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Abstract: This paper presents a method for extracting novel spectral features based on a sinusoidal
model. The method is focused on characterizing the spectral shapes of audio signals using spectral
peaks in frequency sub-bands. The extracted features are evaluated for predicting the levels of
emotional dimensions, namely arousal and valence. Principal component regression, partial least
squares regression, and deep convolutional neural network (CNN) models are used as prediction
models for the levels of the emotional dimensions. The experimental results indicate that the proposed
features include additional spectral information that common baseline features may not include.
Since the quality of audio signals, especially timbre, plays a major role in affecting the perception of
emotional valence in music, the inclusion of the presented features will contribute to decreasing the
prediction error rate.

Keywords: Musical emotion recognition; spectral feature extraction; sinusoidal model; principal
component regression; deep learning; machine learning.

1. Introduction

Practical applications of music emotion recognition (MER) in modern electronic systems are
becoming more prevalent. One such practical application is improving human-robot interaction (HRI)
quality with social robots. A robot can perceive the emotional state or mood of a user not only via the
facial expressions of the user but also the types of music the user is listening to. The robot can then
also recommend the user with a song according to the mood of the user or other contextual conditions
(e.g., time of the day) [1,2].

Emotions are expressed through music via many different musical characteristics. For example,
different chord progressions are used in different musical genres and also associated with different
emotional effects. At the same time, different songs with the same chord progression may have
different emotional effects due to the different arrangements of musical instruments. For example, a
rock version of Mozart’s Symphony No. 40 may be perceived differently in terms of emotions from the
original version.

Although each musical instrument has a unique timbre, it is very hard to separate individual
instrumental sounds from a whole polyphonic mix of music. However, since a polyphonic signal
has a specific spectral shape of its own [3], it has been shown that the overall timbre of a song can be
characterized by its spectral envelopes. It was also shown that each song is associated with a very
definite, not noise-like, spectral envelope. Based on the observations of previous work [3], a novel
method for extracting spectral features based on sinusoidal modeling is presented in this work.

Since the sinusoidal transform coding (STC) method has been successful in modeling the spectral
characteristics of audio signals [4-7], a STC method is utilized to extract spectral features for predicting

Submitted to Appl. Sci., pages 1-11 www.mdpi.com/journal/applsci
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the levels of emotional dimensions. Moreover, previous studies also explored the possibilities of
employing deep convolutional neural network (CNN) models for speech emotion recognition [8,9]. In
this study, we use the deep learning method to classify different emotional states for MER.

2. Database

In this work, the 1000 Songs Database [10] is used for training regression models to predict the
levels of emotional dimensions, namely valence and arousal. The database contains 1000 songs in
total, and 744 songs are annotated by a minimum of 10 human annotators with continuous labels.
Since obtaining the continuous labels from the annotators are both expensive and time-consuming, the
developers of the database extracted 45 seconds excerpts from a random starting point in a given song
[10,11].

Two emotional dimensions, valence and arousal, are labeled in the range of [-1, 1], and the average
sampling frequency of the annotation was 4.3 Hz. For the latest version of the database, the developers
further resampled the annotation time series to 2 Hz sampling frequency. We have processed the
continuous labels from annotators of the songs and averaged over each time window from the database.
[11].

3. Proposed Method

One of the popular feature extraction toolkits for speech and audio analysis and classification is
Technical University of Munich’s (TUM) open-source feature extractor (openSMILE) [12]. The toolkit
first calculates low-level descriptors (LLDs) using a short-time window with the frame length of 30ms.
The LLDs include the calculations of short-time energy, filter-bank energy, cepstral coefficients, and
voicing related parameters.

Once the LLDs are calculated, supra-level features are calculated and used for training classifiers
and regression models. The supra-level features are characterized by regression and statistical measures
to model the trajectories of the LLDs over time whose duration is much longer than the length of the
window used for the LLD calculations [12].

In previous work [2], it was shown that the choice of a duration for supra-level feature extraction
is important and impacts the classification results significantly. When emotional dimensions were
automatically classified into three classes per dimension, it was shown that a longer duration generally
resulted in a better classification accuracy. In this work, the supra-level features extracted by the
openSMILE toolkit are used as baseline features to be compared with the proposed spectral features,
and the supra-level features are extracted at the duration of 8 seconds. The determination on the choice
of the duration is discussed in Section 3.2 along with the description on the proposed spectral feature
extraction method.

