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Abstract. We establish that the set of local automorphisms LAut(slz) is the
group Aut® (slz) of all automorphisms and anti-automorphisms. An example of a
linear map that agrees with automorphisms on each basis element of sl,, but is
not a local automorphism is constructed.
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1 Introduction.

The idea of a local automorphism dates to 1988 [14], where for a given set of
mappings S from a set X into a set Y, Larson suggests to call a mapping 6 to be
interpolating S if for each x € X there is an element S, € S, depending on x, with
0(z) = Sz(z). Set X =Y = A to be an algebra and S = Aut(A), then a linear
endomorphism A of A is called a local automorphism if it interpolates the set of
automorphisms of A. Local automorphisms have been introduced and studied for
the algebra B(X) of all bounded linear operators on infinite-dimensional Banach
space X by Larson and Sourour [10]. It has been proven for the associative algebra
of square matrices M, (C) that any local automorphism is either an automorphism
or an anti-automorphism [10].

Investigation of local automorphisms continues for some subalgebras of
M, (C). In [3] a description of the local automorphisms of a finite-dimensional
CSL algebra is given. A CSL algebra, or a digraph algebra, is an algebra which is
spanned by a set of matrices which contains all diagonal matrix units {E;; }1<i<n
and is closed under multiplication. A local automorphism of a finite-dimensional
CSL algebra is either an automorphism or an automorphism composed with a
map that is the transpose map on a specific direct summand of the algebra and
the identity map on the complement to the summand. There is a discussion of
local automorphisms of the algebra of niltriangular matrices N(n,K) over an
associative commutative ring I with identity in [5]. The authors of [5] provide
a full description for n = 3 and construct some non-trivial examples of local
automorphisms for n > 3.

In our work we consider the simple Lie algebra sl, of traceless n x n
matrices over a field of characteristic zero. With the formal investigations of local
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automorphisms of the associative matrix algebras in mind, our motivation is to
investigate the local automorphisms of sl,,.

For a finite-dimensional algebra g, the set of local automorphisms constitutes
a group which we denote by LAut(g). Clearly, Aut(g) is a subgroup of LAut(g).

We establish that any anti-automorphism is a local automorphism of sl,. In
fact, it is the composition of the matrix transposition and an automorphism of the
algebra. We obtain a full description of a local automorphism of sl — it is either
an automorphism or an anti-automorphism. Furthermore, Aut(sl2) is a normal
subgroup of LAut(slz) of index 2. We use direct computations and our approach
differs from the corresponding methods of [1] and [2] that address the problem
in full generality. We also construct an example of a linear map that agrees with
automorphisms on each basis element of sl,, and is not a local automorphism.

2 Preliminaries

Definition 2.1. A vector space g over F is called a Lie algebra if its multiplication
(called Lie bracket and denoted by (z,y) — [z, y]) satisfies the identities:

(1) [1‘, m} =0

2) [z, [y, 2]l + [y, [z 2]] + [z, [2,y]] = 0.

Every associative algebra (A, - ) turns into a Lie algebra (A, [—, —]), where
2A = A and the Lie bracket is defined by the commutator [a,b] = a-b—1b"a.
This way the associative algebra M, (F) of n X n square matrices over F turns
into the Lie algebra gl,(F). Consider the subset of M, (F) of traceless matrices.
It is well-known that the product of traceless matrices is not necessarily traceless,
hence it is not a subalgebra of M, (F). This set is closed under the commutator
and is a Lie subalgebra of gl (F) denoted by sl,(F), which is the main focus of
our work.

In our work we consider a field F of characteristic zero and all definitions and
results are restricted to this field. Hence, we omit F from now on.

A linear bijective map ¢ : g — g is called an automorphism (resp. an anti-
automorphism), if it satisfies o ([z, y]) = [0 (z), p(y)] (resp. ¢([z, y]) = [¢(y), ¢ (2)])
for all z,y € g. Analogous notions are defined in any algebra.

The set of all automorphisms of g constitutes a group with respect to
composition, which is denoted by Aut(g). The set of all anti-automorphisms
of g is denoted by Aut™ (g). Due to skew-symmetry of the Lie bracket it is
immediate that ¢ € Aut(g) if and only if —p € Aut™(g). Note that the set
Aut®(g) = Aut(g) UAut ™ (g) is a group and it is called the signed automorphisms
group. Moreover, Aut(g) is of index two in Aut®(g) and therefore is its normal
subgroup [6].

