au-
tomated manner without human provided input.

3. Given a Pi ∈ P, algorithm 2 is used to assign ap-
propriate values to the newly added attributes. In-
side partitionCorrection, each of the q partitions∈
{uli1, ..., uliq} is assigned an unique random value
from Range(exU). Hence, every user in the same par-
tition gets the same exU value. Similarly, each of the
r partitions∈ {oli1, ..., olir} is assigned an unique ran-
dom value from Range(exO). Hence, every object in
the same partition gets the same exO value.
Note: By Definition 13, uListi and oListi is further par-
titioned using universal quantifications on the sets U,

Algorithm 2 PartitionCorrection
Require: Conflict partition Pi and corresponding ABAC

Ruleset Infeasibility Correction instance
Ensure: Refined partition set Si where each PVnew(Sik ∈

Si) is unique
1: uL := {uli1, ..., uliq} //Def. 13
2: oL := {oli1, ..., olir} //Def. 13
3: if ∃u ∈ uListi.exU(u) = UND then
4: while ∃partu ∈ uL do
5: uRandom := v ∈ Range(exU) such that ∀u ∈ U \

partu.exU(u) 6= v
6: For all u1 ∈ partu, exU(u1) := uRandom
7: uL := uL \ partu
8: if ∃o ∈ oListi.exO(o) = UND then
9: while ∃parto ∈ oL do

10: oRandom := v ∈ Range(exO) such that ∀o ∈ O \
parto.exO(o) 6= v

11: For all o1 ∈ parto, exO(o1) := oRandom
12: oL := oL \ parto
13: return Si //{uli1, ..., uliq} × {oli1, ..., olir}

O, and OP. Thereby, regardless of conflict partitions,
once the exU and exO values are assigned by algorithm
2, they remain unchanged throughout the entire Rule-
Set generation process.

Lemma 5 Based on Definition 14, for each Sik ∈ Si,
PVnew(Sik) is unique.
Proof: Follows trivially from Lemma 4 and Definition 14.

For instance, given a conflict partition, Pi in Fig. 2 where
only (u1, o1) belongs to AUTH with respect to op, it is re-
fined into four new partitions. Initially, uListi is {u1, u2, u3}
and oListi is {o1, o2, o3}. According to Algorithm 2,
uListi is further partitioned into {{u1}, {u2, u3}}. Sim-
ilarly, oListi is further partitioned into {{o1}, {o2, o3}}.
The resulting refined partitions has same PV, given by
{(uat1, F), (oat1, F)}. According to Definition 14 and Al-
gorithm 2, let exU value for {u1} and {u2, u3} be 1 and
2, respectively. Similarly, {o1} and {o2, o3} are assigned
3 and 4 for exO, respectively. Thereby, resulting unique
PVnew value for the refined partitions are {(uat1, F), (oat1,
F), (exU, 1), (exO, 3)}, {(uat1, F), (oat1, F), (exU, 1), (exO,
4)}, {(uat1, F), (oat1, F), (exU, 2), (exO, 3)}, and {(uat1,
F), (oat1, F), (exU, 2), (exO, 4)}, respectively.

Theorem 2 Given, an ABAC RuleSet Infeasibility Correc-
tion problem instance, it is always possible to find a suitable
RuleSet such that the resulting ABAC system is equivalent
to given EAS.
Proof:
The theorem will be proved by construction. For a specific
op ∈ OP, Ruleop construction steps are as follows. It is as-

sumed that, partition set P construction does not depend on
exU and exO.

1. Each conflict-free partition Pi ∈ P is included in
Ruleop as conjunctive clause (same as Theorem 1)
where, Pi × {op} ⊆ AUTH.

2. Each conflict partition Pi ∈ P is refined by Definitions
13 and 14, which generate conflict-free partitions only
and ensure that for each such Sik ∈ Si, PVnew(Sik) is
unique. For each of the resulting partition Sik ∈ Si, a
conjunctive clause is included in Ruleop only if Sik ×
{op} ⊆ AUTH. For conflict partitions only, Ruleop is
given by:

Ruleop =
∨

Pi∈cp(P)

(uexp(PVnew(Sik)) ∧ oexp(PVnew(Sik)))

where cp(P) = {Pi ∈ P is a conflict partition}, Sik ∈
partitionCorrection(Pi), and Sik × {op} ⊆ AUTH.

uexp(PVnew(Sik)) =
∧

(ua,value)∈PVnew(Sik)∧ua∈UA∪exU

(ua(u) = value)

oexp(PVnew(Sik)) =
∧

(oa,value)∈PVnew(Sik)∧oa∈OA∪exO

(oa(o) = value)

Here, Ruleop is disjunction of all the conjunctive clauses
generated in step 1 and 2. By definition, RuleSet contains
a Ruleop, for each op ∈ OP. Hence, RuleSet can be gener-
ated. To prove equivalency between the resulting ABAC
system with RuleSet and EAS, it is necessary and suffi-
cient to show that, for a op in OP, (a, b, op) ∈ AUTH ⇐⇒
Ruleop(a, b) where a ∈ U, b ∈ O.
To prove the only if part: by inspection, (a, b) ∈ U × O
belongs to only one partition, a Pi ∈ P. If Pi is conflict-
free with respect to op then Pi × {op} must be a subset of
AUTH. Hence, step 1 works. If Pi is a conflict partition, step
2 works. Let, (a,b)∈ Sik where, Sik ∈ Si. Hence, Sik×{op}
must be a subset of AUTH. Since Ruleop is disjunction of all
the conjunctive clauses generated in step 1 and 2, thereby,
Ruleop(a, b) evaluates to true. Hence, only if part is proved.
To prove if part: by inspection, if Ruleop(a, b) evaluates
to true, then there must be a conjunctive clause of Ruleop,
which is evaluated to true. By construction, each such con-
junctive clause in Ruleop is representing a specific partition
where partition × {op} ⊆ AUTH. Since each such parti-
tion is conflict-free, every user-object pair in corresponding
partition is permitted with respect to op, thus belongs to
AUTH. Thereby, (a, b, op) ∈ AUTH, which proves if part.
Hence, it can be concluded that generated suitable RuleSet
proposed by the steps above, completes the ABAC system,
and equivalent to given EAS.