Deep CNN’s could also act as a feature extractor for MER. The embedding vector is extracted by
CNN’s and a fully connected layer on top of the model is used for predicting different classes. In this
study, the deep CNN s are the pre-trained models and transfer learning is utilized for our target task.

3.1. Sinusoidal transform coding

In speech processing, a linear-predictive coefficient (LPC) is commonly used to model a spectral
envelope, also known as a formant. However, it is not so trivial to find the spectral envelopes of
musical signals due to their polyphonic nature. Because the spectral characteristics of high frequency
content can be precisely represented using sinusoidal transform coding (STC) [4-6], a method for
extracting features representing the spectral shapes and envelopes of a musical signal using STC is
introduced in this work.

Since STC can precisely represent spectral features, including preservation of high frequency
components, STC is often utilized to model the spectral characteristics of audio signals. STC models
the input audio signal as the sum of K sinusoids. In discrete short-time, the sinusoidal signals at "
analysis frame are then represented as follows:
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K
s(n;m) = kz Ag(m) cos|(n — n o) (m))27fi(m) + (m)], @
=1

where Ay (m) and fi(m) are the k-th amplitude and harmonic frequency at m-th frame, and 7, (m)
is the onset time of its corresponding k-th components Ay (m) and fi(m) [6].

Many different methods exist for estimating Ay (m) and fi(m). Adaptive quasi-harmonic model
(aQHM) [13] and Analysis-by-Synthesis/Overlap-and-Add (ABS/OLA) [14] were proposed to estimate
the sinusoidal components using iterative methods to reduce a reconstruction error rate. Serra and
Smith introduced a method for modeling musical signals by modelling time-varying spectra as
a collection of sinusoids and a time-varying filtered noise component as white noise through a
time-varying filter [5].

However, these methods are computationally expensive and may not be suitable for real-time
implementation. A more simple and straightforward method for estimating the spectral components
is a peak-picking routine operation in a spectral envelope estimation vocoder (SEEVOC) framework [6,
15].

The SEEVOC method first searches for the largest peak, A; at f; in the interval [%’, 32@], then
searches for the largest peak in the next interval [f; + J;—“, f1+ 32£]_ The process is continued until the
edge of the audio bandwidth is reached [15]. Without confusing spurious sidelobes, the procedure will
locate the peaks of a spectrum [15]. A spectral line connecting the peaks is a spectral envelope estimate
as shown in Fig. 1 (a).

3.2. Feature extraction using sinusoidal transform coding

The sampling frequency of the corpus is 44.1 kHz. However, it was observed that the most of the
songs in the corpus have insignificant amount of energy behind 16 kHz. Thus, the input audio data
were initially filtered with a lowpass filter that had a cutoff frequency at 16 kHz.

The lowpass-filtered signals were then split into multiple frequency sub-bands utilizing the
Bark frequency scale. The Bark frequency scale is defined psychoacoustically and it forms 24 critical
bands. Since a critical band does not always include a sufficient number of spectral peaks, for feature
extraction, a group of four neighboring critical bands of the Bark scales are grouped together to form a
sub-band. The six sub-bands have the frequency ranges: [0 400), [400 920), [920 1720), [1720 3150), [3150
6400), and [6400 15500). The sinusoidal components, Ay and f;, were found by using the SEEVOC
peak-picking routine in each sub-band. An example of peak-picking results using the SEEVOC is
shown in Fig. 1 (a).

As mentioned in Section 1, each musical instrument has a unique timbre. Moreover, in
contemporary music, applying sound effects, such as tremolo, distortion, flange, etc., is very common.
Thus, when a musical instrument is passed through an effector, the timbre of the instrument changes,
and the conveyed emotions also change. For example, a spectrum of a C major chord played by a piano
and another spectrum of the same chord played by the same piano with a tremolo effect are shown in
Fig. 1 (b). As shown in the figure, the overall shapes of the spectral envelops are somewhat similar;
however, the tremolo effect causes more spectral peaks and sidelobes. The similar phenomenon can be
observed when the autocorrelation of the spectrum are taken as shown in Fig. 1 (c). In previous work
[7], it was shown that harmonic peaks represented in an autocorrelation domain of the short-time
Fourier transform, Rrp(fj,g), was less susceptible to white noise than the those represented in a
general frequency domain. Meanwhile both the spectrum and Rrr(fis) can uniquely characterize
the harmonic components of the input signals. For this reason, the peak locations and magnitudes of
RFF(fiag) were also extracted for feature extraction.

