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Abstract—Full-duplex (FD) wireless is an attractive commu-
nication paradigm with high potential for improving network
capacity and reducing delay in wireless networks. Despite sig-
nificant progress on the physical layer development, the chal-
lenges associated with developing medium access control (MAC)
protocols for heterogeneous networks composed of both legacy
half-duplex (HD) and emerging FD devices have not been fully
addressed. Therefore, we focus on the design and performance
evaluation of scheduling algorithms for infrastructure-based
heterogeneous HD-FD networks (composed of HD and FD users).
We first show that centralized Greedy Maximal Scheduling (GMS)
is throughput-optimal in heterogeneous HD-FD networks. We
propose the Hybrid-GMS (H-GMS) algorithm, a distributed
implementation of GMS that combines GMS and a queue-based
random-access mechanism. We prove that H-GMS is throughput-
optimal. Moreover, we analyze the delay performance of H-GMS
by deriving lower bounds on the average queue length. We
further demonstrate the benefits of upgrading HD nodes to FD
nodes in terms of throughput gains for individual nodes and
the whole network. Finally, we evaluate the performance of H-
GMS and its variants in terms of throughput, delay, and fairness
between FD and HD users via extensive simulations. We show
that in heterogeneous HD-FD networks, H-GMS achieves 16-30 x
better delay performance and improves fairness between HD and
FD users by up to 50% compared with the fully decentralized
Q-CSMA algorithm.

Index Terms—Full-duplex wireless, scheduling, distributed
throughput maximization

I. INTRODUCTION

Full-duplex (FD) wireless — an emerging wireless commu-
nication paradigm in which nodes can simultaneously transmit
and receive on the same frequency — has attracted significant
attention [2]. Recent work has demonstrated physical layer
FD operation [3]-[6], and therefore, the technology has the
potential to increase network capacity and improve delay
compared to legacy half-duplex (HD) networks. Based on the
advances in integrated circuits-based implementations that can
be employed in mobile nodes (e.g., [5]-[8]), we envision a
gradual but steady replacement of existing HD nodes with the
more advanced FD nodes. During this gradual penetration of
FD technology, the medium access control (MAC) protocols
will need to be carefully redesigned to not only support a
heterogeneous network of HD and FD nodes but also to
guarantee fairness to the different node types.
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Therefore, we focus on the design and performance evalu-
ation of scheduling algorithms for heterogeneous HD-FD net-
works. In particular, we consider infrastructure-based random-
access networks (e.g., IEEE 802.11) consisting of an FD
access point (AP) and both HD and FD users in a single
collision domain. Further, we consider a single channel which
is shared by all the uplinks (ULs) and downlinks (DLs)
between the AP and the users. To focus on fundamental limits
due to the incorporation of FD nodes and to expose the main
features of our scheduling algorithms, we assume perfect self-
interference cancellation (SIC) at FD nodes. Yet, we expect
that the results can be extended to more realistic settings by
incorporating imperfect SIC.

There are three main approaches to wireless schedulingal-
gorithms that can guarantee maximum throughput:
Maximum Weight Scheduling (MWS) [9], which relies on
the queue length information and schedules non-conflicting
links with the maximum total queue length. In contrast to the
all-HD networks where only a single link can be scheduled at
a time, in the considered setting the UL and the DL of any
FD user can be scheduled simultaneously. Thus, to implement
MWS, queue length information needs to be shared between
each FD user and the AP, which requires significant overhead.
Greedy Maximal Scheduling (GMS) [10], which is a cen-
tralized policy that greedily selects the link with the longest
queue, disregards all conflicting links, and repeats the process.
Typically, GMS has better delay performance than MWS and
Q-CSMA. Although GMS is equivalent to MWS in an all-HD
network, in general, it is not equivalent to MWS and is not
throughput-optimal in general topologies.
Queue-Length-based Random-Access Algorithms (e.g., Q-
CSMA) [11], [12], which are fully distributed and do not
require sharing of the queue length information between the
users and the AP. These algorithms have been shown to be
throughput-optimal. However, they generally experience poor
delay performance and suffer from excessive queue lengths.

In this paper, we show that a combination of the two latter
approaches guarantees maximum throughput and provides
good delay performance in heterogeneous HD-FD networks.
We first show by using the notion of Local Pooling [10],
[13] that GMS is throughput-optimal in the considered HD-FD
networks. However, since GMS is fully centralized, we lever-
age ideas from distributed Q-CSMA to develop the Hybrid-
GMS (H-GMS) algorithm that combines centralized GMS
with distributed Q-CSMA. The main feature of the proposed
H-GMS algorithm is that instead of approximating MWS (as
done in “traditional” Q-CSMA), it approximates GMS.

The design of H-GMS leverages the fact that in
infrastructure-based networks, the AP has access to all the DL
queues and can resolve the contention among the DL queues
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(e.g., using longest-queue-first). In contrast, the users do not
have access to any DL queues or to any other UL queues,
and therefore, must share the medium in a distributed manner,
while ensuring FD operation when possible.

