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Singulyarlikka ega uch o‘lchamli kasr tartibli to‘lgin tenglamasi
uchun chegaraviy masala

Ushbu magqolada Bessel va Kaputo kasr tartibli operatorlar
gatnashgan uch o‘lchamli to‘lgin tenglamasi wuchun bir
chegaraviy masalaning bir qiymatli yechilishi tadqiq qilingan.
Berilgan funksiyalarga ma’lum shartlar asosida masala
yechimining mavjudligi, yagonaligi va turg‘unligi isbotlangan.

Kpaesas 3adavua 0as mpermeprozo 804H06020 YpasHeHUus Opob-
1020 NOPAJKA C CUHRYAADPHOCTDIO

B pabore mokazana oJHO3ZHAYHASI PA3PEIIMMOCTb KPaeBoOi 3a1a-
YU JUIsi TPEXMEPHOIO BOJIHOBOI'O ypaBHEHHUs ¢ oneparopoM Bec-
ceJisi U OIEpPaTOPOM JAPOOHOrO AuddPepeHIMPOBAHUS B CMBICTIE
Kamyro. IIpu onpeneneHHbix ycaoOBUSX Ha 3aaHHDbIE (DYHKITIH
JI0Ka3aHa CyIIeCTBOBAHNE, €IMHCTBEHHOCTb U HENPEPbIBHAs 3a-
BUCUMOCTD DEIIEHUsT UCCIIeYyeMON 3aa4n.

1. Introduction.

The field of fractional calculus is concerned with the investigation of integrals and derivatives of arbitrary
orders. The basic concepts had been speculated upon by mathematicians such as Leibniz and Euler, but it was
not until about 30 years ago that fractional calculus gained specialized interest. This interest grew as applications
of Fractional Calculus to physics, biology, engineering, and other fields were discovered and developed (see [3] -
[6]). Today, there are numerous books and conferences devoted solely to fractional calculus and its applications
(see [7] - [9]).

The study of fractional diffusion-wave equations (FDWEs) is a subfield of fractional calculus that arises when
one substitutes the first and second-order time derivatives in the diffusion and wave equations, respectively, with
a fractional derivative of order o, 0 < o < 2. In (see [10]), Mainardi defined the fractional diffusion and fractional
wave equations in two dimensions by

u D«

ote ~ “oa?’
where fractional diffusion is when 0 < a < 1 and the fractional wave equation is when 1 < o < 2, and ¢ > 0.
Note that the fractional derivative ‘g%‘ has several definitions, such as those by Caputo, Riemann-Liouville,
Weyl, and Riesz (see [7], [11], [12]). FDWESs have been shown to model many processes more accurately than
classical equations, and, thus, it is desirable to find analytical and numerical solutions[21].

The current literature contains many papers concerned with solving FDWEs of various forms. Some of these
differences include the boundary conditions, whether the problem is being considered in arbitrary dimension,
and the definition of fractional derivative used (see [13] - [18]). It has also been considered when the wave
equation slightly modified, such as having a finite linear combination of time-fractional derivatives (see [16]), or
where the constant term is replaced by a function of a given form (see [19]).

We note works [22], [23], where direct and inverse problems for PDE with Caputo and Bessel operators were
investigated.
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In this paper, we will be consider the following partial differential equation
1
Diu(x, y,t) = Ugy + e + uyy + f(z,y,1) (1)

of fractional order 1 < o < 2 defined on Q = {(z,y,t) : 0 < z,y <1, 0 <t < T} with boundary conditions

ili% Uz =0 u(l,y,t) =0 (2)
u(z,0,t) =0 u(z,1,t) =0 (3)

and initial conditions
U(ZL‘,y,O) = QD(IL'7y) ut(:c,y,()) :1/’(1?,11) (4)

(For definitions, see section 2). We will find a formal solution, prove uniqueness, establish sufficient conditions
for existence, and prove continuous dependence on initial conditions. A variant of the system we consider with
zero initial conditions has appeared in [14], though this paper only writes down a formal solution. The generality
of our system, proofs of uniqueness, existence, and continuous dependence are original. Furthermore, this paper
is purposefully written with an attention to detail, aiming to be accessible to mathematicians interested in
fractional derivatives but without an in-depth background in fractional calculus.

The paper is structured as followed. In Section 2, basic definitions and properties of the Mittag-Leffler
function and Caputo fractional derivative are given, as well as a proof of the solution to a Cauchy problem
that arises in finding a formal solution to our FDWE. In Section 3, a formal solution to the problem obtained
using the method of separation of variables. In Section 4, the uniqueness of the solution is proved. In Section 5,
sufficient conditions for the existence of the solution are determined. Lastly, in Section 6, continuous dependence
of our solution on the initial conditions is shown.

2. Preliminaries

2.1. Basic Definitions

The Caputo fractional derivative operator of order o, where n € N and n — 1 < a < n, is defined by

z () (2)dz
Datg( ) ! a)/ (g ( )d

I'(n— x — z)otl-n’

In this paper we will be working with the specific case of 1 < a < 2 and a = 0, giving

Dhiale) = g [ o 5)

2 -« T —z)*~

It has the following relationship with the Reimann-Liouville fractional derivative (see [11] eq. 2.166)

n—1 (k)
o o Y a —a
Deyla) =t Diaylae) = 3 ol o= )
k=0
where ) J (2)d
no Tt g(2)dz
Do S __dw)es
RL atg(x) F(n _ a) dQ?n /a (13 _ Z)a+l—n

is the Riemann-Liouville fractional derivative operator of order o, where n € Nand n — 1 < a < n.
An important function in the solution of many differential equations involving fractional derivatives is the
Mittag-Leffler function, a generalization of the exponential function. It is defined for all & > 0 and 8 € R by

oo

ZFak‘-ﬁ-ﬁ

k=0

and has the useful properties that

« — k «a % k «
rL DGR ER, () = ekt Am g (), (1,8 €R, a>0) (7)
([11], eq. 1.82), and for a > 0,
d
—Fa1(Az%) = A\ By 0 (A2®). (8)

dx
HereE ()\L‘a):dt,c Eq, g(At?Y).

29



A Boundary-Value Problem for 3-D Fractional Wave Equation with Singularity 30

More generally, whenever k # 1

d
a,z’“—lEm(Aza) =2"2E, 1 (\2%). (9)
Here, (8) - (10) follow nicely from direct calculations. Further, for all « > 0 and 8 € R
1
E,p(2) — 2Eq 048(2) = =55, 10
8(2) +8(2) T3 (10)
and for all v, 5 > 0,
1 z
— / (2 — )" B g(M) P dt = 2PTVTIE, 540 (A2%) (11)
L) Jo

([11], eq. 1.100) where by standard convention ﬁ is understood to be 0. Finally, the Mittag-Leffler function
has the following bound, given in [11] eq. 1.148

C

FE.p5(2) < ,
,ﬁ()_1+|z|

(12)

which holds for « < 2, all real 8, and for all z € C such that |arg(z)| < p for some p with 7a/2 < u <
min{r, ma}. Note, in particular, that this holds for all real z for any a < 2.

We will also come across the Bessel functions in our paper. For all p € Z, the Bessel function of the first
kind of order p is defined by the series

. (*l)m T\ pt2m
2 L(m+ 1) (p+m+1) (5) ' (13)

m=0

Jp()

Also, the Bessel function of the second kind of the 0-th order is given by the series

o) = 2o (w3 +0) - 237 | O (57321, o

where C' > 0 is Euler’s constant [20]. We will make use of a number of special properties of the Bessel functions.
First, direct calculations show that Jy(0) = 1 and .J,,(0) is finite for all n € Z. Additionally, Jy is known to be
bounded (see, for instance, [20], Ch. 8, Section 9). By [20], eq. 7.9-7.10, for all p € R,

4
dx

Toa (@) + Ty () = Ly (a). (16)

Tper(@) = Ty (@) = 2 Jy(a), (15)

Additionally, for any p € R,

d  p — P
7 @ p(@)) = 2y (w), (17)

d

o @I (@) = 2 Ty ), (18)

which are [20], eq. 7.1-7.2. Facts about the zeros of the Bessel function and bounds that can be placed on its
integrals will become relevant in section 5, and will be given as needed.