After obtaining the sinusoidal components, their derivatives, As, were also calculated (inter-peak
amplitude differences A1 — Ay and inter-peak frequency differences fi. 1 — fi). The six vectors (A,
frr DAy, Afy, and the peak locations and magnitudes of Rr) in each sub-band were then represented
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by statistical and regression measures as LLDs. The statistical and regression measures applied to the
six vectors are marked with * in Table 1.

Similar to human language, an emotion or impression can be expressed in a musical phrase, where
the musical phrase, in general, consists of four measures [16]. Thus, the songs in the database were
segmented roughly by a phrase level. For segmentation, the tempo of each song in the database was
calculated using a tempo analyzer [17], then average tempo of the songs was obtained. The obtained
average tempo for the songs is 117.5 beats-per-minute. In contemporary music, the time signature of
4/4, where each measure consists of four beats, is commonly used; thus, the average duration of a
measure in the dataset is approximately 2 seconds, and a musical phrase of the songs in the database
is roughly 8 seconds long. For feature extraction, the LLDs were first calculated using a 30-ms analysis
window, then their trajectories over the duration of 8 seconds were characterized by regression and
statistical measures to obtain the spectral features as shown in Table 1. The features were extracted
every 4 second (50% overlap). The overview of the proposed method is depicted in Fig. 2, where X;(f)
represents Fourier transform coefficients corresponding to a sub-band among the six sub-bands.

Table 1. List of statistical and regression measures applied to low-level descriptors.

num. description

1 maximum

2 minimum

3 mean®

4 standard deviation

5 kurtosis*

6 skewness

7~9 15,214 & 3" quartiles*
10 interquartile range*
11~12 15 & 99'" percentiles*
13 RMS value

14 slope of linear regression*
15 approximation error of linear regression”*

*: applied to Ay, fr, AAg, Afy, and the peak locations and magnitudes of Rrr.

3.3. Feature extraction using transfer learning

Deep CNNs have achieved impressive performances in many computer vision tasks recently.
However, given the fact that training a deep CNN model from scratch is complicated and
time-consuming, transfer learning [18] proposes a useful training paradigm. We can utilize an existing
pre-trained model as a starting point for our target task of classifying the spectrogram images generated
from the song database on the emotion domains of arousal and valence. We define a source domain
D = {X, p(x)} consisting of a feature space X and a data distribution p(x), and define a task domain
T = {Y, f(-)} consisting of a label space )} and an objective predictive function f(-), where the
predictive function f can be written as P(y|x) for y € Y and x € X. Given a source domain D;s and
learning task 75, a target domain Dt and learning task 77, transfer learning aims to better learn the
target predictive function fr(-) in Dt using the knowledge from Dgs and 7s, where Dg # Dy and
Ts # Tr. The pre-trained networks were trained on Dg which should be a large database. Here, the
last fully connected layer or the connected container of the deep network will be replaced to fit our
target dataset, and the rest of the pre-trained deep network would act as a feature extractor. The model
with the new fully connected layer will be trained on our target database, Dg, to optimize the results.
In this study, we used different state-of-the-art pre-trained deep networks to train the dataset and
compare the results.
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Figure 1. (a) Harmonic peaks selected by SEEVOC peak-picking routine for a song in the database, (b)
short-time Fourier transforms of a C major chord played by a piano with and without a tremolo effect,
and (c) their corresponding autocorrelations, Rrr.
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features

Figure 2. The proposed feature extraction method overview.

4. Experimental Results

We present our results from the above two approaches of model-based feature extraction and
deep-learning models. First, we applied traditional machine learning algorithms for predicting
the arousal and valence levels, and the performance of the regression models in correlation to
PCA component sizes were discussed. Next, we applied the recent techniques in deep learning
for classifying emotional states based on the arousal-valence 2D plane, and the classification accuracy
of state-of-the-art deep learning models are reported.

4.1. Model-based approach based on spectral features and conventional machine learning algorithms

Three regression methods were used for predicting the scores indicating the activation and valence
levels ranged from -1 and 1. The three regression methods used are principal component regression
(PCR), partial least squares (PLS) regression, and a feedforward network. The feedforward network
uses tan-sigmoid transfer functions in 30 hidden layers and a linear transfer function in the output layer.
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To evaluate the predictive power of the STC-based features, the baseline features and the STC-based
features were first evaluated separately, then the combined set (baseline + STC) was evaluated.