We prove the throughput optimality of H-GMS (namely, it
can support any rate vector in the capacity region of heteroge-
neous HD-FD networks) by using the fluid limit technique. In
contrast to the classical Q-CSMA, the contention resolution of
DL queues at the AP under the H-GMS algorithm can force
a schedule that is not with maximum weight (i.e., not MWS).
We stress that, unlike MWS and Q-CSMA, H-GMS is built on
top of an algorithm (GMS) which is not throughput-optimal in
general wireless networks, but for which we are able to show
such a result thanks to the special hybrid HD-FD network
structure. Due to the critical differences between H-GMS,
MWS, and Q-CSMA, to prove the throughput optimality of
H-GMS, it is not sufficient to apply any of the existing results
in a black-box manner. Thus, to obtain such a result, we need
to establish its fluid limits. The results are general, and, unlike
most existing work, apply to a wide range of weight functions
(see Section IV for more information).

We also present variants of H-GMS with different degrees
of centralization. To understand the delay performance of H-
GMS, in Section VI, we derive two lower bounds on the
average queue length: (i) a fundamental lower bound that is
independent of the scheduling algorithm, and (ii) a stronger
lower bound that takes into account the characteristics of the
developed H-GMS and applies to all its non-adaptive variants.
These lower bounds serve as benchmarks when evaluating the
delay performance of H-GMS.

Before thoroughly evaluating H-GMS and its variants, we
demonstrate the benefits of introducing FD-capable users into
an all-HD network in terms of both network and individual
throughput gains. Compared to the all-HD network, the con-
sidered heterogeneous HD-FD network can potentially double
the throughput for certain rate vectors within the capacity
region, while the network throughput gain generally depends
on both the number of FD users and the specific rate vector
in which the network operates. Using simple examples, we
show that when all links have equal rate, the throughput gain
of the HD-FD network over the all-HD network increases
with the number of FD users, and it reaches a gain of 2
when all users are FD-capable. We also demonstrate that it
is generally possible for all users to experience improved
individual throughput at the cost of lowering the priority of
FD users, revealing an interesting fairness-efficiency tradeoff.

Finally, we present extensive simulation results to evaluate
the different variants of the H-GMS algorithm and compare
them to the classical Q-CSMA algorithm. We primarily focus
on delay performance and fairness between FD and HD
users, but also illustrate throughput gains. We consider a
wide range of arrival rates and varying number of FD users.
The results show that in heterogeneous HD-FD networks, H-
GMS achieves 16-30x better delay performance and improves
fairness between HD and FD users by up to 50% compared
to the fully distributed Q-CSMA algorithm. This delay and
fairness improvement results from the different degrees of
centralization at the AP. Further, we discuss the different

variants and how different degrees of centralization at the AP
affect the delay performance, and show that a higher degree of
centralization at the AP (e.g., H-GMS-E) can result in better
fairness between the FD and HD users.

To summarize, the main contribution of this paper is the
design and evaluation of a distributed scheduling algorithm
for infrastructure-based heterogeneous HD-FD networks that
guarantees maximum throughput. The algorithm has a rela-
tively good delay performance and to the best of our knowl-
edge is the first such algorithm with rigorous performance
guarantees in heterogeneous HD-FD networks.

The rest of the paper is organized as follows. We discuss
related work in Section IT and introduce the network model and
preliminaries in Section III. We developed H-GMS algorithm
in Section IV and the proof of its throughput optimality is
presented in Section V. The delay analysis of H-GMS and
lower bounds on the average queue length are presented in
Section VI. We then illustrate the benefits of introducing FD
nodes into legacy HD networks in Section VII. We evaluate the
performance of different scheduling algorithms via simulations
in Section VIII and conclude in Section IX.

II. RELATED WORK

There has been extensive work dedicated to physical layer
FD radio/system design and implementation [3], [4], [6], [8],
[14] (see also the review in [2] and references therein). Open-
access FD radios based on [8], [15] have been integrated
with the ORBIT and COSMOS wireless testbed [16], [17].
Recent research also focused on characterizing and quantifying
achievable throughput improvements and rate regions of FD
networks in both single- and multi-channel cases with realistic
imperfect SIC [18]-[20]. However, these papers consider only
simple network scenarios consisting of up to two links.

Most of the existing MAC layer studies focused on homo-
geneous networks [21]-[26] considering signal-to-noise ratio
(SNR) or a specific standard (e.g., IEEE 802.11 where an FD
topic interest group was recently formed [27]). For example,
[22] considered an IEEE 802.11 network with an FD-capable
AP and HD users, and proposed an SNR-based distributed
MAC protocol. As another example, [21] considered an all-
FD network and proposed a distributed MAC protocol based
on the 802.11 DCF. Most relevant to our work are [26]
and [28] in terms of the applied techniques and network
model, respectively. In particular, [26] proposed a Q-CSMA-
based throughput-optimal scheduling algorithm with FD cut-
through transmission in all-FD multi-hop networks, where
the effect of different classes of users (HD and FD) on the
FD transmissions is not studied. On the other hand, [28]
proposed a MAC layer algorithm for a heterogeneous HD-
FD network and analyzed its throughput based on the IEEE
802.11 distributed coordination function (DCF) model [29].
To the best of our knowledge, the fairness between users that
have different HD/FD capabilities was not considered before.