2.2. Cauchy Problem
The Cauchy Problem given by the fractional differential equation

CDgty(x) - )\y(l’) = f(SC), YIS [07 1]3 A S R (19)
with initial conditions
y(0) = bo y'(0) = b (20)

appears repeatedly when solving time-related systems in the problem considered in this paper. Our aim is to
show that for 1 < a < 2,

yY(x) = boEa 1 (Az?) + bizEo o (Az®) + /Om(x — ) Ea oMo — t)°] f(t)dt (21)
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is a solution to (19) which satisfies (20). The following solution is also available, for example, in [3]. Substituting
(21) to the fractional derivative yields

DSy (@) = DG (boEas (™)) +o DS, (byEa »(Ae®)) +. DG ( / @ ) By Ao t)“]f(t)dt) @)

Consider the first term of (22). We will show that .Dg,(boEqa,1(Az%)) — AbgEq,1(Az*) = 0. Using relation (6)
with n = 2 and a = 0 demonstrates that

«@ « « « EO& Az = —a %anl()\xaﬂm:o —«
cDOt(bOEa,l(/\x )) = bo <RLDOt(Ea,1(Ax )) - Mw —4d F(Z — a) J)l .

From property (7) with £k =0, v = a, and 8 = 1 we have
RLDS;(EQJ()\.]?Q)) = .’I,‘_aE%l_a()\xa).

Thus,

z %Ea,l()‘xa)‘aszo 1-a
T .
I'l-—a) I'2-a)

D5y (b0 Bt (A2%)) = bo (“Ea,l_auxa) - _
Evaluating at x = 0 gives %Eavl()‘xa)bzo — 0 because o > 1. Therefore,

1
DGy (bo Ea1 (Az®)) = box ™" (Ea,l_a()\ma) - 1“)

(1-a)
= boz™® (ZOF koz—i—l—a) F(l—a)>
¢ A A2 ¢
= bo (I‘(la) YO RETCES I‘(la))

:b())\(I‘(ll)-i—lﬂ()\gc_:tl)—k...)

= boA (Z T'(ka + 1 )
= bo)\EaJ()\SC )

Indeed, .Dg,(boEq,1(Az*)) — ANbgEq1(Az®) = 0, so the problem is reduced to showing that
x
baEaaOa®) + [ (o= 0% EnalMo — 0100
0

is a solution to (19).
Consider D, (b1zEq 2(Az®)). Again, we will show that .Dg,(b1xEqs2(Az®)) — AbizEq2(Az®) = 0. Use
relation (6) with n = 2 and a = 0 to see

Do (b12Eq 2(Ax®) RLDG (1 Eq 2(Ax%)) — —Z————a7% —

2B p (Moo ;iC(zEa,z(ma))u_oxl_a)
r'(l—a) I'2-a)

(RLDOt 2Eq (M%) — M”jla>
-

1.1 [eY
RLDOt CCEQQ )\l’ )) 1_‘(2_0[)) .

Further, by property (7) with k =0, v = a, and 8 = 2,

RLDG (2E a0 2(A\2®) = 2" “FEpa_o0(Az®).
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Thus,
D& (1B 2 (Aa®)) = bya =@ (EQ)Q_Q(MQ) - I‘(21—a)>
s o
=bz'™® (kZ_O r(k:((fJr 2)— a) 1"(21_ a)>
ey 8 2 )
- (g s )
— bz (gg FEI?ZO;)Z))
= by AzEq o(Az®)

Indeed, D§b1xEq 2(Ax®) — A1z Eq 2(Az®) = 0, so the problem is further reduced to showing that

/0 C(@ = O Ba A& — D7) (8)dt

is a solution to (19).
By the definition (5),

Dgy (/:(w —1)* " Eg oMz — t)“]f(t)dt) -

1 T s (23)
= t— )2 B, JINE — 2)% f(2)dz ) dt.
o | oo (] € 9T Baalhe - 7))
We will need the following well-known equation,
i/xf(:c Nt = f(x m)—l—/xif(x £t (24)
de 0 ’ o ’ 0 dCC ’ '
We proceed by evaluating the derivative that appears in (23). By (24),
d t
& ([ =2 Bl = 9111 ) = (= 0 Bl - 00110+
0
¢ d a—1 a K d a—1 [e]
b [ G (=2 Eal A= 17 (@) de = [ (= ) BaalAE - 2)71(2)
0 0
To simplify the integrand on the right hand side, use (7) with vy =1, k =0, and 5 = « to see
d t t
& (=2 Bl - 9111 ) = [ 0= 92BN - ()
0 0
Now we want to consider the second derivative
d2 t d t
L / (t— 2)* BaalMt - 2)%)f(2)dz ) = 7/ (t = )22 Ba 0 a (At — 2))(2)dz.
dt2 0 ’ dt O ?
By changing variables so that z =t — z and applying (24),
d2 t d t
— / (t—2)2 By oMt — 2)?)f(2)dz | = — / 22 2B a 1(A2®) f(t — 2)dz (25)
dt? \ J, ’ dt J, ’

td
=1 Eg a1 (M) f(t — 1) + /0 7 (2P Baa (W) f(t - 2)) d
(26)
d

=12 Baa1 (M) f(0) + /0 7 (" Baa (A2 f(t - 2)) d=.

(27)
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Now, plugging back into equation (23)

D4 ([0 Bl - 07101 (28)
_ ml_a) /O ' (x_lt)afl (ta—QEa,a_l(Ata)f(o)Jr /O (B (02) 11— 2) dZ> dt (29)
_ mia) on (x1t)alta—2Ea7a1()\t")f(0)dt+/oz($1t)al/o %(za_QEa,afl()\Za)f(t—Z)) dzdt

(30)

Consider the first term of (30). By (11) with ¥ =2 — @ and 8 = a — 1, we obtain

o | Gt e )0t = £(0)Baa ()

Finally, consider the second term of (30). In the inner integral, change variables by z =t — z to see

1 ® 1 : La- d
F(Q _ a) /0 (LL' N t)ozfl /0 2Ea a— 1(/\2 )d f(t — Z)dzdt

1

— Ix_ -« t_Za—2 1 — ) IZZ
~ta—ay ), @9 /O(t )2 B 0 1 (At — 2)*) ' (2)dzdt

Now by Fubini’s theorem,

# wxf 11—« ! 7Za72 — N ()dz
F(2_(%)/0( t) /O(t )* 2 Eq 1At — 2)*) f'(2)dzdt

1

- m/o f/(z)/z (& — )1t — 2) 2 Bgqm1 (At — 2)*)dtdz

In the inner integral, setting & =t — z yields

# ¢ T — l—ofy 5 a—2 _ e

re- a) /z ( t) (t ) Eoz,a—lo\(t ) )dt
1 o l—aca—2 @

T2 —a) /0 (z = (§+2))' " Eaa-1(AY)dE.

Using (11) again with v =2 —«a and § =« — 1 and 2z = z — z demonstrates

1 T 1—a _Za72 — ) — T )
T | e 0 B (M= 2))d = B (A =)

Thus, from equation (23) we now have

.Dg, (/O (x =) B, oMz — t)“}f(t)dt) = f(0)Eq1(Az®) / f'(z Mz — 2)%)dz.
After using integration by parts on the above integral, we see
| #@ B = s = f a0 - 2 - [ 16 (A — 2)*)ldz
= F(@)Bai(0) = (0)Ean(3a®) / e (A — 2))]dz
= f(x) — f(0)Eq,1(Az®) / f(z Az — 2)%)]dz.

