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Abstract. We establish that the set of local automorphisms LAut(sl2) is the
group Aut±(sl2) of all automorphisms and anti-automorphisms. An example of a
linear map that agrees with automorphisms on each basis element of sln, but is
not a local automorphism is constructed.
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1 Introduction.

The idea of a local automorphism dates to 1988 [14], where for a given set of
mappings S from a set X into a set Y , Larson suggests to call a mapping θ to be
interpolating S if for each x ∈ X there is an element Sx ∈ S, depending on x, with
θ(x) = Sx(x). Set X = Y = A to be an algebra and S = Aut(A), then a linear
endomorphism ∆ of A is called a local automorphism if it interpolates the set of
automorphisms of A. Local automorphisms have been introduced and studied for
the algebra B(X) of all bounded linear operators on infinite-dimensional Banach
space X by Larson and Sourour [10]. It has been proven for the associative algebra
of square matricesMn(C) that any local automorphism is either an automorphism
or an anti-automorphism [10].

Investigation of local automorphisms continues for some subalgebras of
Mn(C). In [3] a description of the local automorphisms of a finite-dimensional
CSL algebra is given. A CSL algebra, or a digraph algebra, is an algebra which is
spanned by a set of matrices which contains all diagonal matrix units {Eii}1≤i≤n
and is closed under multiplication. A local automorphism of a finite-dimensional
CSL algebra is either an automorphism or an automorphism composed with a
map that is the transpose map on a specific direct summand of the algebra and
the identity map on the complement to the summand. There is a discussion of
local automorphisms of the algebra of niltriangular matrices N(n,K) over an
associative commutative ring K with identity in [5]. The authors of [5] provide
a full description for n = 3 and construct some non-trivial examples of local
automorphisms for n > 3.

In our work we consider the simple Lie algebra sln of traceless n × n
matrices over a field of characteristic zero. With the formal investigations of local
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automorphisms of the associative matrix algebras in mind, our motivation is to
investigate the local automorphisms of sln.

For a finite-dimensional algebra g, the set of local automorphisms constitutes
a group which we denote by LAut(g). Clearly, Aut(g) is a subgroup of LAut(g).

We establish that any anti-automorphism is a local automorphism of sln. In
fact, it is the composition of the matrix transposition and an automorphism of the
algebra. We obtain a full description of a local automorphism of sl2 – it is either
an automorphism or an anti-automorphism. Furthermore, Aut(sl2) is a normal
subgroup of LAut(sl2) of index 2. We use direct computations and our approach
differs from the corresponding methods of [1] and [2] that address the problem
in full generality. We also construct an example of a linear map that agrees with
automorphisms on each basis element of sln and is not a local automorphism.

2 Preliminaries
Definition 2.1. A vector space g over F is called a Lie algebra if its multiplication
(called Lie bracket and denoted by (x, y) 7→ [x, y]) satisfies the identities:

(1) [x, x] = 0;
(2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Every associative algebra (A, · ) turns into a Lie algebra (A, [−,−]), where
A = A and the Lie bracket is defined by the commutator [a, b] = a · b − b · a.
This way the associative algebra Mn(F) of n × n square matrices over F turns
into the Lie algebra gln(F). Consider the subset of Mn(F) of traceless matrices.
It is well-known that the product of traceless matrices is not necessarily traceless,
hence it is not a subalgebra of Mn(F). This set is closed under the commutator
and is a Lie subalgebra of gln(F) denoted by sln(F), which is the main focus of
our work.

In our work we consider a field F of characteristic zero and all definitions and
results are restricted to this field. Hence, we omit F from now on.

A linear bijective map ϕ : g → g is called an automorphism (resp. an anti-
automorphism), if it satisfies ϕ([x, y]) = [ϕ(x), ϕ(y)] (resp. ϕ([x, y]) = [ϕ(y), ϕ(x)])
for all x, y ∈ g. Analogous notions are defined in any algebra.

The set of all automorphisms of g constitutes a group with respect to
composition, which is denoted by Aut(g). The set of all anti-automorphisms
of g is denoted by Aut−(g). Due to skew-symmetry of the Lie bracket it is
immediate that ϕ ∈ Aut(g) if and only if −ϕ ∈ Aut−(g). Note that the set
Aut±(g) = Aut(g)∪Aut−(g) is a group and it is called the signed automorphisms
group. Moreover, Aut(g) is of index two in Aut±(g) and therefore is its normal
subgroup [6].

A notion of a linear map which agrees with automorphisms at each point is
given in the next definition.
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Definition 2.2. A linear map ∆ : g→ g is a local automorphism if for any X ∈ g
there exists an automorphism ϕX of g such that ∆(X) = ϕX(X).