III. MODEL AND PRELIMINARIES

A. Network Model

We consider a single-channel, heterogeneous wireless net-
work consisting of one AP and N users, with a UL and a DL



IEEE/ACM TRANSACTIONS ON NETWORKING

between each user and the AP. The set of users is denoted
by N. The AP is FD, while Ny of the users are FD and
Ny = N — Np are HD. Without loss of generality, we
index the users by [N] = {1,2,---, N} where the first Np
indices correspond to FD users and the remaining N indices
correspond to HD users. The sets of FD and HD users are de-
noted by N and Ny, respectively. We consider a collocated
network where the users are within the communication range
of each other and the AP. The network can be represented by
a directed star graph G = (V, £) with the AP at the center and
two links between AP and each user in both directions. Thus,
we have V = {AP} UN (with |V| =14 N) and || = 2N.
B. Traffic Model, Schedule, and Queues

We assume that time is slotted and packets arrive at all
UL and DL queues according to some independent stochastic
process. For brevity, we will use superscript j € {u,d} to
denote the UL and DL of a user. Let I] denote link j (UL or
DL) of user 4, each of which is associated with a queue Q7.
We use A (t) < Amax < 00 to denote the number of packets
arriving at link 5 (UL or DL) of user ¢ in slot ¢. The arrival
process is assumed to have a well-defined long-term rate of
X = limro o & 301 AL(R). Let A = AN, be the
arrival rate vector on the ULs and DLs.

All the links are assumed to have capacity of one packet per
time slot and the SIC at all the FD-capable nodes is perfect.'
A schedule at any time slot ¢ is represented by a vector

X(t) = [X}(t), X (), , X (1), X% ()] € {0,1}*7,
where XY (t) (resp. XJ(t)) is equal to 1 if the UL (resp. DL)
of user ¢ is scheduled to transmit a packet in time slot ¢ and
X =0 (resp. X3 = 0), otherwise. We denote the set of all
feasible schedules by S. Let e; € {0,1}2" be the i'" basis
vector (i.e., an all-zero vector except the it element being
one). Since a pair of UL and DL of the same FD user can be
activated at the same time, we have:

S = {0} U {EQi_l,egi,Vi € N} U {GQi—l + e2i,vi S NF} .

Choosing X (t) € S, the queue dynamics are described by:
QUL =[Q](t — 1)+ Al(t) = X](0)]F, vt =1,

where []T = max(0, ). Q(t) = [Q!(t), Q4(¢)]Y; denotes the

queue vector, and 1(-) denotes the indicator function.

C. Capacity Region and Throughput Optimality

The capacity region of the network is defined as the set
of all arrival rate vectors for which there exists a scheduling
algorithm that can stabilize the queues. It is known that,
in general, the capacity region is the convex hull of all
feasible schedules [9]. Therefore, the capacity region of the
heterogeneous HD-FD network is given by App.rp = Co(S),
where Co(+) is the convex hull operator. It is easy to see that
this capacity region can be equivalently characterized by the
following set of linear constraints’:

Anprp = {A € [0,1]1¢!
S senre max{A, AT+ 3,00, N X)) <11 (D)

'We remark that imperfect SIC can also be incorporated into the model
by letting the corresponding link capacity be cﬁ € (0,1). For simplicity and
analytical tractability, we assume cg =1, Vi € N, throughout this paper.

It is straightforward to only use linear inequalities, by replacing
max{AY, A} with \; and adding linear inequalities Y < A;, X4 < A;.

K3

Algorithm 1 MWS for HD-FD Networks (in slot )

1. Initialize X (t) = 0.

2. Let Qi(t) = Q'(t) + Q¥(t), Vi € Np. Select user i* =
arg max { maxis {Q:(6) ) maxien {QU(0), @)} ). Break ties
uniformly at random.

3. ¢ Ifi* € Np, set XP(t) = X4(t) = 1
o Ifi* € Np, set XJ(t) = 1if Q(t) > Q" (¢). Break ties

uniformly at random.

4. Use X(t) as the transmission schedule in slot ¢.

Let a network in which all the users and the AP are only HD-

capable be the benchmark all-HD network, whose capacity

region is given by Ayp = Co(eq, -+ ,ean), or equivalently
Aupp={Ae [0, 1] A+ <1} (@

A scheduling algorithm is called throughput-optimal if it
can keep the network queues stable for all arrival rate vectors
A € int(A), where int(A) denotes the interior of A.

To compare Agppp with Agp and quantify the network
throughput gain when a certain number of HD users become
FD-capable, similar to [18], we define the capacity region
expansion function y(-) as follows. Given Ag on the Pareto
boundary of Ayp, the capacity region expansion function at
point Ag, denoted by ~(Ag), is defined as

¥(Ao) =sup{¢ >0:( Ao € Auprp}- (3)
~(+) can be interpreted as a function that scales an arrival rate
vector on the Pareto boundary of Agp to a vector on the Pareto
boundary of Agppp, as Ng users become FD-capable. It is
not hard to see that v : Agp — [1, 2].