A notion of a linear map which agrees with automorphisms at each point is
given in the next definition.
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Definition 2.2. A linear map A : g — g is a local automorphism if for any X € g
there exists an automorphism ¢x of g such that A(X) = px (X).

It follows from Definition 2.2 that a local automorphism is an injective map.
The set of all local automorphisms is denoted by LAut(g) and obviously there is an
inclusion Aut(g) C LAut(g). Moreover, it is straightforward that the composition
of two local automorphisms is a local automorphism and LAut(g) is a monoid.
There is a statement [5, Lemma 4] that LAut(g) is a group under the usual
composition, which is not true since local automorphisms are generally speaking
not surjective (see Theorem 3.11 of [4]). However, the proof given in [5] works if g is
finite-dimensional. Indeed, then every local automorphism is surjective and given
A € LAut(g) we have Y = A(X) = ¢x(X) which implies A™'(Y) = ¢ (Y).
Since ¢3! € Aut(g), the inverse of A also acts point-wise as an automorphism.
Thus, there is the following

Proposition 2.3. The set LAut(g) constitutes a group with respect to composition
if g is finite-dimensional.

For the associative algebra of all square matrices over the complex field, all
local automorphisms are described by the following theorem.

Theorem 2.4. ([10]) A linear map o : Myn(C) = My (C) is a local automorphism
iff a is an automorphism or an anti-automorphism, i.e., either o is of the form
X AXA™ or X 5 AXTA™Y for a fized A € M, (C).

In this work we study local automorphisms of sl,,. Let us denote the unit
matrix with zero entries everywhere but the intersection of the i-th row and j-th
column by F;;. Recall that the simple Lie algebra of n x n matrices of trace zero
is generated as

5[7L = Span(Eij,hl,.4.7hn,1 | 1 S 7 75‘7 S n),

where h; = Ei; — Fit1,i41.
Before presenting the main results, we introduce the following theorem which
is used to prove our results.

Theorem 2.5. [7] Over an algebraically closed field of characteristic 0, the group
of automorphisms of the Lie algebra sly is the set of mappings X — A1 XA and
the group of automorphisms of the Lie algebra sl,(n > 3) is the set of mappings
of the form X — A7'XA or X — —A"'XTA.

Remark 2.6. In the case n = 2 since there is only one type of automorphisms
which is the conjugation by a matrix, a local automorphism A of sl sends a
matrix X to a similar matrix A(X). Since the characteristic polynomials of similar
matrices are the same, we have px(X) = pa(x)(A). The analogous statement for
n > 3 holds only for the local automorphisms that act at each point as the
automorphism X — A1 X A.
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3 Main Results

Proposition 3.1. FEvery anti-automorphism of sl,, is a local automorphism.

Proof. Consider the transpose map A(X) = X7T. It is well-known fact that a
square matrix is similar (conjugate) to its transpose [8, Theorem 66]. In this case,
by Theorem 2.5 we obtain that A is a local automorphism of sl,,. Furthermore, A
is an anti-automorphism, and each anti-automorphism is of the form Aoy, where
 is an automorphism. Then A o ¢ is a local automorphism as the composition of
two local automorphisms. O

Corollary 3.2. The signed automorphism group Auti(ﬁln) is a subgroup of
LAut(sly).

In general, we could not obtain a full description of local automorphisms of
sl,. However, in the case n = 2 we achieve this goal.
Let us use the matrix representation of the elements of the Lie algebra sla:

0 1 0 0 1 0
“=loo) /=1 0o) "=lo 1)
Multiplication in this algebra is as follows:
le,fl=h, [h,e]=2e, [f h]=2f

First, let us establish the following result.

Proposition 3.3. A local automorphism A of sl that fizes h is either an

A0 0
automorphism with matrix 0o xt o or anti-automorphism with matriz
0 0 1
0 nw 0
1o o in the ordered basis (e, f,h) with A\, u € F*.
0 0 1

Proof. Let A : slo — sls be a local automorphism that fixes h. Then by the
description of the automorphisms of sl by Theorem 2.5 we obtain that A(e) =
T, 'eT. and A(f) = T; ' fTs for some invertible matrices T. and Ty. Simple
manipulations show that

(—v’e + 6 f — ~0h),

1 5 2 _ 1
Ae) = |T5|(a e— B°f+aBh) and A(f) = ]

where (8 «) is the second row of T., (§ ) is the first row of T, and |A] is the
determinant of A.
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Using the linearity of A we have

1 af +1 Lz
Afeth) = prilate = 5F + aph) + h = ( e )