We have now reduced (23) to

D5 ([ = 0 Baalie = 0711001) = ()~ [ £) 5 1Bna (0o~ 2
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Thus, it remains only to show that
x d xr
~ [ G Ear @ =z =) [ (@ =2 B alMe — )7z = 0 31)
0 0

Indeed, by (8)

4
dz

so (31) holds. Finally, we have seen that (21) is a solution to (19).
It remains to show that

Eo1(Mz —2)%) = =Xz — 2)* ' Eya(Az — 2)%)

y(O) = bo, y/(O) = bl.
Certainly
0
y(0) = boEq,1(A-0%) +b1-0- Eyo(Az®) + / (0 — )" By o[MNO — )] f(t)dt = by.
0
Further,
0) = A (b Bag Oalomo + (1 Baa 0 Dlomo+ 2 ([ =07 BaalNe = 01500 ) |- 32)
Yy - dz 0L, 1 (AT z=0 dz 1T Lo 2\ AT =0 dx o X o X x:O'
Consider the first term of (32). By (8),
d (e} a—1 «
%(boEa’l(Ax )) = bo)\l’ ana()\x )
Evaluating at = 0 yields
d
ﬁ(boEa,l()\CEa)”z:Q = 0
Thus, (32) is reduced to
"(0) = i(b 2Eq2(A2%)) |0 + a4 /$(x — 1) Eg Mz — ) f(t)dt (33)
Yy - dz 1 a,2 =0 dr 0 a,a o0

Considering the first term of (33) shows

d d
%(bllﬂEa’Q()\.’ﬂa)”z:O = bl.’ﬁ%(Ea,Q()\CEa))h:Q —+ blEoéyg()\l'a”x:O = bl.

Finally, consider the last term of (33). By the Fundamental Theorem of Calculus,

= (2~ 2)" " BaolA@ - 2)f@)| =0,

z=0 x=0

% </0($ - ’f)a_lEa»a[A(w—)“}f(t)dt)

Thus we also have that y’(0) = b;. Therefore (21) is a solution to (19) - (20).

3. Problem Formulation and Formal Solution

We will be considering the system given by (1)-(4) in this paper.

We search for solutions of the form u(z,y,t) = v(z,y,t) +w(z,y,t). Here v(x, y, t) satisfies the homogeneous
problem given by the differential equation

1
CDgtv(m? Y, t) = VUga + ;’UZD + Uyy (34)
with boundary and initial conditions
glclirbxvm =0 v(l,y,t) =0 (35)
v(z,0,t) =0 v(z,1,t) =0 (36)
U(xay70) = @(x7y) Ut(xayao) :¢($,y)a (37)
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and w(z,y,t) satisfies the non-homogeneous problem with homogeneous boundary conditions given by the
differential equation

1
cDgtw(xﬂ yvt) = Waa + ;wz + wyy + f(xa y7 t) (38)

with boundary and initial conditions

lim 2w, =0 w(l,y,t) =0 (39)
x—0
w(z,0,t) =0 w(z,1,t) =0 (40)
w(z,y,0) =0 we(z,y,0) = 0. (41)
Once we have found such v(z,y,t) and w(z,y,t), then u(x,y,t) = v(z,y,t) + w(z,y,t) will be a solution to

the original problem.

3.1. Homogeneous Problem
Consider the homogeneous problem given by (34)-(37). We use the method of separation of variables.
Suppose

u(a:, Y, t) = Z(xv y)T(t)
Then,
Z(x,9)e DG T (t) = Zypo(x,y)T(t) + %Zm(x, YT (t) + Zyy(x,y)T(¢).

Using the fact that we are searching only for nonzero solutions, we rearrange to see that

DGT(t)  Zew(w,y) + 3 Zo(x,y) + Zyy(2,y)
W Z(x.y) | 42

Here, the left-hand side depends only on ¢ and the right-hand side depends only on = and y. The only way for
these to be equal for all z,y, and t is for each to be constant. We denote such a constant by — .
We now search for solutions to the spatial problem given by (42),

1
Zzw(xvy) + ;Zw(xvy) + Zyy(x’y) + /,LZ(QL‘, y) =0.

We now apply the method of separation of variables for the spatial problem. Suppose Z(x,y) is of the form
X(2)Y (y). Then,

1
X'(@)Y (y) + — X' @)Y (y) + X (2)Y"(y) + pX (2)Y (y) = 0.
Using the fact that we are searching for nonzero solutions, we rearrange to see that

Y'y) _ X'(@)+ 1 X' @)+ pX (@)
Y(y) —X(z) - o

where ) is a constant by the same argument as in (42).
Next, consider the function Y (y). Combining (43) and (36) we see that

d2
dTJgY(y) +AY(y) =0

and that Y satisfies
Y(0)=Y(1)=0.

It is well-known and simple to verify that this problem has nontrivial solutions Y,,(y) = sin(nwy) and A, =
—(n7)? where n varies over N.
Now consider the function X (z). From (35) and (43) we see that X must satisfy

—dQ X(a:)Jrl—dX(:c)Jr( - N)X(x)=0
dx? x dx K =
and the boundary condition

) d
X(1)= ;11)% x%X(x) =0.
Note that this is Bessel’s equation with p = 0. By [20], Ch. 8, Section 5, X must have the form

X(z)=c1do ((u - )\)1/2x) + Yy ((,u - A)l/zx) .
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Denote v = (u — )\)1/ 2, We now apply the boundary condition at 0 with the goal of eliminating the Y term.

Taking the limit as x — 0 and applying (15) shows that

d , d

tiny 7 X(0) = i (o leuto0) +exv))
d d

= hn}) {clio('ym) —|—62xd YO(’yx)]

T— d
J_1(yx) = Ji(yz)
2

d
= lirrb {cl'yx + czdeo(vx)} and since J_1, J; are bounded at 0,
T— i

) d
lim a0 Yo (1)
We now use the representation of Yy given by (14). Term-by-term differentiating yields that

) d
;IL% {@xdeo(’ya:)}

gy (B0 (0 +0) 25 C () (g o))
- 20 (o) (n 5+ ) 42 yg‘;w <(1>)<2>2“<1+;+;+---+;>)1
1 (V;) (1+;+;+...+;>

Now, since the summation term clearly converges uniformly, we can swap the limit and summation. Since every
term of the summand is 0 at z = 0, we obtain

ERRN)

= lim
x—0

T x—0

=2 lim [x(jaj‘fo(’yx)) (ln¥ + C) + Jo(y) Z ym

2 lim [ (diJO(WU)) (ln % + C) + Jo(’yx)]

T x—0

202 . [ Joa(yz) —

™ x—0 2

, d
alzlg%) [czxdeo(vx)]

N7 (ln % + C) + Jo(wx)]

2cq
222 Nim Jo(yx).

