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Abstract—In this paper, a new voltage stability constrained
optimal power flow (VSC-OPF) model is developed using semi-
definite programming (SDP), which optimally calculates the
loading and the cost of increasing stability margins. The main
advantages of the proposed method are: a) incorporates voltage
stability constraints in a convex OPF formulation b) always
finds the optimal solution in comparison with probable local
optimum solutions while using other non-convex methods, and
c) can compare the cost of increasing the loading margin using
convex relaxation. The effectiveness of this method is evaluated
using the IEEE 14-bus and 118-bus test systems with various
network constraints. The results show that the proposed convex
formulation find the optimal operating schedule and critical
loading point. The effect of incorporating voltage stability margin
can also be examined using the proposed method.

Index Terms—OPF, Transmission System, Convex Optimiza-
tion, Voltage Stability, Semi-Definite Programming (SDP).

I. NOMENCLATURE

i, j bus index

NG set of generation buses

x state variables in OPF

P, Q, S active, reactive and apparent power

g (.) , h (.) equality and inequality constraints of OPF

f (.) current and maximum loading point function

λ,λm current and maximum loading points

ω1, ω2 coefficients of cost and loading margin

vi, δi voltage magnitude and voltage angle of bus i

W,Wm 2n× 2n positive semidefinite matrices

ci, Cik cost function and cost coefficient at bus i

δmax maximum angle deviation

4λmin minimum loading distance

PDi ,QDi
active and reactive load connected at bus i

Yi, Yij System admittance matrices

Jk
i Coefficient matrices

Kk
ij, Lij Coefficient matrices for angle relaxation

Tr Matrix trace

ai, am
i , ai, am

i min & max limits of dependent & independent variables
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II. INTRODUCTION

In the age of large, renewable energy integrated dynamic
power system, the transmission systems are changing
frequently with added generations and demands. This radical
changes poses a severe stress on system stability. As a result,
there is a need of fast optimal power flow (OPF) method
to calculate the dispatches for the generation resources [1].
Various methods have been introduced to solve the OPF
problem since 1930’s when it started basically for economic
dispatch [2]. OPF problem is non-convex because of the non-
linear power flow equations. The OPF problem is also NP
hard [3], because of which it is difficult to reach an exact
global solution. Main methods that have been studied include
Linear Programming, Non-linear Programming, Quadratic
Programming, Interior point methods, and methods using
Artificial Intelligence [4]. Dynamic and heavily stressed
modern power grid because of high power utilization by the
consumer and large changing generation source needs a special
attention on system voltage stability for solving OPF. Thus,
optimal power flow methods are formulated having voltage
stability as a constraint in problem formulation or using the
objective function for stability margin [5]. Some of the earlier
methods reported in the literature introduces an index called
voltage collapse proximity indicator and include it in the
constraints or objective function [6], [7].

Wide range of study for finding more accurate and fast
method for OPF has been reported in the literature [8].
Recently the research in the field of convexification of
OPF problem is quite notable [9], [10]. One of the most
popular methods is DC-OPF, where the power flow equations
are linearized by imposing few approximations for voltage
magnitudes, angles and line impedance. For radial system,
second order conic programming (SOCP) in branch flow
model is another effective method and for general system
semi-definite programming (SDP) relaxation [11] using bus
injection model is most accurate [12] [13]. In [14], the
SDP relaxation is analyzed and used to formulate the dual
of an equivalent of OPF problem. For the distribution
networks, SOCP method is used to convexify the problem
constraints which enables the controller to achieve global
solution for a faster computation time [15]. This method
is implemented on a more detailed system incorporating
neighboring DISCO, distributed generators, wind generator
and energy storage systems [16]. Ref. [17], [18] and [19]
has discussed convexification methods of OPF problem for



2

transmission system using SDP relaxation by incorporating
convexification and VSC-OPF. These studies analyze the
methods on the basis of stability margin index or total
operation cost.

In this paper a new convex method is proposed that focuses
on the stability margin index as well as the node voltage
angles to analyze the system stability and optimality. In the
problem formulation, the voltage angles have been relaxed to
convexify the constraints. Then after convergence, the angles
are recovered implementing the angle recovery algorithm.
Then analyzing the node voltage magnitudes, angles, and
the total cost, the optimal solution is derived. The proposed
method has the following advantages:
• The method is convex which overcome the local solution

problem of the non-convex optimal power flow methods.
• Along with voltage magnitudes and total cost, voltage

angles are also recovered to get the total overview of the
power system.

• This method is scalable and works seemlessly for larger
system with different types of generation resources.