It follows from Definition 2.2 that a local automorphism is an injective map.
The set of all local automorphisms is denoted by LAut(g) and obviously there is an
inclusion Aut(g) ⊆ LAut(g). Moreover, it is straightforward that the composition
of two local automorphisms is a local automorphism and LAut(g) is a monoid.
There is a statement [5, Lemma 4] that LAut(g) is a group under the usual
composition, which is not true since local automorphisms are generally speaking
not surjective (see Theorem 3.11 of [4]). However, the proof given in [5] works if g is
finite-dimensional. Indeed, then every local automorphism is surjective and given
∆ ∈ LAut(g) we have Y = ∆(X) = ϕX(X) which implies ∆−1(Y ) = ϕ−1

X (Y ).
Since ϕ−1

X ∈ Aut(g), the inverse of ∆ also acts point-wise as an automorphism.
Thus, there is the following

Proposition 2.3. The set LAut(g) constitutes a group with respect to composition
if g is finite-dimensional.

For the associative algebra of all square matrices over the complex field, all
local automorphisms are described by the following theorem.

Theorem 2.4. ([10]) A linear map α :Mn(C)→Mn(C) is a local automorphism
iff α is an automorphism or an anti-automorphism, i.e., either α is of the form
X 7→ AXA−1 or X 7→ AXTA−1 for a fixed A ∈Mn(C).

In this work we study local automorphisms of sln. Let us denote the unit
matrix with zero entries everywhere but the intersection of the i-th row and j-th
column by Eij . Recall that the simple Lie algebra of n× n matrices of trace zero
is generated as

sln = Span〈Eij , h1, . . . , hn−1 | 1 ≤ i 6= j ≤ n〉,

where hi = Eii − Ei+1,i+1.
Before presenting the main results, we introduce the following theorem which

is used to prove our results.

Theorem 2.5. [7] Over an algebraically closed field of characteristic 0, the group
of automorphisms of the Lie algebra sl2 is the set of mappings X 7→ A−1XA and
the group of automorphisms of the Lie algebra sln(n ≥ 3) is the set of mappings
of the form X 7→ A−1XA or X 7→ −A−1XTA.

Remark 2.6. In the case n = 2 since there is only one type of automorphisms
which is the conjugation by a matrix, a local automorphism ∆ of sl2 sends a
matrix X to a similar matrix ∆(X). Since the characteristic polynomials of similar
matrices are the same, we have pX(λ) = p∆(X)(λ). The analogous statement for
n ≥ 3 holds only for the local automorphisms that act at each point as the
automorphism X 7→ A−1XA.
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3 Main Results
Proposition 3.1. Every anti-automorphism of sln is a local automorphism.

Proof. Consider the transpose map ∆(X) = XT . It is well-known fact that a
square matrix is similar (conjugate) to its transpose [8, Theorem 66]. In this case,
by Theorem 2.5 we obtain that ∆ is a local automorphism of sln. Furthermore, ∆
is an anti-automorphism, and each anti-automorphism is of the form ∆◦ϕ, where
ϕ is an automorphism. Then ∆ ◦ϕ is a local automorphism as the composition of
two local automorphisms. �

Corollary 3.2. The signed automorphism group Aut±(sln) is a subgroup of
LAut(sln).

In general, we could not obtain a full description of local automorphisms of
sln. However, in the case n = 2 we achieve this goal.

Let us use the matrix representation of the elements of the Lie algebra sl2:

e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)
.

Multiplication in this algebra is as follows:

[e, f ] = h, [h, e] = 2e, [f, h] = 2f.

First, let us establish the following result.

Proposition 3.3. A local automorphism ∆ of sl2 that fixes h is either an

automorphism with matrix

 λ 0 0
0 λ−1 0
0 0 1

 or anti-automorphism with matrix 0 µ 0
µ−1 0 0
0 0 1

 in the ordered basis (e, f, h) with λ, µ ∈ F∗.

Proof. Let ∆ : sl2 → sl2 be a local automorphism that fixes h. Then by the
description of the automorphisms of sl2 by Theorem 2.5 we obtain that ∆(e) =
T−1
e eTe and ∆(f) = T−1

f fTf for some invertible matrices Te and Tf . Simple
manipulations show that

∆(e) =
1

|Te|
(α2e− β2f + αβh) and ∆(f) =

1

|Tf |
(−γ2e+ δ2f − γδh),

where (β α) is the second row of Te, (δ γ) is the first row of Tf , and |A| is the
determinant of A.
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Using the linearity of ∆ we have

∆(e+ h) =
1

|Te|
(α2e− β2f + αβh) + h =

(
αβ
|Te| + 1 α2

|Te|
−β2

|Te| − αβ
|Te| − 1

)
.

The characteristic polynomial of the last matrix is −2αβ

|Te|
+ x2 − 1, and by

Remark 2.6 is equal to the characteristic polynomial, pe+h(x) = x2 − 1, of e+ h.