IV. SCHEDULING ALGORITHMS AND MAIN RESULT

In this section, we develop a hybrid scheduling algorithm
tailored for heterogeneous HD-FD networks. We first briefly
introduce MWS in the considered networks. We then use Local
Pooling [10], [13] to prove that GMS is throughput-optimal in
the considered networks, and therefore, MWS [9] is unneeded.
Based on that, we present the H-GMS algorithm — a decen-
tralized version of GMS that leverages ideas from distributed
Q-CSMA [11], [12]. H-GMS uses information about the DL
queues that is available at the AP, but does not require global
information about the UL queues. We state the main result
(Theorem 4.1) about the throughput optimality of H-GMS
and describe its various implementations with different levels
of centralization. We later show (in Section VIII) that these
variants of H-GMS have different delay performance.

A. Centralized Max-Weight Scheduling (MWS)

We first describe the throughput-optimal MWS (see Algo-
rithm 1), where in each time slot ¢, the schedule X(t) € S
with the maximum sum queue length is selected.

B. Centralized Greedy Maximal Scheduling (GMS)

We now show that a GMS (see Algorithm 2) is throughput-
optimal in any collocated heterogeneous HD-FD network,
independent of the values of Ny and Ng. In both MWS and
GMS, a pair of FD UL and DL is always scheduled at the
same time, as such a schedule yields a higher throughput than
scheduling only the UL or only the DL.
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Algorithm 2 GMS for HD-FD Networks (in slot t)

Algorithm 3 H-GMS Algorithm (in slot )

1. Initialize X(¢t) = 0.

2. Select link [* € & with the largest queue length (e, [* =
arg max;c 7, je{u,d} {QJ(t)}). If the longest queue is not unique, break
ties uniformly at random.

3. e IfI* = 1Y or I{ for some i € Np, set XP(t) = XI(t) = 1;

o If I* =1 for some i € Ny and j € {u,d}, set X7 (¢) = 1.

4. Use X(t) as the transmission schedule in slot ¢.

Proposition 4.1. The Greedy Maximal Scheduling (GMS) al-
gorithm is throughput-optimal in any collocated heterogeneous
HD-FD network.

The proof (see Appendix A) is based on [10, Theorem 1],
[13], and the fact that the interference graph of any collocated
heterogeneous HD-FD network satisfies the Overall Local
Pooling (OLoP) conditions, which guarantee that GMS is
throughput-optimal.

C. Hybrid-GMS (H-GMS) Algorithm

We now present a hybrid scheduling algorithm, H-GMS,
which combines the concepts of GMS and Q-CSMA [11],
[12]. Instead of approximating MWS [9] in a decentralized
manner (as in traditional Q-CSMA), H-GMS approximates
GMS, which is easier to decentralize in the considered HD-
FD networks. H-GMS leverages the existence of an AP to
resolve the contention among the DL queues, since the AP has
explicit information about these queues and can select one of
them (e.g., the longest queue). Thus, effectively at most one
DL queue needs to perform Q-CSMA in each time slot. On
the other hand, since users are unaware of the UL and DL
queue states of other users and at the AP, every user needs to
perform Q-CSMA in order to share the channel distributedly.
Therefore, the number of possible participants under H-GMS
in each slot is at most (/N + 1). Moreover, we show that this
hybrid approach yields much better delay performance than
Q-CSMA while still achieving throughput optimality.

Algorithm 3 presents the pseudocode for H-GMS, which
operates as follows. Each slot ¢ is divided into a short control
slot and a data slot. The control slot contains only two
control mini-slots (independent of the number of users, N).
We refer to the first mini-slot as the initiation mini-slot and
to the second one as the coordination mini-slot. H-GMS has
three steps: (1) Initiation, (2) Coordination, and (3) Data
transmission, as explained below.

(1) Imitiation. By the end of slot (¢ — 1), the AP knows
X(t — 1) since every packet transmission has to be sent
from or received by the AP. If X(¢t — 1) = 0 (i.e., idle
channel), then the AP starts an initiation in slot ¢ using the
initiation mini-slot as follows. First, the AP centrally finds
the index of the user with the longest DL queue, i.e., i*(t) =
arg max;e - QY(¢). If multiple DLs have equal (largest) queue
length, it breaks ties according to some deterministic rule.
Then, the AP randomly selects an initiator link IL(¢) from
the set L£(t) = {l4,---,1%,1%} according to an access
probability distribution & = [aq, -+, an, aap] satisfying: (i)
o; > 0,¥i € N, and app > 0, and (ii) cap = 1 — Zf\]:l ;.

“IEX(t—1)=0:
1. In the initiation mini-slot, the AP computes i* = arg max;en Q9(¢).