The rest of the paper is organised in the following pattern.
In section III, general formulation of the proposed method
described. It includes formulation of VSC-OPF in III-A,
convexification algorithm in III-B and the angle recovery
method in III-C. Then, in section IV the proposed method has
been implemented in IEEE 14 bus and 118 bus transmission
systems and the results are discussed. Finally, conclusions and
future work is included in section V.

III. PROBLEM FORMULATION

A. Voltage Security Constraint OPF

The objective of voltage stability constrained OPF is to
dispatch the optimal operating point and also at the same
time maximize the stabily margin. The generalized VSC-OPF
problem can be formulated as [20].

Min
∑

i

zi
(
x, λ, λm,Γi

)
(1)

s.t.



h(x, γi, λi) = 0
h(xm, γm

i , λmi ) = 0
ai ≤ g

(
x, λ, γi

)
≤ ai

am
i ≤ g

(
xm, λm, γm

i
)
≤ am

i
bi ≤ f(λ, λm) ≤ bi

The functions h(.) and g(.) represents the equality and
inequality constraints of the problem which are bounded by
the lower and upper limits of the dependent and independent
variables. Here, x ∈ N denotes the dependent variable of
the system which is the node voltage magnitude. Vector
γ ∈ NG represents the set of independent variable of the
system, which is active and reactive power generation at
the generator buses. The λ and λm stands for the parameter
loading factor. The proposed formulation includes both cost
minimization and maximizing the voltage stability margin as
the objective function. Two weighting factors ω1 and ω2 have
been introduced to further optimize the contribution of each

objective for the global solution. Based on this the objective
function in (1) can be reformulated as follows

Min ω1
∑

i∈NG

{Ci2
(
PGi

)2 (2)

+ Ci1
(
PGi

)
+ Ci0} – ω2

(
λ

m – λ
)

where ω1 + ω2 = 1

B. Convexification Procedure

The convexification procedure of the VSC-OPF problem
using the semi-definite programming is as follows. First,
two vectors of voltages are considered; the current opreating
voltage vector and maximum loading point of the system.
The current operating point voltage vector is denoted as
V =

[
Re{v}TIm{v}T

]
and the maximum loading point voltage

vector is denoted as Vm =
[
Re{vm}TIm{vm}T]. The variables

λ and λm denote the current and maximum loading points with
V and Vm in the VSC-OPF problem expressed as a quadratic
equations. To transform the quadratic equation in to a linear
equation, VVT and VmVmT are replaced by another matrices
W and Wm respectively. Equation (3) represents the objective
function and constraints and Equation (4) represents all the
matrices that are used to convexify the VSC-OPF problem. The
angle drop constraint of the node voltages is in the form shown
in (5) which can be written as (6). Modification of (6) can be
written using the real and imaginary part of voltage, which
is shown in (7). Using the semi-definite programming, these
equations can be expressed as convex constraints as shown in
(8)-(10). All the required notations are given in Section I.

Min ω1
∑

i∈NG

{Ci2
(
Tr{YiW} + λPDi

)2 (3)

+ Ci1
(
Tr{YiW} + λPDi

)
+ Ci0} + ω2

(
λ

m – λ
)

s.t.



Pmin
i ≤ Tr{YiW} + λPDi ≤ Pmax

i
Pmin

i ≤ Tr{YiWm} + λmPDi ≤ Pmax
i

Qmin
i ≤ Tr{ȲiW} + λQDi ≤ Qmax

i
Qmin

i ≤ Tr{ȲiWm} + λmQm
Di
≤ Qmax

i(
Vmin

i
)2 ≤ Tr{JiW} ≤

(
Vmax

i
)2(

Vmin
i
)2 ≤ Tr{JiWm} ≤

(
Vmax

i
)2

Tr{YijW} ≤ Pmax
ij

Tr{YijWm} ≤ Pmax
ij

Tr{JijW} ≤ 4
(
Vij
)2

Tr{JijWm} ≤ 4
(
Vij
)2

ω1 + ω2 = 1
α× (λm – λ) ≥ 4λmin

tan (δmax)× Tr{KijW} – Tr{LijW} ≥ 0
tan (δmax)× Tr{KijWm} – Tr{LijWm} ≥ 0
W = VVT

Wm = VmVmT
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Yen = eneT
n ; Yeij =

(
ȳij + yij

)
eie

T
i –
(

yij

)
eie

T
j (4)

Y1n = Yen + YT
en ; Y2n = Yen – YT

en

Y1ij = Yeij + YT
eij

; Y2ij = Yeij – YT
eij

Yn =
1
2

[
Re
(
Y1n

)
–Im

(
Y2n

)
–Im

(
Y2n

)
Re
(
Y1n

) ]
Ȳn = –

1
2

[
Im
(
Y1n

)
Re
(
Y2n

)
–Re

(
Y2n

)
Im
(
Y1n

)]