Based on last example, two partitions {(u1, o1)}, and
{(u4, o4), (u5, o4)} are included in Ruleop. Hence, Ruleop

is (uat1(u) = F∧ oat1(o) = F∧ exU(u) = 1∧ exO(o) = 3) ∨
(uat1(u) = G∧oat1(o) = G) and the RuleSet is {Ruleop}. In
this example, both exU and exO are used for RuleSet Infea-
sibility Correction. If every user in U is represented by dis-
tinct user attribute value combination, exU is not required.
The same condition holds for objects and exO.

Asymptotic complexity of ABAC RuleSet Infeasibility
Correction is O(|OP| × (|U| × |O|)3). Given a partition set
P with conflict, checking whether each Pi ∈ P is conflict-
free or not takes O(|OP| × (|U| × |O|)). If a Pi ∈ P is in
conflict with respect to a op ∈ OP, Algorithm 2 is called
to refine Pi only. Inside Algorithm 2, corresponding list
of users in Pi is futher partitioned by comparing each user-
user pair, hence takes O(|U|2) complexity. Similarly, list of
objects in Pi is partitioned; hence takes O(|O|2) complex-
ity. Since a partition cannot have more than |U| users and
|O| objects, while loops inside PartitionCorrection have up-
per bound O(|U|) and O(|O|), respectively. Hence, overall
asymptotic complexity of PartitionCorrection algorithm is
O((|U| × |O|)2). Thereby, overall complexity is given by
O(|OP| × (|U| × |O|)3).

6 Related works

To the best of our knowledge, feasibility notion of
Attribute-Based Access Control policy mining problem has
been formally studied for the first time in this paper. Hence,
there are no previous works directly related to this prob-
lem. However, there exist notable previous works on the
field policy mining, such as rule mining, role mining [6, 8],
ABAC policy mining, Relationship-Based Access Control
(ReBAC) mining [1], and so on. ABAC policy mining prob-
lem was first introduced formally in [12]. Given an access
control list policy as input, [12] finds out equivalent ABAC
policy. Here, ABAC rule is a tuple specifying sets of users,
objects, operations, and constraints involving user and ob-
jects attributes. Although constraints give more generalized
rule, but only a few forms of constraints are allowed in this
paper. Another work with authorization data as input is [9].
Despite having the same asymptotic complexity, [9] shows
better performance with respect to total execution time. In
[9], two algorithms for ABAC policy mining, ABAC-FDM,
and ABAC-SRM have been proposed. ABAC-FDM is ac-
curate but due to its exponential complexity, more efficient
ABAC-SRM is proposed. An out of the box approach is
given in [3], which deals with positive as well as negative
ABAC rules. This work basically depends on PRISM, an
existing rule mining algorithm.

Based on variety of the input, some other notable ABAC
policy mining works are: RBAC [10], log data [11] and
sparse log [2]. A deep learning approach towards ABAC
policy mining from logs using Restricted Boltzmann Ma-
chine (RBM) has been presented in [7]. Apart from these

works, an evolutionary computation approach for ABAC
policy mining is presented in [5], based on incremental
learning of single rules and search-optimizing features.

Acknowledgement

This work is partially supported by NSF CREST Grant
HRD-1736209, CNS-1423481, CNS-1538418 and DoD
ARL Grant W911NF-15-1-0518.

References

[1] T. Bui, S. Stoller, and J. Li. Mining relationship-based ac-
cess control policies. In SACMAT, pages 239–246, 2017.

[2] C. Cotrini, T. Weghorn, and D. Basin. Mining ABAC rules
from sparse logs. In EuroSP, pages 31–46. IEEE, 2018.

[3] P. Iyer and A. Masoumzadeh. Mining positive and nega-
tive attribute-based access control policy rules. In SACMAT,
pages 161–172, 2018.

[4] X. Jin, R. Krishnan, and R. Sandhu. A unified attribute-
based access control model covering DAC, MAC and
RBAC. DBSec, 12:41–55, 2012.

[5] E. Medvet et al. Evolutionary inference of attribute-based
access control policies. In Evolutionary Multi-Criterion Op-
timization, pages 351–365. Springer, 2015.

[6] B. Mitra et al. A survey of role mining. ACM CSurv. 2016.
[7] D. Mocanu, F. Turkmen, and A. Liotta. Towards ABAC

policy mining from logs with deep learning. In IS 2015.
[8] I. Molloy et al. Evaluating role mining algorithms. In SAC-

MAT, pages 95–104, 2009.
[9] T. Talukdar et al. Efficient bottom-up mining of attribute

based access control policies. In IEEE CIC 2017, 339-348.
[10] Z. Xu and S. Stoller. Mining attribute-based access control

policies from RBAC policies. In IEEE CEWIT, 2013, 1-6.
[11] Z. Xu and S. Stoller. Mining attribute-based access control

policies from logs. In DBSec, 2014, 276–291.
[12] Z. Xu and S. Stoller. Mining attribute-based access control

policies. IEEE TDSC, 12(5):533–545, 2015.