If multiple DL queues have the same length, break ties according

to some deterministic rule. The AP chooses an initiator link IL(%)

from £(t) = {l§,--,1%,1%} according to an access probability

distribution & = [ov1, -+, aN, QAP
2. I IL(t) = 14, the AP sets:

o XY (t) = 1 with probability p, (¢), or X¢, (£) = 0 with probability
pL (1) = 1 - pl (1)

e In the coordination mini-slot, AP broadcasts a control packet con-
taining the information of IL(¢) and user i* sets XY (t) = X& (¢)-
1(:* € Np);

3. If IL(t) = I for some i € N, in the coordination mini-slot, the AP
broadcasts the information of IL(¢) and user ¢ sets:

e X!(t) = 1 with probability p}(t), or X}(t) = 0 with probability
p;(t) =1 —pj(t);

e In the same coordination mini-slot, user % sends a control packet
containing this information to the AP if i € N, and AP sets
X4(t) = X3(0);

4. At the beginning of the data slot,

o AP activates DL 4 if X¢(t) = 1;

e User ¢ activates it UL if X} (¢) = 1;

—If X(¢t — 1) # 0, set IL(t) = IL(t — 1). Repeat Steps 2—4.

We refer to «; and apap as the access probability for user @
and the AP, respectively. Therefore,

ILt) = {zd with probability ai, ¥i € N
[5., with probability aap,

i.e., IL(¢) is either a UL or the DL with the longest queue. If
X(t—1)#0,set IL(t) =IL(t — 1).
(2) Coordination. In the coordination mini-slot, if the DL of
user * is selected as the initiator link (IL(¢) = [%.), the AP
sets X4 (t) = 1 with probability pd, (t). Otherwise, it remains
silent. If the AP decides to transmit on DL 14, (i.e., X4 (¢) =
1), it broadcasts a control packet containing the information
of IL(¢) and user i* sets XY (¢t) = 1 if and only if i* € Np.

If the UL of user ¢ is selected as the initiator link (IL(¢) = I}
for some i € N), the AP broadcasts the information of IL(¢)
and user 4 sets X} (t) = 1 with probability pj}(¢). Otherwise,
user ¢ remains silent. If user ¢ is FD-capable and decides to
transmit (i.e., X}'(¢) = 1), it sends a control packet containing
this information to the AP and the AP sets X{(¢) = 1. Note
that the real-time information of all the UL queue lengths is
not shared or available at the AP.

The transmission probability of the link is selected de-
pending on its queue size Q7(t) at the beginning of slot .
Specifically, similar to [11], [12], link lf chooses logistic form

it — U@

T e (F(QI1)
where f(-) is a positive increasing function (to be specified
later), called the weight function. Further, if an FD initiator UL
(or DL) decides to stop transmitting (after packet transmission
in the last slot), it again sends a short coordination message
which stops further packet transmissions at the DL (or UL) or
the same FD user.

, Vie N, Vje{ud}, (5

3This operation can be done in the same coordination mini-slot since FD
user ¢ can simultaneously receive the control packet (IL(t) = 1Y) from the
AP and send its control packet (X} (t) = 1) back to the AP.
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(3) Data transmission. After steps (1)—(2), if either a pair of
FD UL and DL or an HD link (UL or DL) is activated, a packet
is sent on the links in the data slot. The initiator link then starts
a new coordination in the subsequent control slot which either
leads to more packet transmissions or stops further packet
transmissions at the links involved in the schedule.

Remark 4.1. The initiation step in H-GMS is described as
a polling mechanism where the AP draws a link IL(t) from
L(t) according to the access probability distribution «. Alter-
natively, the initiation step can be described in a distributed
fashion using an extra mini-slot as follows: user i sends a
short initiation message with probability «;. If AP receives
the message, it sends back a clear-to-initiate message and sets
IL(t) = I¥, otherwise (i.e., in case of collision or idleness)
lf* is selected as the initiator link by the AP. This effectively
emulates polling user i with probability &; = a; [ [,/ ,;(1—aur)

and AP with probability cap = 1 — Zfil Q.

D. Main Result: Throughput Optimality of H-GMS

The system state under H-GMS evolves as a Markov
chain (X(t), Q(t)). The following theorem states our main
result regarding the positive recurrence of this Markov chain
(throughput optimality of H-GMS).

Theorem 4.1. For any arrival rate vector N € int(App.rp),
the system Markov chain (X(t),Q(t)) is positive recurrent
under H-GMS (Algorithm 3). The weight function f(-) in
(5) can be any nonnegative increasing function such that
limg, oo f(2)/logz < 1, or lim;_ o f(x)/logz > 1 (in-
cluding f(x) =28, 3> 0).

Establishing Theorem 4.1 is not trivial due to the coupling
between X (t) and Q(t): The dynamics of the schedule process
X(t) is governed by the queue process Q(t), while at the
same time, the dynamics of Q(¢) depends on X(¢). Depending
on the functional shape of the weight function f(-), this
coupling gives rise to vastly different behaviors for the Markov
chain (X(¢), Q(t)). For functions f(-) that grow slower than
log (+), the convergence of the schedule process X(t) occurs
on a much faster time-scale (‘“fast mixing”) compared to the
time-scale of changes in the queue process Q(t). For more
aggressive functions f(-), the convergence of X(¢) occurs on a
much slower time-scale (“slow mixing”) compared to the time-
scale of changes in Q(¢). Nevertheless, Theorem 4.1 states
that the system Markov chain is stable (positive recurrent)
for a wide range of weight functions. We provide a proof of
Theorem 4.1 in Section V based on the analysis of the fluid
limits of the system under the H-GMS algorithm.