0.185
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Figure 3. RMSE:s for the arousal dimension using (a) principal component regression models and (b)
partial least square models. RMSEs for the valence dimension using (c) principal component regression
models and (d) partial least square models.

The three regression methods were trained and tested using a 10-fold cross-validation technique,
wherein the segments of a song are only included in the same fold. The features were extracted at a
phrase level. As described in Section 3.2, the phrase level is 8 seconds long with 50% overlap. Moreover,
the number of principal and predictor components for the PCR and PLS methods were varied from
1 to 150 and from 1 to 20, respectively. For the feedforward method, the number of hidden layers
was varied from 1 to 30, but no clear trend was observed. The root mean square errors (RMSE) were
calculated for evaluation. For PCR and PLS, the prediction RMSE are shown in Fig. 3 with varying the
number of components.

The STC-based features alone may not outperform the baseline features; however, the inclusion
of the STC-based features with the baseline features show an improvement in reducing the prediction
errors. Using the PCR method, a trend of decrease in RMSE can be observed as the number of the
principal components increases. After a certain point, the reduction rate in RMSE seems to be saturated.
We further increased the number of principal components from 150 to 300; however the error reduction
rate was not significant. For the arousal dimension, using the combined features with 150 principal
components, the RMSE was 0.144, whereas using the baseline features alone, the RMSE was 0.147.

Using the PLS method, the lowest errors in the activation dimension were obtained when using 4
components for the combined features, and using 7 components for the baseline features. As shown in
Fig. 3 (a), a larger number of components does not provide a better prediction error. The lowest RMSE
was 0.144 when the combined features were used, and it was 0.146 when the baseline features were
used alone. Using the feedforward method, the combined features provided the lowest RMSE with 9
hidden layers. The lowest RMSE using the feedforward method was 0.165, whereas it was 0.172 when
the baseline features were used alone.
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Table 2. Regression prediction results using the baseline features, STC-based features, and the combined
features. The three regression models used are principal component regression (PCR), partial least
square (PLS), and feedforward neural network (FF) models.

RMSE

Arousal Valence
PLS PCR FF PLS PCR FF
base. 0.146 0.147 0.172 | 0.156 0.156 0.169
STC 0.149 0.150 0.179 | 0.156 0.157 0.172
base+STC | 0.144 0.144 0.165 | 0.151 0.150 0.158

Peason’s coefficient

Arousal Valence
PLS PCR FF PLS PCR FF
base. 0.785 0.781 0.732 | 0.601 0.612 0.570
STC 0.775 0.770 0.730 | 0.600 0.585 0.551
base+STC | 0.793 0.793 0.754 | 0.630 0.634 0.609

In human emotion analysis, it is well known that classifying the valence dimension is relatively
difficult when only audio modality is used [19-21]. Similarly, the prediction errors (RMSEs) for the
valence dimension is higher than the RMSEs of the activation dimension as shown in Fig. 3 (b). For the
valence dimension, using the PCR method, the lowest RMSE was 0.151 using the combined features,
and it was 0.156 using the baselined features alone. Using the PLS method, the lowest RMSE was
0.151 using the combined features, and it was 0.156 using the baselined features alone. Using the
feedforward method, the lowest RMSE was 0.158 using the combined features, and it was 0.169 using
the baseline features alone. Again, the inclusion of the STC-based features shows an improvement in
prediction error.

It is believed that the proposed STC-based features are more suitable for capturing the quality of
audio signals, such as timbre, harmonicity, etc. Since the quality of audio signals, especially timbre,
plays a major role in affecting the perception of emotional valence in music [22], the inclusion of the
STC-based features was more effective in improving the prediction accuracy of the valence dimension
than the one of the arousal dimension. Similar improvements were demonstrated when the Pearson’s
correlation coefficients between the ground-truth labels and the predicted labels were calculated. The
overall results are shown in Table 2, and it is shown that the best results were obtained when the
baseline features were combined with the STC-based features.

4.2. Deep learning approach using transfer learning

Given that the spectral features show discriminative nature in different emotional music data, a
deep learning technique was used for classifying different emotional music clusters. More than 3200
spectrogram images were generated from the dataset by Fourier transform. Fig 4 shows the flow chart
of the overall deep CNN approach.

Music Signal

oty

Figure 4. The flow chart of the overall deep learning approach.