Yij =
1
2

 Re
(

Y1ij

)
–Im

(
Y2ij

)
–Im

(
Y2ij

)
Re
(

Y1ij

) 
Ȳij = –

1
2

 Im
(

Y1ij

)
Re
(

Y2ij

)
–Re

(
Y2ij

)
Im
(

Y1ij

)
Jn =

1
2

[
eneT

n 0
0 eneT

n

]
Jij =

1
2

[(
ei – ej

) (
ei – ej

)T 0
0

(
ei – ej

) (
ei – ej

)T

]
V =

[
Re{v}TIm{v}T

]
Vm =

[
Re{vm}TIm{vm}T

]

δi – δj ≤ δmax ∀ (i, i) ∈ NL (5)

tan
(
δi – δj

)
≤ tan (δmax) ∀ (i, j) ∈ NL (6)

tan
(
δi – δj

)
=

Re{Vj}Im{Vi} – Re{Vi}Im{Vj}
Re{Vi}Re{Vj} + Im{Vi}Im{Vj}

(7)

tan (δmax)× Tr{KijW} – Tr{LijW} ≥ 0 (8)

Lij =
1
2

[
0 eieT

j – ejeT
i

eieT
j – ejeT

i 0

]
(9)

Kij =
1
2

[
eieT

j + ejeT
i 0

0 eieT
j + ejeT

i

]
(10)

C. Angle Recovery

In the SDP method the angle recovery after the optimal
power flow is a major concern. In this proposed algorithm,
using the optimized value of the Positive-Semi-Definite (PSD)
matrix W, all other parameters are calculated. We can re-write
the (9) as follows for angle recovery purpose.

tan(δij) ≥
Tr{LijW}
Tr{KijW}

(11)

From (11), the numerator and the denominator values are
extracted from GAMS optimization package and then using
MATLAB the node voltage angle differences are calculated.
Further, considering the slack bus voltage angle same as the
initial value, all other node voltage angles are calculated.

IV. CASE STUDIES

The VSC-OPF methodology proposed in this paper was
applied to two IEEE test systems. The first test system is
the IEEE 14 bus system. It has 5 synchronous machines, 16
lines and 3 transformers. Bus 1 works as the slack bus which
contains the largest generator as well. The cost coefficients
of the generators are given in Table I. The second system,
IEEE 118 bus system is considered to test the algorithm
for a larger system. This system includes 19 generators, 35
synchronous condensers, 177 lines, 9 transformers and 91
loads. Here the slack bus is bus 69. Fig. 1 and fig. 2 reprsents
the test systems. All the case studies are conducted using a PC
equipped with 2.5GHz i7 processor and 8GB RAM. For the
proposed methodology the GAMS optimization software with
MOSEK solver package is used. Three cases are considered
to evaluate the proposed method.

Fig. 1: IEEE 14 Bus Transmission Test System.

Fig. 2: IEEE 118 Bus Transmission Test System.
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A. Case1

In this case [17] the objective function consists of cost
minimization. So, the modified objective function is

Min
∑

i∈NG

{Ci2
(
Tr{YiW} + λPDi

)2

+ Ci1
(
Tr{YiW} + λPDi

)
+ Ci0} (12)

The constraints remains the same as in (3).

B. Case2

In this case, the objective function emphasizes on
maximizing the stability margin rather that cost or loss
minimization. So, the objective function takes the form as,

Min –
(
λ

m – λ
)

(13)

C. Case3

In this case, both the cost minimization and loading stability
margin maximization are combined as descried in (3).

In the results shown below, it is seen that, this proposed
approach provides flexibility to the system operator to increase
the loading of the system while keeping the generation cost
at its minimum value.

Both the 14 bus system and 118 bus system have been
simulated for all the three cases. Fig 3, 4 and Fig 5, 6 shows
the node voltage magnitude and angle of IEEE 14 bus and 118
bus transmission system. It can be seen that, voltage magnitude
for cost minimization is lower than the voltage stability
maximization case, since the power generation is higher in
the case 2. However, for the combined objective function, in
case 3, the voltage magnitude is improved compared to case
1 and not as robust as in case 2.

Bus

V
o
lt
a
g
e
 (

p
.u

.)

Case 1

Case 2

Case 3

Fig. 3: IEEE 14 bus system node voltage magnitude comparison.