T x—0

The last equality follows from .J,,(0) being finite for all integer n and the fact that lim,_,o(x Inz) = 0. Finally,
we know that Jy(0) = 1, therefore,

d 202
lim r—X(z) = —.
W=

To satisfy the condition lim,_,o2X’(z) = 0, we must have ¢ = 0. Thus, X (x) must have the form c¢; Jy(yz).
To satisfy the condition X (1) = 0, we must have that 7 is a zero of Jy(z). Denoting the m‘" zero of Jy(z) by
Ym, We obtain the general solution

Xm(z) = cmdo(ymz),

where m varies over N.
Finally, we turn to the time problem given by our separation of variables:
DG T () + pT'(t) =
Combining the results from the previous two sections we see that the only possible values of p are given by
pmn = (n7)? + 77,

where m and n are natural numbers. This is the Cauchy problem discussed in section 2.2 with A = —p,,, ,, and
f(z) = 0. Hence, a general solution for any given g, , is given by

Tm,n(t) = Am,nEoz,l(_/ffm,nta) + Bm,ntEa,Z(_lffm,nta)7

where A,, ,, and By, , are constants.
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Bringing together the results from our separations of variables we see that our solution to the homogeneous
problem must have the form

u(z,y,t) = Z [CrnnEa (=pt®) + Dy ntEa,2(—pt™)]Jo(vmz) sin(nmy)

m,neN

where Cy, n, and D,, , are constants. We now determine these coefficients by applying our initial conditions.
Since the Bessel functions {.Jy} are orthogonal with weight x, we use the L? inner product with weight x
throughout this process and the rest of the paper. Since x is positive, continuous, and only zero at a single
point, this is an equivalent inner product to the standard one. At ¢t = 0,

e(z,y) = u(z,y,0)
= > [CovnEa1(0) + (0) Dy Ea 2(0)]Jo (Y ) sin(nary)

m,neN

Z Conndo(ymz) sin(nmy).

m,neN

The last equality is due to the fact that

o0

1
,; T( ka + RO (44)

Now, for any I,k € N, by taking the L? inner product with Jo(v;z)sin(k7ry) and using the orthogonality of
{Jo(ymx) sin(nmy) } we see that

(p(z,y), Jo(yiz) sin(kry)) = < Z Crnndo(yma) sin(nmy), Jo (i) sin(kﬁy)>

m,neN

Z <Cm,nJ0 (rymx) Sin(nﬂ-y)a JO(’WZ‘) Sln(kﬂ-y»

m,neN
= Crp(Jo(mix) sin(kmy), Jo(vix) sin(kTy))
= CyllJo(viz) sin(kmy)| |3,

hence for any [,k € N,

o = $P@y) Joln) sin(kmy)) 1
’ [ Jo(nz)sin(kay)lls - [l Jo(yz) sin(kmy)[[3

To deduce the values of Dy, ,, we use (8) and note that

| [ weten dotia) sintimpdzay. (5)

oo

0%) 1
=> =1. (46)
T ka + 2) T2
Then applying our initial condition,
V() = Sute. )
Y dt Y, —o
d
= dt{ > [CnmBan(—pt®) + Dot Ee2(—pt*)] Jo(ym) Sin(my)]t_o

m,neN

d o d o .
= ;l HC’”’"tho"l(ut )+ Dmvn%tEmg(fut )] tZOJO(’ymx) Sm(mry)}

d
_ a—1 4 all 4 4 .
ZH ) (= 11%) + Do (1 B (1) + B (1)) o) sinrry)
= ZDm ndo(Ymx) sin(nmy).

By identical reasoning to that used when determining the C,, ,, we see that for any [,k € N,

1
170 () sin(kmy) |13

/ / w0z, y) Jo () sin(kmy)ddy. (47)

Dy =
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This fully characterizes the solution to the homogeneous problem.

3.2. Non-Homogeneous Problem
Now we tackle the remaining non-homogeneous problem given by (38) and (39)-(41). The first step in this
process will be to represent the source function f(z,y,t) in a summation of the form

Z C(t)Jo(ymz) sin(nmy).

m,n

To do this, we will need the following well-known lemma.
Lemma 1. If {fn}nen and {gm }men are complete orthonormal families in L*([0,1]) then {fngm fm.nen 18
a complete orthonormal family in L?([0,1] x [0,1])

Proof. Let {fu.}nen and {gm}men be complete orthonormal sets in L2([0,1]). A family of orthonormal
elements {¢, }oca of a Hilbert space H is complete if and only if the closure of the set of finite linear combinations
of {¢n} is H. Since an element x € H is in the closure of the set of finite linear combinations of {¢} if and
only if the Parsevall identity,

][ = Kz, ¢n)l”

holds, it suffices to show that the Parsevall identity holds for a dense subset of L?([0,1] x [0, 1]). We consider
the family C([0,1] x [0,1]), which is dense in L2([0,1] x [0,1]) by the compactness of [0,1] x [0,1]. So let
f€C([0,1] x [0,1]). Then,

111 = (f. /)

-/ 1 / () Pdndy

- /01 {Z ‘ /01 f(a;,y)fn(a:)dxﬂ dy by completeness of {f,}
neN

1, p1 9
Z [/ ’ / f(x,y)fn(w)dx’ dy} since the sum converges to f,
neN 0 0

1,1
Z ‘/0 /o f(l',y)fn(l’)dl‘gm(y)dyr by completeness of {g,,}

m,neN

> U fagm),

m,neN

which shows that {fngm }n,men is complete in L2([0,1] x [
Note that continuity of f and the compactness of [0, 1
of all integrals that appear in the calculation.

0,1]). 0
] % [0,1] was tacitly used to guarantee the existence
Since the trigonometric family of polynomials of period 1 and Bessel functions of the 0" kind are each
complete in L?([0,1]), the family of functions given by their products is dense in L?([0,1] x [0,1]). Hence, we
can represent f(z,y,t) and any solution u(x,y,t) by

Faant) = 3 Fnt) o) sin(nmy), (48)
m,neN

u(z,y,t) = Z T (B) Jo (ym ) sin(nmy). (49)
m,neN

Here, note that the F}, , are determined and

1

w0 = T ma) s

11
//xf(x7y,t)J0(’ymx) sin(nmy)dzdy. (50)
00

Now, plugging into the differential equation for the nonhomogenous case yields

o 0? 10 0? . .
(CDOt B Rt 8y2> M;EN T (8) Jo (ym) sin(nmy) | = m;EN Frn(t)Jo(ymz) sin(nmy). (51)
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By the computations done in the homogeneous case, we see that

(62 10 0?

@ -+ 5% + 8y2> Z Tm n )Jo(’}/ml’) SlIl ’fl’/Ty = Z Tm n + ’Ym)JO(’me) Sln(nﬂ-y)

m,neN m,neN
(52)
Combining (51) and (52) and noting that g, , = (nm)? + 72, we obtain that

S (D6 Tn®) + T (0) Jo () sin(omy) = > Fon(8)Jo () sin(rmy).

m,neN m,neN

Now, for any [,k € N, taking inner products with Jo(y;x)sin(kmy) and using the convergence of sums and
linearity of the inner product shows that

Z (cDgtTm,n(t) + Hmﬂsz,n(t)) <‘]0 (’me) Sin(nﬂ-y)a JO (W:E) Sin(kﬂy»

m,neN

Z Fry (1) (Jo(yma) sin(nmy), Jo(yx) sin(kmy)).

m,neN
Using the orthogonality of {Jy(y;x) sin(kma)} shows that for all m,n € N,
cDgtTm,n (t) + ,um,nTm,n (t) = Fm,n(t)a

which is the Cauchy problem described in section 2.2 with A = ., and f(t) = F}, ., (¢). Hence, we see that

t
Tmm(t) = bm,nEaJ(_Mm,nta) + Cm,ntEa,Q(_,U/m,nta) + /0 (t - g)a_lEa,oc[_ﬂm,nOt - €)a]Fm,n(§)d€

where by, , are constant.
We now determine these coefficients. Since u(x,y,0) = 0 and

0
=07 Bl = %1 B (€1 =0
(49) and (44) give that

0= U(.T, Y, O) = Z |:bm,nEa,1(0) + Ocm,nEa,Q(()) Jo(")/ma?) sin(mry)

m,neN

Z b Jo(Ymx) sin(nmy).

m,neN

Since the family of functions {Jo(ym,z)sin(nmy)} are orthogonal, this shows that the b,, , must be identically
0. To handle the values of ¢, y, first note that

% (/0 (t— §)a—1Ea}a[_Mm,n(t — g)a]Fm,n(g)a%)

= (t - t)ailEa,a(_:um,n(t - t)a)Fm,n(t)‘t:O + </0 %(t - f)ailEa,a(_/im,n(t - g)a)F(f)(%) =0.