E. Variants of the H-GMS Algorithm

In this subsection, we introduce three variants of the H-GMS

algorithm, which differ only in Step 1 of Algorithm 3.
o H-GMS (Algorithm 3): The AP selects the longest DL.
e H-GMS-R: The AP selects a DL uniformly at random, i.e.,

i* ~ Unif(1,--- , N) (in step 1 of Algorithm 3).

o« H-GMS-E: Exactly the same as H-GMS except for the
access probability being set according to:

a; o max{QY/(XN_, Q% + QL) an}, Vie N,
Qap X maX{Q?*/(Zf-Yﬂ QY +QL), an},

where @‘; an estimate of UL queue length of user <.
Specifically, when a user transmits on the UL, it includes
its queue length in the packets and the AP updates Q}
using this information contained in the last (i.e., most
recently) received packet from user ¢ on the UL. Then,
o = [ag,- - ,an,aap] is obtained after normalization, i.e.,

o . QAP
Yooy G + Aap e S0y Gy + Gap
A minimum access probability oy, > 0 has been introduced
to ensure that each link is selected with a non-zero probabil-
ity. Otherwise, an HD UL [¥ (Vi € Ny) with a zero queue-
length estimate would never be selected by the AP (i.e.,
QY = 0 and thus a; = 0), alld the AP would never receive
any updated information of @} since &; would remain zero.
The access probability distribution « is non-adaptive in H-
GMS and H-GMS-R, and is adaptive in H-GMS-E. As we will
see in Section VIII, the adaptive choice of « helps balance the
queue lengths between FD and HD users.

Q; =

V. PROOF OF THEOREM 4.1 VIA FLUID LIMITS

We prove Theorem 4.1 based on the analysis of the fluid
limits of the system under H-GMS (Algorithm 3). The proof
has three parts: (i) existence of the fluid limits (Lemma 5.1),
(ii) deriving the fluid limit equations for the various choices of
f(-) (Lemma 5.3), and (iii) proving the stability of the queues
in the fluid limits using a Lyapunov method, which implies
the stability of the original stochastic process.

Part (i): Definition and Existence of Fluid Limits.

Consider a scaled process Q) (t) where Q()(t) =
Q(rt)/r. Note that the queue process Q is scaled in both time
and space by a factor » > 0. To avoid technical difficulties,
we can simply work with a continuous process by linear
interpolation among the values at integer time points. Suppose
the scaled process, with » > 0, starts from an initial state
Q) (0). Any (possibly random) limit q(t) of the scaled
process Q") (t) as r — oo is called a fluid limit. The process
Q(")(t) can be constructed as follows. At any time ¢ > 0,

QU= 0 +Aa" 1 -5"w,  ®
where for any user i € A with UL or DL j € {u,d},

() 1t
A= % A,

—j (r) 1 rt . ]

Si =72 X (1@ () > 0).

Similarly, we denote by a(t) and s(t) the limits of the scaled
processes K(T)(t) and SU (t) as r — oo, respectively. The
following lemma shows that the scaled process converges to
the fluid limit in a weak convergence sense, in the metric
of uniform norm on compact time intervals. It is possible
to show a stronger convergence (i.e., almost sure conver-
gence uniformly over compact time intervals) in the case of
lim, o f(2)/logx < 1; nevertheless, the weak convergence
is sufficient for our proofs.

Lemma 5.1 (Existence of Fluid Limits). Suppose Q(")(0) —
q(0). Then any sequence r has a subsequence such that
Q1) A" (1),8" (1) = (a(t), a(t),s(t)) along the sub-
sequence. The sample paths (q(t),a(t),s(t)) are Lipschitz
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continuous and thus differentiable almost everywhere with
probability one.

Proof: The proof is standard and follows from Lipschitz
continuity of the scaled process, see, e.g., [30]. [ |
Part (ii): Fluid Limit Equations under H-GMS.

Recall that the schedule X(¢) at time ¢ is determined after
the Initiation and Coordination steps of Algorithm 3. Let Y (¢)
indicate the initiator link which is activated in slot ¢. Let i* =
arg max;e - QY(t), then the state space of Y (¢) can be labeled
as Sy = {0,1,---,N,i*}, where Y (¢) = 0 means no link
is active, Y(t) = i* means DL [J, is active, and Y (t) =
i, for i € {1,---,N}, means UL [} is active. We further
use {YQ(t)}¢>4, to denote the dynamics of Y (¢), assuming
a fixed queue length vector Q(t) = Q(to) = Q for all times
t > to. Under the H-GMS algorithm, {YQ(#)};>¢, evolves as
an irreducible and aperiodic Markov chain over the state space
Sy. If YQ(t) = i for an i which is an initiator UL or DL of an
FD user i € N, then the other link of the same FD user will
follow the initiator link and become active as well under H-
GMS. Due to the activation/deactivation coordination among
the initiator link and the follower link, adding the possible
follower link does not change the subsequent dynamics of the
Markov chain Y'Q(t) under fixed Q.