[Te| T Tl

2
The characteristic polynomial of the last matrix is — | ;jﬁ + 2% — 1, and by
Remark 2.6 is equal to the characteristic polynomial, petn(z) = z° — 1, of e + h.
2v0
This yields af = 0. Similarly, 2®> — 1 = pyin(z) = Pas+m)(T) = ﬁ +2% -1
f

. . 1
implies 6y = 0. Moreover, 2°—1 = pey §(z) = Pa(ess)(T) = xQ*m(a(s*Wﬂ)Q
e

implies (ad — vB)? = |Te||Ty|. Since T. and T} are invertible, o and 8 cannot be
zero at the same time. Similarly for « and =y, 6 and -, § and B. This gives us the
following cases:

Case 1. a #0, 3=0,8 #0, vy =0. This case leads to |T.||T| = (ad)?.

CasE 2. =0, 8#0,5 =0, v # 0. In this case |T:||T}| = (v8)*.
The only possible result is two local automorphisms:

Ar(e) = Ae, Ar(f) =L, Au(h)=h

X
and
Az(e) = puf, Ao(f) = je, Aa(h) = h,
o2 _ A2
where \ = @ and p = m One can check that A; is an automorphism and
Ay is an anti-automorphism of sls. O

We now establish the full description of the local automorphisms of sl;.
Theorem 3.4. The group LAut(sly) coincides with Aut™ (sly).

Proof. Let A’ be an arbitrary local automorphism of sly. For every x € sl we
have A'(z) = ¢, (z) for some ¢, € Aut(slz). Then ¢, ‘oA’ is a local automorphism
as the composition of two local automorphisms and (¢}, ' 0 A")(h) = ¢, ' (pn(h)) =
h. By Proposition 3.3 ¢; ' o A’ is either equal to the automorphism A; or to the
anti-automorphism Az defined in the proof of Proposition 3.3. Hence, A’ is either
an automorphism or an anti-automorphism, and LAut(sl)2 C Aut® (sl2). However,
Corollary 3.2 claims the converse inclusion. Thus, LAut(sl2) = Aut™(sl2). O

Corollary 3.5. FEvery local automorphism of sla is either an automorphism X
A71X A or an anti-automorphism X — A1 XT A for any invertible A.
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The next proposition shows that for a linear map A : sl,, — sl, to be a local
automorphism it is not enough to check that A acts as an automorphism on each
basis element of sl,,.

Proposition 3.6. Let n > 3 and o € F*. Define a linear map A, : sl, — sl, by
setting

Aoz(E‘l,'n,fl) - Enl + aETL,’n717 Aoz(E‘ln) - El,nfl
Aa(En1) = En7n_1, Aa(En,n—l) = FEn

and fizing all the other matriz units. Then A, agrees with automorphisms on each
basis element of sl,,, but Ay is not a local automorphism of sly,.

Proof. Consider the matrices
Ti=I+FEin+En11+(a—1)En_1n-1+ Enn-1— Enn,
T2 =1- Enfl,nfl - En'n + Enfl,n + En,n—h
Ts=I-Eu+Fina+En11—En_in-1,
Th=I-FEu+Fin1—FEnin—1+En_in+ Eni — Enn
Note that they are invertible and the following equalities hold:
Eipn1Th=Fipn1+Eu+(a—1)E1n-1=FEi1+aEi
=(En1+Fi1 —En)+a(Bnpn-1— Enn-1+ E1n-1)
:Tl (Enl + aEn,nfl);
EvnTo =E1n —Ein+Ein-1=Ein1=T2E1n_1;
En1T3 :Enl - Enl + En,nfl = En,nfl - TSEn,nfl;
En,n—lTél :En,n—l - En,n—l + Enn - Enn - Eln - Eln + Enn - T4E1n-

Therefore,

a(Bin-1) = Ep1 + aBpp_1 = TflEl,nATl,
(E1in) =FEin-1=T5 ElnTQ,

(Bn1) = Enn1 =15 Eang,
a(Enn—1) = Ein =T, En,n71T4.

[e3

l>l>é>l>

Since on the other basis elements of sl,, the map A, acts as the identity, we
obtain that A, is a linear transformation that acts as matrix conjugations on each
basis element of sl,,.

Note that Ai(Elynfl) = E,n-1 + aF1, is a matrix of rank 2. Since
LAut(sl,) is a group, if A, is a local automorphism, then so is AZ. However,
the automorphisms of sl, by Theorem 2.5 preserve rank of matrices. Therefore,
we have a contradiction and A, is not a local automorphism. O
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