t=0

t=0

Then, the fact that u:(x,y,0) = 0 combined with (46), (51), and identity (8) gives that
0= ’U,t(l‘ Y, O)

d .
= Z { mon —fm nt®) + cmynd—tang(—pm,nta)} Jo(ymx) sin(nmy)
t t=0

a— « d (e} « .
== Z [bm,n(*,ufm,nt 1)Ea,a(*ﬂlm,nt ) + Cm,n (t%EaQ(*Nm,nt ) + Ea,Q(*,Ufm,nt )>:| t:OJO(P)/mx) Sln(mTy)

= Z CmnJo(Ymx) sin(nmy).
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As before, since {Jo(ym ) sin(nmy)} is an orthogonal family of functions, the constants ¢, », must be identically
0. This now gives us a final solution to the nonhomogeneous problem

w(ey )= Y ( / <t—5)“-1Ea,a[—um,n<t—s)alFm,n@ds) Jo(m) sin(nrz).

m,neN
Combining the solutions to the homogeneous and nonhomogeneous problems gives that a formal solution to the

original problem given by (2) - (4),

u(z,y,t) = Z T () Jo (ym) sin(nmy), (53)

m,neN
t
Tm,n(t) = Cm,nEa,l(_Mm,nta) + Dm,ntEaQ(_//"m,nta) + / (t - g)a_lEa,a[_Mm,n(t - g)a]Fm,n(g)dga (54)
0

where C, n, Dy pn, and F, ,, are given by (45), (47), and (48), respectively.

4. Uniqueness

We claim that any continuous solution to the problem (1), (2) - (4) must be unique. To see this, suppose
that u(z,y,t) and u'(x,y,t) solved this problem. Then, their difference s(z,y,t) = u(z,y,t) — v'(z,y,t) would
be a solution to

1
CDSES(UE,ZJJ) = Sgz + ESZC + Syy

with boundary and initial conditions

il_r)%a:sm =0 s(1,y,t) =0
s(x,0,t) =0 s(x,1,t) =0
s(z,y,0) =0 st(x,y,0) = 0.

We are now in the same situation as we were in the nonhomogeneous problem, with f(z,y,t) = 0. The argument
we used in the nonhomogeneous case now shows that

swyt) = ¥ ([ 0= ool opnnlt = 71006) o (12) sinnna)

m,neN
=0.

Thus v = u'.

5. Existence

We turn our attention now to showing that the formal solution given by (53) and (54) is well-defined and
converges under proper assumptions on f, ¢ and . In particular, we will demonstrate the following result.

Theorem. The formal solution given by (53)-(54) to the problem given by (1)-(4) is well-defined provided
that:

1. fu is continuous and f(z,y,0) =0;

2. fyyyza i bounded and for all (x,y,t) € Q,
f(2,0,8) = [z, 1,8) = fyy(2,0,8) = fyy (@, 1,8) = fyyy(0,4,8) = fyyy(1,9,) = fyyye(0,y,1) = 0;
3. fyzazs is bounded and for all (x,y,t) € Q,
f(@,0,t) = fz,1,8) = fy(0,9,8) = fy(1,y,t) = fy2(0,4,8) = fyaa(0,4,t) = fyaa(1,4,t) = fyaaa(0,y,t) = 0;
4. Pyyyza 18 bounded and for all z,y € [0, 1],
o(2,0) = p(x,1) = pyy(2,0) = yy(,1) = Lyyy(0,4) = yyy(1,9) = Pyyye(0,y) = 0;

5. 1 satisfies the same assumptions as .
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The order of partial derivatives that ¢ and 1) must have exist could be changed, but doing so would require
the boundary conditions they satisfy to change similarly. For the sake of simplicity, we leave them in this single
case. Note also that five times continuous differentiability on ¢ and 1 implies the conditions demanded here.

Section 3 demonstrates that (53)-(54) is a solution to (1)-(4) if the differential operator

10 & &

can be applied term-by-term. To show this, it suffices to show that the series representing u(zx,y,t) converges
uniformly on [0,7] and that the formal series given by wgy, 1/Tuy, Uy, and uy all converge uniformly on
[e,T] for all € > 0. The remainder of this section will be devoted to demonstrating this by applications of the
Weierstrass M-test.
We begin by giving a handful of useful simple facts that will be used throughout the bounding procedure.
Lemma 2. If f: D — C is a continuous function with Fourier-Bessel series

Z fm,n(t)JO(”Ymm) sin(nmy),

m,neN

then
[fman (@] < (1 f]oo
for all m,n, and t.
Proof. With f and f,, , as given, ||f||c is well-defined and finite by the compactness of D and continuity
of f. Now, for any ¢,

| frnn ()] < Z | fnn (E) 7 and by Parseval,

m,neN

1 1
=/ / | f(x,y,t)|*dedy
0 0

1 1
g//Wm&mw
0 0

= |I£ll5%-
Hence, [fmn(t)] < [|fllso- =
Lemma 3. If f : [0,1] — C and f’' € L'([0,1]), then:

1.
1

f(x) cos(nmra)de = — / f/(x) sin(nmz)dx;

0

O\H
S|
| =

2. and if f(0) = f(1) =0, then
1

f(z)sin(nrx)dr = —/f’(x) cos(nmx)dz.

0

o _
S|~

Note here that if f being continuously differentiable or having a bounded derivative is enough to satisfy the
requirement that f’ € L([0,1]).
Proof. This is a simple application of integration by parts. a

The analogous bounding feature for Jy(x) is contained in [20], Ch. 8, Section 19, and we state without proof.
Lemma 4. If f : [0,1] — C is 2k differentiable for k € N, f(0) = f/(0) = f(1) = --- = fZF=2(0) =
fR=2(1) = fCR=1(0) = 0, and f?* is bounded, then there is a constant C > 0 such that for all m,

1
C
[ VE@ R < s,
0

where M = max(f*) (x)) and v, is the m-th positive 0 of Jo().

41



A Boundary-Value Problem for 3-D Fractional Wave Equation with Singularity 42

We next give some useful facts about F, ,, and its derivatives. Note that from the representation of F, ,, in
(50),

1 1
d 1
F .t =— - //x z,y, t)Jo(Ymz) sin(nmry)dzd
) () dt Hlﬂymm)ﬁngmmﬁngo / f( y,t)Jo(y ) ( y) 0y

11
//l"ft z, Y, t)Jo(vma) sin(nmy)dzdy,
||J0('ymm sin(nmy)||3 )

which is the (m, n)-th Fourier coefficient of f;(x,y,t) with respect to the family {Jo(v,x)sin(nmy)}. Similarly,
F}, . is the (m,n)-th Fourier coefficient of f;;(z,y,t). The representations of F, ., F}, ,, and F}}  as integrals
of f, fr and fi against xJo(vm2) sin(nry) demonstrate that the assumption fi(x,y,t) is continuous implies
that all Fyy, n, Fy, ,, and F  are continuous.
Our final step before dlrectly handling the series at hand is to place a bound on |Cy, | and |D,, |- Recall
from (45) that
1

Comn =
" o (yme) sin(nay)[[3

/ / 2 Jo(Yma) sin(nmy)p(z, y)dzdy

where

1 41 1 1
[|Jo(Ymx) sin(nwy)”% = / / z|Jo(ymx) sin(mry)|2dxdy = / |sm(n7ry)|2 (/ ng('ymx)dx> dy. (55)
o Jo 0 0

We bound (55) below. This argument will take two steps.
To bound the component involving Jy, note that as a consequence of [20], eq. 14.1, there is a C; > 0 such
that L
C
2 < / 2 JE (Yymex)dx
Ym 0

for all m € N. Next, we use the fact from [20], Ch. 8, Section 10 that

Cy := inf m
neN vy,

is a nonzero, positive number, and hence that
o1
Yim-o Ym
for all m € N. Thus, taking C3 to be (C1C3)/~1, for any m € N,
Cs

m

</0 T JE (Yma)dz. (56)

This completes our bounding of the z-component of (55).
To handle the y-component, note that

1
Cy ::/ | sin(7y)|*dy
0

is evidently a positive real number. Hence,

ES

1
/ | sin(nmy)|*dy > / | sin(nmy)|*dy and putting ¢ = ny (57)
0 0

1
= /O %\sm(m)ﬁdt (58)
_ G

% (59)
Combining (55), (56), and (59) demonstrates
11
Conal < Com [ [ ) sintuny)o (o, y)dody (60)
0o Jo
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where each C' is a positive constant independent of m and n. An identical argument can be applied to |Dy, |
and |Fy, | to create similar bounds.