Let PQ = [P(s,s')] be the transition probability matrix of
Y Q(t), where P(s,s’) is the transition probability from state
s € Sy to s’ € Sy. Then, under Algorithm 3, we have

P(0,i) = a;py, P(i,i) =p}, P(i,0) =7}, Vie N
P(0,i*) = apppl., P(i*,7%) =pd, P(E*,0)=7%, (7)
P(0,0) =1 - N, P(0,i) — P(0,*).

Lemma 5.2. The steady-state distribution of Markov chain
Y Q(t) is given by
7(i) = s exp(f(Q))/Z, i € Sy \ {0,i"};
7Q(i") = aupexp(f(Q1))/Z, 70) =1/,
where Z is the normalizing constant and f(-) is the weight
function from (5).

®)

The proof of Lemma 5.2 is in Appendix B. The following
corollary is immediate as the result of Lemma 5.2 and the fact
that Y (¢) uniquely determines X (¢) by (possible) activation of
both the UL and DL of an FD user in the coordination step.

Corollary 5.1. Let f; = e3;_1 + €3, © € N, be an FD bi-
directional transmission schedule, and hlf = eg;_1 ( hf = e9;),
i € N, be an HD UL (DL) transmission schedule. Given a
fixed queue vector Q(t) = Q, in steady state, if i* € Np,

P{X =fi.} = [aupexp(f(QL)) + i exp(f(QL))]/Z,
P{X =1} = asexp(f(Q}))/Z, Vi€ NF, i #i",
P{X =h!} = a;exp(f(Q}))/Z, Vi € Ny.
Otherwise, if i* € Ny,
P{X =1fi} = a;exp(f(QY))/Z, Vi € Np,
P{X =h{} = a;exp(f(Q}))/Z, Vi € N,
P{X =h{} = axpexp(f(QL))/Z,
where Z and f(-) are as in Lemma 5.2.

Consider a fluid sample path under our H-GMS algorithm.
Suppose q(t) = q # 0 at a time ¢. This implies that for r

large enough, all the queues with non-zero fluid limit qZ >0
are of size Q] = O(g/r) in the original process, while all
the queues with zero fluid limit are of size Q7 = o(r) in the
original process. Therefore, taking the limit » — oo in (8), and
noting that the weight function f(-) is a positive increasing
function of the queue size, it follows that

(i) = 0if ¢! =0, i € Sy \ {0,i*},
7>i*) = 0if ¢t =0, 7R(0) = 0.
This shows that a queue with a zero fluid limit cannot initiate
transmission in steady state. Consequently,
P{X =1f} — 0, if max{¢},¢{} =0, i € N,
P{X=h{} =0, if ¢} =0, i € Ny,
P{X=h{} -0, if ¢ =0, i e Ny.

Hence, in steady state, with high probability, the Markov chain
X(t) never activates an HD link with empty fluid limit queue
or an FD link whose both UL and DL queues are empty,
i.e., it chooses a Maximal Schedule over the non-zero fluid
queues (note that the returned schedule might not be a MWS
schedule). However, as mentioned in Section IV-D, the Markov
chain X(¢) might not always be at its steady state due to
coupling between X (¢) and Q(t). This coupling gives rise to
qualitatively different fluid limits, depending on the time-scale
of convergence of the schedule process compared to the time-
scale of the changes in the queue process. For weight functions
f(+), such that lim, o, f(r)/logr < 1, the schedule process
X (t) is always close to its steady state at the fluid scale; while
for functions f(-) with lim,_ f(r)/logr > 1, this does
not happen. Nevertheless, in both cases, the following Lemma
establishes a set of equations that the fluid limit sample paths
under H-GMS algorithm must satisfy. The equations do not
uniquely describe the fluid limit process but are sufficient to
establish stability in our setting.

Lemma 5.3 (Fluid Limit Equations). Consider any non-
negative increasing weight function f(-) in (5), such that
lim, o f(z)/logz < 1, or limy_,o f(x)/logz > 1 (in-
cluding f(z) = 2%, B > 0). Let q;(t) = max{q*(t), ¢/ (t)},
for i € Ng. At any regular point t (i.e., any point where the
derivatives of all the functions exist), for any j € {u,d},

qZ()—qZ(OHaj()—sj( t), ieN )
al(t) =Nt sl(t) = [qul(r) dr, pl(t) €[0,1],  (10)
1l (t) - 1(q] ()—07q()7é 0)=0, i € Ny, (11)
pl () - 1(Gi(t) = 0,q(t) # 0) =0, i € Np, (12)
if ¢ (t) = @i(t), pl(t) = max{p(t), ul(t)}, i € Np, (13)

if q(t) # 0, then
> max{y(t), p

iENF

)} + Z (pi(t) + pd () = 1.

i€ENH

(14)

The proof of Lemma 5.3 is provided Appendix C. Essen-
tially, (9)—(10) hold for any scheduling algorithm and their
proof is standard. p)(t) is the rate that queue ¢ (t) is served
at time ¢ in the fluid limit. (11)—(14) imply that at any time,
H-GMS chooses a maximal schedule from the queues that are
non-zero in the fluid limit (i.e., q(¢) # 0). However, the choice
of maximal schedule could be random over the space of such



IEEE/ACM TRANSACTIONS ON NETWORKING

maximal schedules.
Part (iii): Stability of the Queues in the Fluid Limit.