Fig 7 shows the bus 2 voltage of 14 bus system for a range
of 0.9 to 1.9 loading factor. It can be seen that the bus voltage
values are largely varying especially for case 1 and case 2,
the lowest being at a loading factor 1.4. For case 3, both
objectives from case 1 and 2 is incorporated so the voltage
profile is much more stable. Similar trend is seen for the cost
comparison case. The cost profiles from case 1 and case 2
are shown in Fig 8. It is evident that, to maximize the system
stability the cost has been increased than the total cost in case
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Fig. 4: IEEE 14 bus system node voltage angle comparison.
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Fig. 5: IEEE 118 bus system node voltage magnitude comparison.
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Fig. 6: IEEE 118 bus system node voltage angle comparison.

1. To prove the scalability of the algorithm, similar figures are
represented in Fig 9 and Fig 10 for IEEE 118 bus system.
From Fig 11 and 12, the minimum bus voltage of each test
system has been compared, where the previous trend for the
node voltage change in case 3 is justified. It can be seen that
the minimum voltage occurs at loading factors 1.5 - 1.8.

In Table II and III total active power generation for all 3
cases, total connected loads and line losses are shown. Table
V shows the comparison of total generation cost. From these
comparison it is evident that, case 1 provides the solution for
minimum cost, case 2 provides maximum stability margin with
a notably higher cost, but in case 3 for a rise in cost the
solution ensures maximum stability margin.

In Fig 13, the voltage magnitude profiles (critical voltage,
with case 1, case 2 and case 3) of bus 2 for different loading
factors are shown. It can be seen from the figure that, the
voltage profile of case 2 is most stable compare to the profile
in case 1. For case 3, the voltage profile is better than in case
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Fig. 7: IEEE 14 bus system bus 2 node voltage comparison.
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Fig. 8: IEEE 14 bus system total generation cost comparison for bus 2.
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Fig. 9: IEEE 118 bus system node voltage comparison for bus 10.
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Fig. 10: IEEE 118 bus system total generation cost comparison for bus 10.

1. Also, Table V represents the distance to collapse for various
loading factors for each case. For case 1, the system voltage
is very close to the critical voltage value while in case 3, the
distance is notably improved.
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Fig. 11: IEEE 14 bus system minimum voltage comparison.
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Fig. 12: IEEE 118 bus system minimum voltage comparison
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Fig. 13: Comparison of the operating voltage with the critical voltage of
IEEE 14 Bus System

V. CONCLUSIONS AND FUTURE WORK

Previous studies for optimal power flow in power system
networks either emphasizes on cost or line loss minimizing

TABLE I: Generator cost coefficients in IEEE 14 Bus System

Gen Bus Cost ($/MW)

1 Bus 1 20
2 Bus 2 20
3 Bus 3 40
4 Bus 6 40
5 Bus 8 40

TABLE II: Comparison of power generation, total load and
active power loss for IEEE 14 Bus System

Case1 Case2 Case3

Pg(MW) 268.5744 287.9147 278.446
Pd(MW) 259 259 259

Ploss(MW) 9.5744 28.9147 19.2446
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TABLE III: Comparison of power generation, total load and
active power loss for IEEE 118 Bus System

Case1 Case2 Case3

Pg(MW) 4318.428 5271.601 4795.014
Pd(MW) 4242 4242 4242

Ploss(MW) 76.427 1029.601 553.014

TABLE IV: Power generation cost comparison for IEEE 14
Bus and 118 Bus System

Case1 Case2 Case3

14 Bus($/hr) 5371.487 8593.777 6982.632
118 Bus($/hr) 86366.43 146938.9 116652.7

TABLE V: Difference of critical voltage and operating voltage

Loading factor, Case1 Case2 Case3
(λ) |V1 – Vc| |V2 – Vc| |V3 – Vc|

[p.u.] [p.u.] [p.u.]
1.0 0.001068 0.002299 0.002005
1.1 0.001965 0.002043 0.003512
1.2 0.004944 0.001347 0.005229
1.3 0.007181 0.001070 0.006471
1.4 0.012761 0.001080 0.009180
1.5 0.011604 0.001295 0.008669
1.6 0.010387 0.001445 0.007957
1.7 0.008432 0.001742 0.006329
1.8 0.006113 0.001584 0.004007
1.9 0.003708 0.000815 0.001489

or system stability maximizing. In those approaches the other
objective has been neglected. In this paper, both the stability
and cost objectives are utilized to achieve a solution that
ensures a more stable power system operating at a significantly
lower cost. The combination of both cost minimization and
stability margin maximization with weighting factors in the
objective function, makes the total problem a non-linear
convex optimization. This type of problem is not feasible for
the common solvers such as MOSEK, to solve. In future,
further studies will be conducted to convexify the whole
problem applying proper relaxations.
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