We now prove the uniform convergence of (53)-(54). Since sin(nry) and Jo(vymx) are both strictly bounded
by constants, we can place the immediate bound

Tonn (8) Jo(Ym) sin(nmy)| < Cs[ T n(t)] (61)

s

(
on the modulus of the terms of (53)-(54). Furthermore, since Eq 1(—pm nt®) and Eq o(—pm nt*) are real for
real ¢, decrease as ¢ increases, and E, 1(0) = E,2(0) = 1, we see that for all m,n and ¢t € R,

|Eo¢,1(_/im,nta)| S 17

and
tEa2(—pmnt®) <t <T,

and since T is a fixed constant, we see from (61) that

t
T (t)] < C6 |Crun + Dinn + /0 (t— g)ailEa,a[_ﬂm,n(t = &) Fnn(§)dE (62)

t

S C6 |Cm,n‘ + |Dm,n‘ + /(t - g)a_lEoz,a[_/Jm,n(t - f)a}Fm,n(f)dg . (63)
0

where Cj is a positive constant.

We begin by bounding the contributions of |Cy, | and | D, ,| to (63). Using the assumptions that ¢y, is
continuous and ¢(z,0) = ¢(z,1) = @yy(2,0) = @,y (2, 1) = 0, we can apply Lemma 3 three times with respect
to y to (60) and obtain

O7m

|Cm,n| < n2n3

/0 " cos(nmy) ( /0 P y)Jo(vmx)dx) dy‘ . (64)

Now, since @y, is boundedly twice-differentiable with respect to z, and ¢y, (0,¥) = ©uyy(1,y) = Cyyyz(0,7),
VZpyyy satisfies the same assumptions. Hence,

1 1
B Cg C’9
O/x‘:"yyy(x,y)JO(’me)dm = O/\/%(\/E‘Pyyy@vy))tjowmx)dm < W@IJ&%&] (ﬁ@yyywx(x7y)) < ms/2
(65)
by Lemma 4. Combining (65) and (64) now gives that

1
Cw Cll
Conal < 2 [ costumydy =
0

>
2.3
m,neN n=ms?

and since

converges by the p-test, Zm’neN |Cyn| is dominated by an absolutely convergent numerical series and hence
is uniformly convergent by the Weierstrass M-test. The proof of the uniform convergence of >,y |Dim,nl is
identical, and uses the same assumptions on ).

We now handle the contribution of the integral part to (63), which is given by

D

m,neN

[ = 9 Bl - 5)“]Fm,n<s>d§\. (66)

0

After using (8) to integrate by parts, we rewrite each term of (66) as

t Fpn ! /
[ Bttt =@t = 220 < | [ e - 185, (01 4|
0 0 HMm,n

Hm,n Hm,n

Enalt)]

Hm,n
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We handle each term in (67). For the second, Bessel’s inequality ab < a? + b* demonstrates that

F,, .(t 1
\ ’“]s LT RO (68)
Hm,n Hm,n

Using the Parseval’s identity and the fact that p,, , > mn now shows that

S (S B ) < AR+ Y —— < oo, (69)
(mn)

n,meN m,n m,neN

completing the argument for the second term. For the first term, lemma 2 and the assumption that fi(z,y,t) is
continuous allows us to bound Fy, ,,(§) by a constant independent of m and n. Thus, for any € > 0,

C(12
Hm,n

Cuw ([ 1 :
Hm,n (/0 1+ /U'm,n(t _ g)adg + /f,_s 1 d§) by (10)

C T
< 12 ( + 6) .
P \ m,n€*

[ Baslpmatt —s>a]F;n,n<f>ds\ <
0 Mm,n

/0 Ea,l[_ﬂ'm,n(t - f)a]dfl

<

If we take e = u;ﬁ:/f’, then this shows
b1 Ci2 T
E, —mnt—gaF;n§d£’< ( + mn1/3>. 70
/0 Hm,n ,1[ Hm, ( )] ’ ©) Hm.,n (/Lm,n)lia/g (s 1 ) (70)

Asl<a<?2and fiymn, > 1, we see (fmn)” 1 7/%) is bounded above by (tm.n) /3. Thus, (70) shows that

/t L B[ttt — €)°F, <£>dg‘<013
0 ,um,n ot e o o (,um,n)4/3.

Since 4/3 > 1, the p-series test demonstrates that
1 1
E —m < E ———= < 00. (71)
4/3 = 4/3
m,neN (/J/mfﬂ) / m,neN (mn) /

Hence, combining (69) and (71), we see that (67) is dominated by an absolutely convergent series, thus is
uniformly convergent. We have now shown that series given by (53) is uniformly convergent.

We next handle the uniform convergence of uy on [6,7] for a fixed 6 > 0. First, we compute uy(z,y,1).
Using (8) and (9),
d? d

@Ea,l(_ﬂm,nta) = _,U/m,natailEa,a(_,U/m,nta) = _/ffm,ntaionz,afl(_,Ufm,nta)

and )
d _ a— o
ﬁtEa,Q(_Um,nta) = %Ea,l(_ﬂm,nta 1) = —fbm,nt 1Ea,a(_l‘m,nt )-
Lastly, following the computation done from (23)-(27) and using the assumption that f(0) = 0, we see that
d2

@ /0 (t = )7 Baa(—timn(t = €)°) Fon,n(€)d

t
0
= ta’2Ea’a,1(—um’nto‘)Fm,n(O) + / a[zaﬂEa,a,l(—/Vtmynz(")Fm,n(t —2)|dz
0
t
:/ 2 Eaae1(—tmnz®) Fpy o (t — 2)dz.
0

We have now shown that

wi(@,y,t) = Y Th o () Jo(yme) sin(nmy)
m,neN

T’r/TIL,’n(t) = _Nm,ncmmta_2Ea,Oéfl(_Nm,nta) - ,um,anynta_lEoma(_Nm,nta)

¢
+/ 2° 2By a1 (—pmn2®) f(t — 2)dz.
0
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Our concern is now to bound each term [T}, ,, (t)Jo(ym®) sin(nmy)| above. Since Jo(Vm) sin(nmy) is uniformly
bounded by a constant, we immediately have that

|T1g;,n(t)']0(7mx) sin(nmy)| < Cia {‘Mm,ncm,nta_QEa,a—l(_:Um,nta)‘ + ’Um,an,nta_lEa,a(_Mm,nta)’

|

We thus prove the uniform convergence of u;; by bounding each of the following terms with absolutely convergent
numerical series:

t
+ ’ / O 2E (2 ) (= 2)d
0

’/ffm,ncm,nta_QEa,ozfl(_Mm,nta) ) (72)
’/ffm,an,ntailEa,a(_Nm,nta)’ ) (73)
t
/ 2B (i) (= 2)dz] (74)
0

First consider (72). Applying (10) and the facts that 1 < a < 2 and ¢t > 6 on [§, T,

‘:um,ncm,nta_2Ea,a71(_,U/m,nta)| = ,u/m,nta_2|Cm,n| |Eoc,a71(_lu/m,nta)|
/me(saiz
L+ pom nt®
5a72
S C16|Cm,n|M

Pom,n 0%

= Cl7|cm,n|7

S Cl5|om,n|

where C17 is a constant independent of m, n. Due to our previous results, this shows that (72) is bounded above
by an absolutely convergent numerical series. Analogously,

Mm,an,nta_lEa,a(_,um;nta) ‘ = ,um,nta_l |Dm,n| ‘Ea,a(_ummt(x”
Mm,nta71

< CislDunl 0, 5
m,n

1 ’ toc—l
< 016|Dm,n|L

m,nt"
= C{6|Dm,n|t_1
< Clg|Dmnld ™"
= 017|Dm,n|a
which proves that (73) is also bounded above by an absolutely convergent numerical series.