The following proposition proves the stability of the queues
in the fluid limit, which completes the proof of Theorem 4.1.

Proposition 5.2. Starting from an initial queue size q(0), there
is a deterministic finite time T by which all the queues at the
fluid limit will reach zero.

Proof: Let g;(t) = max{q"(t),q}(t)}, i € N. Consider
the Lyapunov function
V(a(0) = Siony G0) + Sren (00) + (1),
Let Uy (t) :={i € N : ¢/ (t) > 0}, j € {u,d}, and Up(t) :=
{i € NF : q;(t) > 0}. Suppose V(q(t)) > 0 (i.e., q(t) # 0).
Then based on the fluid limit equations (11)—(14):
(i) The network is draining some subsets Py, () C U} (¢),
P4 (t) CU%(t), and Pr(t) C Ur(t) of non-zero queues,
(i) qi(t) for user ¢ € Pp(t) is always drained at rate
(0. w(0),
(iii) 3 ;epp( max{ui(t), ui ()} + ZieP“H(t) pi(t)  +
2iePi 1) pi(t) = 1.
Hence, using (9)-(10) and properties (i)—(iii) above,
AV (q(t))/dt < 35iepg max{A], AT} + Xien, (N + A7)
= 2iepp(r max{ui(t), i)} - ZieP“H(t) 15 (t)
- ZiePdH(t) 1 (t)

=Y ien, max{ AL AT + 3 o0 (A A — 1< 4,
where the last inequality is due to the fact that A €
int(Auprp), by the assumption of Theorem 4.1. Thus, there
must exist a small § > 0 such that A/(1 — §) € Auprp.
Therefore, V' (q(t)) will hit zero in finite time T' = V' (q(0))/4,
and in fact remains zero afterwards. [ |

Proposition 5.2 implies the stability (positive recurrence) of
the original Markov chain (X(¢), Q(¢)) in a similar fashion
as [31] (note that the component X(¢) lives in a finite state
space). This completes the proof of Theorem 4.1.

Remark 5.2. We emphasize that, the proposed H-GMS algo-
rithm approximates GMS in a distributed manner, where the
fluid limits are largely different from that of the classical Q-
CSMA (which approximates MWS in a distributed manner).
Further, we establish throughput optimality of H-GMS for a
broad family of (almost) any increasing weight function f(-).

VI. LOWER BOUNDS ON THE AVERAGE QUEUE LENGTH

In this section, we analyze the delay performance of H-
GMS in terms of the average queue length in order to provide
a benchmark for the performance evaluation in Section VIIIL.
In particular, we derive two lower bounds: (i) a fundamental
lower bound that is independent of the scheduling algorithms,
and (ii) an improved lower bound tailored for the developed
H-GMS and H-GMS-R.* In Section VIII-B, we numerically
evaluate these lower bounds and compare them to the average
queue length achieved by various scheduling algorithms.

4The analysis can possibly be extended to H-GMS-E by incorporating its
time-varying and queue-dependent access probability. We leave this analysis
for future work.

We adopt the following notation. Given a set of links L,
we use \p = Zle , A1 to denote the sum of arrival rates, and
use Qp = >, E[Qi] to denote the expected sum of queue
lengths of £ in steady state. The average queue length in a
given heterogeneous HD-FD network, (N, &), is defined by

Q=Y 1ce EQI]/IE] = Qe /(2N). (15)
Therefore, finding a lower bound on @ is equivalent to finding
a lower bound on Qg¢.

A. A Fundamental Lower Bound

We first derive a fundamental lower bound on () that is
independent of the chosen (possibly centralized) scheduling
algorithm, based on the following result.

Proposition 6.3 ([32, Proposition 4.1]). With independent
packet arrivals, the expected sum of queue lengths in a clique
C under any scheduling policy satisfies

_ A + Var [Al] — N ¢
e R R T a0

._ OLB
= QC .

Note that Q5B is equivalent to the sum of queue lengths in
a standard single-server GI/D/1 queue in clique C. In order to
obtain a tight fundamental lower bound in the heterogeneous
HD-FD networks, one needs to find the largest clique of links,
Emax, With the maximal sum of arrival rates. In particular, we
divide £ into two disjoint sets £ = Emax U Emin:

Emax = {1 1 Vi € Np if M > MYU {19, 19 : Vi € Ny},
Emin = {I] 1 Vi € Np if X < X},

where {j} = {u,d} \ {j} and we break ties uniformly at
random if \} = )\? for Vi € Nr. Essentially, Enax includes the
UL and DL of each HD user, and the higher arrival rate