This yields αβ = 0. Similarly, x2 − 1 = pf+h(x) = p∆(f+h)(x) =
2γδ

|Tf |
+ x2 − 1

implies δγ = 0. Moreover, x2−1 = pe+f (x) = p∆(e+f)(x) = x2− 1

|Te||Tf |
(αδ−γβ)2

implies (αδ − γβ)2 = |Te||Tf |. Since Te and Tf are invertible, α and β cannot be
zero at the same time. Similarly for α and γ, δ and γ, δ and β. This gives us the
following cases:

Case 1. α 6= 0, β = 0, δ 6= 0, γ = 0. This case leads to |Te||Tf | = (αδ)2.

Case 2. α = 0, β 6= 0, δ = 0, γ 6= 0. In this case |Te||Tf | = (γβ)2.
The only possible result is two local automorphisms:

∆1(e) = λe, ∆1(f) = 1
λ
f, ∆1(h) = h

and

∆2(e) = µf, ∆2(f) = 1
µ
e, ∆2(h) = h,

where λ =
α2

|Te|
and µ =

−β2

|Te|
. One can check that ∆1 is an automorphism and

∆2 is an anti-automorphism of sl2. �
We now establish the full description of the local automorphisms of sl2.

Theorem 3.4. The group LAut(sl2) coincides with Aut±(sl2).

Proof. Let ∆′ be an arbitrary local automorphism of sl2. For every x ∈ sl2 we
have ∆′(x) = ϕx(x) for some ϕx ∈ Aut(sl2). Then ϕ−1

h ◦∆
′ is a local automorphism

as the composition of two local automorphisms and (ϕ−1
h ◦∆

′)(h) = ϕ−1
h (ϕh(h)) =

h. By Proposition 3.3 ϕ−1
h ◦∆′ is either equal to the automorphism ∆1 or to the

anti-automorphism ∆2 defined in the proof of Proposition 3.3. Hence, ∆′ is either
an automorphism or an anti-automorphism, and LAut(sl)2 ⊆ Aut±(sl2). However,
Corollary 3.2 claims the converse inclusion. Thus, LAut(sl2) = Aut±(sl2). �

Corollary 3.5. Every local automorphism of sl2 is either an automorphism X 7→
A−1XA or an anti-automorphism X 7→ A−1XTA for any invertible A.
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The next proposition shows that for a linear map ∆ : sln → sln to be a local
automorphism it is not enough to check that ∆ acts as an automorphism on each
basis element of sln.

Proposition 3.6. Let n ≥ 3 and α ∈ F∗. Define a linear map ∆α : sln → sln by
setting

∆α(E1,n−1) = En1 + αEn,n−1, ∆α(E1n) = E1,n−1

∆α(En1) = En,n−1, ∆α(En,n−1) = E1n

and fixing all the other matrix units. Then ∆α agrees with automorphisms on each
basis element of sln, but ∆α is not a local automorphism of sln.

Proof. Consider the matrices

T1 = I + E1n + En−1,1 + (α− 1)En−1,n−1 + En,n−1 − Enn,
T2 = I − En−1,n−1 − Enn + En−1,n + En,n−1,

T3 = I − E11 + E1,n−1 + En−1,1 − En−1,n−1,

T4 = I − E11 + E1,n−1 − En−1,n−1 + En−1,n + En1 − Enn.

Note that they are invertible and the following equalities hold:

E1,n−1T1 =E1,n−1 + E11 + (α− 1)E1,n−1 = E11 + αE1,n−1

=(En1 + E11 − En1) + α(En,n−1 − En,n−1 + E1,n−1)

=T1(En1 + αEn,n−1);

E1nT2 =E1n − E1n + E1,n−1 = E1,n−1 = T2E1,n−1;

En1T3 =En1 − En1 + En,n−1 = En,n−1 = T3En,n−1;

En,n−1T4 =En,n−1 − En,n−1 + Enn = Enn = E1n − E1n + Enn = T4E1n.

Therefore,

∆α(E1,n−1) = En1 + αEn,n−1 = T−1
1 E1,n−1T1,

∆α(E1n) = E1,n−1 = T−1
2 E1nT2,

∆α(En1) = En,n−1 = T−1
3 En1T3,

∆α(En,n−1) = E1n = T−1
4 En,n−1T4.

Since on the other basis elements of sln the map ∆α acts as the identity, we
obtain that ∆α is a linear transformation that acts as matrix conjugations on each
basis element of sln.

Note that ∆2
α(E1,n−1) = En,n−1 + αE1n is a matrix of rank 2. Since

LAut(sln) is a group, if ∆α is a local automorphism, then so is ∆2
α. However,

the automorphisms of sln by Theorem 2.5 preserve rank of matrices. Therefore,
we have a contradiction and ∆α is not a local automorphism. �
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