Finally, we consider (74). Integrating by parts with dv = 2 2E4 4—1(—fim.n2*) and using (9) and (10) we
see that

t
/ Za72Eoc,a—1(_,Um,nza)F;n,n(t - Z)dZ (75)
0
t
< ’ta_lEma(_Mm,nta)Fv/r/z,n(o)‘ + / Za_lEa,a(_Mm,nza)Fg,n(t — z)dz
0
EF” (0 ¢
< ClgL()‘ + / z“_lEa,a(—um’nzo‘)F,’,’L,n(t —z)dz|. (76)
m,n 0

The first term in (76) is satisfactorily bounded by the same argument used in (68)-(69). For the second term,
begin by noting that (12) shows

-1 a o -1 — a

(—ttm,n2" Ea,a(—fimnz®)) = z lEa,O(_Nm,n'z )- (77)

ZHm,n Hm,n

Za_lEa,a(_Nm,nZa) =

After using Lemma 2 to estimate F, , by a uniform constant, the integral term of (76) then becomes bounded

by
1 t
— / |2 B (i) . (78)
m,n )
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Now, since 1/I'(0) is understood to be 0,

1 —1 - Mm nZ > an k O(k !
27 Eqo(—phmnz® Z Z , )
k=1 =1
and since « > 1, this demonstrates that

lim 2~ By o0(—ftm n2®) = 0.

z—0

This demonstrates that 27 Ey o(—fim »2) can be continuously extended to the entirety of [0,¢]. Furthermore,
since E, ¢ is diminishing as its argument decreases, for all n,m € N and z € [0, t],

Z_lEa,O(_,“mynza) < ||Z_1Ea,0(—,u17120‘)||00,

which is finite by the compactness of [0, t]. Thus, for any € € (0, 1], applying (10) shows
t € t
/ |271Ea,0(—um7nzo‘)‘dz = / |z*1Ea,0(—um7nz°‘)|dz —|—/ ‘zflE%o(—u,,wzo‘ﬂdz
0 0 €

€ t
< / Chodz + / Co ‘
0 €

—\d

€(1+ pmn2®) *
t

< ¢Cho _|_/ &dz

/’Lm,nEOH_1

021
Nm,neaJrl

Ca

Hm,n €3

< eClg + and since 1 < a < 2,

<eCig+

1/4

Taking € = (ftm,n)~/* now shows

t

/zo‘*lEa,a(fum,nta)F;’%n(t —2)dz| <
0

C22
(Nm,n)5/4 ’

finishing the last portion of the bounding of (74). This completes the proof of the uniform convergence of uy;.

We next show that the series wy,(z,y,t) is bounded above termwise by an absolutely convergent numerical
series on [§, T for an arbitrary § > 0. Taking the derivative twice with respect to y shows that

Uyy(x, Y, t) = Z (nﬂ-)Z (Cm,nEa,l(_Mmmta) + Dm,ntEaQ(_Mm,nta)

m,neN
+ /0 (t - §)a_1Ea,a[_Mm,n(t - g)a]Fm,n(g)d§> JO('me) Sin(nﬂ-y)'

By placing a constant estimate on Jo(v,,2) sin(nzy), we obtain that each term is bounded above by

t

(nﬂ)z |Cmn ot (= pmnt®))| + [ Dimnt Ea2 (= pim nt™)| + /(t - f)ailEa,a[_ﬂM,n(t — &) Fonn(§)dE] -
0

As before, we bound this expression in three parts:

(T”T)Q |Om,nEa,1(_,um,nta)‘ ) (79)
(nW)Q |Dm,ntEa,2(_Mm,nta)| ) (80)
(72 | [ 6= " Bttt = ) P (€] (81)
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For (79), note that since we only consider ¢ € [§,T] an application of (10) demonstrates

()% |Crnn Byt (— Hm,nt®)| < (W)Qﬂ 5o = C2alCunl, (82)
as fm,n > n? for all n. For (80), an analogous argument shows that
7T)2 | DinntEa,2(—pm,nt®)] < Co5 D (83)

As we have previously sufficiently bounded |Cy, | and | Dy, | in the proof of the convergence of u, this finishes
everything for u,, except (81).
For (81), notice that as in (77),

(t = &) F o (—man(t — €)%) = ——(t — )" Fo ottt — £)%).

m,n

This demonstrates that

t 2
(nﬂ)2 /(t_g)a_lEa,oz(_;u’m,n(t_g)a)Fm,n<§)d§’ = /|(t_5)_1Ea,0(_ﬂm,n(t_£)a)’ |Fm,n(§)|d§
0 Hm,n s
<||anHOO,LL /|t_ 1Ea0( Nmnt_ ’df

We have now arrived at exactly the integral that appears in (78), and hence can follow the same argument to
have its value bounded by C’gs(um’n)*l/‘*, leaving us with

(nm)?
fhm,n)?/ 4

(nm) (i

[ €= Bttt - §>Q>Fm,n<s>df] < [ Emnlloe (84)

We now apply the conditions we placed on f to eliminate the (n7)? term. Throughout the following argument,
let € € [6,T] be given. Note that at the start of this section, F,,, ,(§) was bounded by

1 1
B (€)] < Cagmn / / £ (2,9, €) Jo(Ym) sin(nmy)dedy. (85)
0 0

Since fyyy is assumed to exist, and f(x,0,t) = f(z,1,t) = fyy(z,0,t) = fy,(x,1,t) = 0, applying lemma 3 three
times yields that

1
C
Fnn(©)] = 25 [ costumy) / s 9, ) Toloma)d | d. (56)
0

Now, as fyyyzo exists, is bounded and satisfies fy,,(0,9,t) = fyyy(1, ¥, t) = fyyy=(0,y,t) = 0, the same holds of
VT fyyy- Hence, by lemma 4, and discussion of the zeros of Jy(x),

1 1
[ a8 Ioima)dn| = | [ V3 sl s o me| € e max(v ) < 2. (80
0

0

Bringing together (86) and (87) thus demonstrates that

Cag
| Fmn(§)] < 3,33

and since £ was arbitrary, ||Fi, n||co has the same bound. Therefore,

t C
[ =9 Bttt - ) B < S

(nm)?

which is a sufficient bound to complete the bounding of (81) and thus the uniform convergence of w,,.
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Next, we show the uniform convergence of the series that represents a term-by-term application of %8% to
u for ¢t on the interval [4, T:

éugj(a:,y,t) = Z T (t) (—vmiJl('ymx)> sin(nmy).

m,neN

Note that (18) was used to compute the derivative of Joy,,z here. Using property (16) of the Bessel function,
we rewrite the sum as

Z Tonn (1) (_%n(Jo(me) + Jg('ymx))> sin(nmy).

2
m,neN

Once we estimate away Jo(Vm2), J2(yme), and sin(nmz) with a uniform constant, the terms that we must bound
above in order to apply the Weierstrass M-test are

’YTm‘Cm,nEa,l(_Mm,nta) ) (88)
777”|Dm,ntEa,2(*,ufm,nta)7m,|a (89)
t
| [ = 7 Bl bt = ) P (€1 (90)
0

For (88) and (89), an analogous argument to as in (82)-(83) demonstrates that
VTm |Cm7nEa71(_um7nta)| S CSO|Cm,n|7

77711 ‘Dm,ntEoe,2(_Nm,nta)'}/m‘ < Cs |Dm,n|~

Now, since |Cy, | and |D,y, | have been bounded above by terms in absolutely convergent series in the proof
of u’s convergence, this fulfills our obligation for (88) and (89).
Last, we must bound (90). As the integral is the same as in (81), we are able to obtain the bound

m

77”
2 Ty

2

t
a— o Ym
/0 (t—f) 1Ea,a(_,um,n(t_§) )FnL,n(g)df S ||Fm,n||oom S 032HF7)'L,71

( m,n

We now leverage our assumptions on f to cancel the m term in (91). The process is similar to as in (84):
for any &, since

f(@,0,t) = fz,1,t) = fy(0,9,1) = fy(1,y,t) = fy2(0,9,8) =0
and fyz, is bounded, applying lemmas 3 then 4 to (85) shows

Cs3
[Finn(§)] < YR

and hence that ||F, ,||c has the same bound. Thus,

1

Jm

9 /0 (t - g)ailEa,a(_Um,n(t - S)Q)Fm,n(ﬁ)dﬁ S C(34

which is a strong enough bound to guarantee the uniform convergence of (1/x)u,.

To finish the existence portion, we show the uniform convergence of u,,(z,y,t) on [, T]. First, we compute
(Jo(¥mx))zz- By applying (18) and then (15), we see that

0? 1o}
@JO(VMZ) = o (YmJ1(Yym®))
2

= % (JO(’me) — JQ(’me)) :

This now shows that

war(@,y ) = D T (1) (Jo(ym) = Jo(yme)) sin(ny).
m,neN
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We again estimate Jo(Vm), J2(vme), and sin(nma) with a uniform constant, to obtain that we must bound

%‘menE%l(_Mm,nta) , (92)
2
%‘DmmtEaa(_Nmmta)’Ym‘, (93)
2 t
77’" /(t—5)“‘1Ea,a(—um7n(t—5)“)Fm,n(§)d§ (94)
0

with absolutely convergent series.
Once more, (92) and (93) are handled by an analogous argument to as in (82)-(83) which demonstrates that

2
22| oo Bt (~ )] < Cs|Conl,

2
0l < ol

Now, since |Cy, | and |D,, | have been bounded above by terms in absolutely convergent series in the proof
of u’s convergence, this fulfills our obligation for (88) and (89).

Finally, we must place a bound on (94). The integral in the term is the same as in (81), hence we are able
to obtain the bound

2

t 2
a—1 o Tm m
/0 (t—f) Ea,a(_:um,n(t_g) )Fm,n(g)dg S ‘|Fm7n||0027(um’n)5/4 S CS7||Fm’nHOO(Mm,n)5/4.

We will now apply the remaining unused hypotheses on f to cancel the m? term. Our method is similar to as
n (84). If £ € [0, T is given, since

f(x,O,t) = f(xv 1at) = fy(oayat) = fy(Lyvt) = fym(oayat) = fymm(oyyut) = fymm(lyyut) = fyx:rx(oayyt) =0
and fyzzeq is bounded, applying lemmas 3 then 4 twice to (85) shows

C
Frnl©)] < =25,

and hence that ||F), ,||co has the same bound. Thus,

Tm
2

1

gl I
(Hm,n )/ 4m3/2”

2 /0 (t - g)ailEa,a(_,um,n(t - €)Q)Fm,n(§)d§ < Csy

which bounds (94) above with an absolutely convergent numerical series. This completes the convergence of g,
and the section on existence.

6. Stability

We now demonstrate that our solution depends continuously on the choice of initial conditions. To do this,
it suffices to show an estimation of ||u(x,y,t)|| in terms of |||, ||®||, and || f|| with no additive constants. This
is due to the linearity of the homogeneous and nonhomogeneous problems: if u solves (1)-(4) with ¢, ¥, and f
given, and v’ solves (1)-(4) with ¢', ¢’, and f’ given, then u — v’ is given by the solution to (1)-(4) with ¢ — ¢,
¥ —1, and f — f' given. Our approach is largely similar to the methods used in existence.

Since any solution to the original problem (1)-(4) is given by the sum of solutions to the homogeneous
problem (34)-(37) and nonhomogeneous problem (38)-(41), we show bounds on each solution individually.

The solution to the homogeneous problem (34)-(37) is given by

u(ma Y, t) = Z [Cﬂ"L,nEa,l(_Mta) + Dm,ntEa,2(_Mta)]J0<7mx) Sin(nﬂ-y)7
m,neN

where Cyp, and Dy, are as in (45) and (47). Using Parseval’s identity on the z and y components shows that

(- ,t)||§ = Z |Crmn Bt (— pm,nt™) + Dm,ntEa-,Q(_,“m,nta)F

m,neN
= Z [|Cm’nEa,1(_,“m’nta)|2 + Q‘Cm,nEa,l(_Mm,nta)‘|Dm,ntEa,2(_:“m,nta)| + |Dm,ntEa,2(_Mm,ntQ)‘2
m,neN
< Y 2 ConnBan st 1D B )]
m,neN
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where the last step is an application of Bessel’s inequality. Now, since

1 1
< < ,
T 1A ppnt® T 14t

Ea72(_um,nta)

and t > 0, we see that

1 1
B o (=t nt®)]? < < )
[ ,2( Hm, )] — (1_’_1;04)2 — 1+t2a
Hence,
2 D 2 t2
DmntEa - mnta S m,n .
Dot Bttt < | Do

In the case that 0 <t < 1, certainly t2 < 1, and therefore
|Dm,ntEa,2(_,ufm,nta)|2 S ‘Dm,n|2'

Similarly, when ¢ > 1 then t* < t** and we again obtain the above estimate. Since the E,; term can be
bounded above by 1, combining our estimates yields

Hu(~,~,t)\|§§2 Z |Cm,n|2+ Z |Dm,n|2

m,neN m,neN

= 2lllI3 + [19[13.

[lul- - Oll2 < y/2(]1el13 + [[2113),
completing the homogeneous case.

For the nonhomogeneous case, we have

Hence,

e )= 3 ([ €= 9" Bl = 91 (€ ) T sin(nma).

m,neN

Estimating the  and y portions of u by constants then gives

YIS (ts>a1Ea,a[um,n<t5)“}Fm,n<§>ds‘.

m,neN

Now, for any m and n, we can apply the identity (10) and then lemma 2 to obtain

1 ¢ o .
Hm,n /0 (t =& Ea,o(—tmn(t —§) )Fm,n(f)df‘ (95)

|I.f [ oo /t
Hm,n Jo

We are now in precisely the situation of (78), and following the same argument shows that for any € € (0, 1],

/0 (t— f)a_lEma(_Mm,n(t - f)a)me(f)df‘ =

IN

(t = )7 Eao(—pma(t — )%)|dE (96)

T

n€a+1 + ECQ.

/ (= €)™ B0~ it — £)%)|d€ <
0 7

m,

Here, the factor of T' demonstrates that the estimate that we obtain on w will be dependent on the geometry of
the domain. To obtain an estimate that depends minimally on the domain, we minimize this factor by taking

1
T \*
Hm,n

(CiT™) n Co(T )f < Cs( )f

where T* = max (T, 1). Then,

[

(t - g)_lEa,O(_Nm,n<t - E)a> dg <
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which, combined with (96) shows that

1 1
u(e,y, 0] < Csllflloe(T) Y —)

m,neN (Mm,n)

o

and hence that

l[ulloo < Callflloo(T%)%,

completing the non-homogeneous case.
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