Spectrogram Images

Pre-trained Model Fully-connected layer

The arousal and valence values of the samples from the dataset were scaled to the range of [1,100],
which are mapped onto a 2D-plane of arousal and valence. Some generated sample images from each
class are shown in Fig.5 (a). The window size for the Fourier transform was 60 seconds for every
spectrogram image. As shown in Fig. 5 (b), we separated the 2D plane into 9 sub-areas where each
sub-area has the same size of the area. The points located in the same area were grouped into the
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same class and 8 classes were separated from the dataset. However, it is shown that in Fig. 5 (b),
the dataset is imbalanced where the classes are not represented equally, and most of the data points
are clustered in class 5. This problem can be alleviated by adding more weights to the classes with
fewer samples. A stratified 5-fold cross-validation based on the ID of the songs was run to ensure the
test set only contains the unseen data because the spectrogram images from the same song would be
similar. Furthermore, the process of the stratification could ensure each fold preserve the percentage of
samples for each class to better represent the whole dataset.

Arousal-Valence 2D plane
100 &

Valence

Class: 2

ﬂ‘ I ! t,‘ \T I II

Class: 6 Class: 7 Class: 8

Arousal

(a) (b)

Figure 5. (a) Sample images from each class, (b) the scatter plot for arousal vs. valence domain values

Table 3. Classification results using transfer learning scheme. The pre-trained deep neural networks
used are VGG, AlexNet, Inception, ResNet, DenseNet and ResNext.

Performance Comparison

Model Name Top-1 Acc. Top-5 Acc. Best performance | Trainable
Params.

VGG-11 64.79+1.51% 95.52+2.17% 66.56% 32776
VGG-13 65.05+1.32% 96.62+1.83% 65.61% 32776
VGG-16 64.77+1.44% 96.36£2.08% 66.93% 32776
VGG-19 64.58+1.49% 95.86+2.06% 66.77% 32776
AlexNet 65.00+1.01% 96.07+1.74% 65.61% 32776
Inception-V3 64.53+1.44% 95.36£1.64% 66.40% 16392
ResNet-18 64.86+1.16% 95.45+2.05% 66.78% 4,104
ResNet-34 65.04+1.34% 95.85+1.91% 66.72% 4,104
ResNet-50 65.24+1.35% 95.63£1.66% 67.42% 16392
ResNet-101 65.11+1.35% 96.23+1.84% 67.10% 16392
ResNet-152 65.31+1.02% 95.92+1.69% 66.61% 16392
DenseNet-121 64.79+1.37% 95.64+2.36% 67.26% 8200
DenseNet-169 64.94+1.45% 96.68+2.13% 67.10% 13320
DenseNet-201 64.67+1.32% 96.911+2.05% 66.45% 15368
ResNext-50 65.45+1.29% 96.17+2.38% 67.10% 16392
ResNext-101 65.31+1.02% 96.26+1.91% 66.61% 16392

Several pre-trained deep networks were evaluated for classifying the spectrogram images. The
purpose of using different deep networks for this study is to developdeveloping a guideline for
choosing a deep learning model in future research. The present study aims to determine the better
performance model for our target task, so all the hyper-parameters, optimizer, and loss function of
the deep learning models are set to be the same. We set the training epochs to 60, and introduced the
stochastic gradient descent optimizer to train the network, and used the cross-entropy function to
evaluate the loss. For the reason that the deep models we used in this study were pre-trained on the
ImageNet dataset which is not similar to our target dataset, we freeze all the layers of the networks and
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only train the last fully connected layer to avoid overfitting. As shown in Fig 4, the pre-trained models
act as a feature extractor that generates the embedding feature vectors, and a replaced fully connected
layer was used to classify them. Depending on the differences between the architecture of these models,
the trainable parameters during training will be different. Table 3 shows the results of different deep
network architectures we used in this study, which includes VGG [23], AlexNet [24], Inception [25],
ResNet [26], DenseNet [27] and ResNext [28]. Given the fact that only the last fully connected layer
will be trained in this study, the trainable parameters will be different. Regardless of the difficulty of
estimating arousal and valence dimensions when only using audio modality, the imbalanced issue
makes it hard for training. Finally, the results show that the state-of-the-art architecture, ResNext-50,
achieved an average top-1 validation accuracy of 65.45%, which outperforms other deep models.

5. Conclusion

To enable fast and reliable emotion detection from music, the spectral features were extracted
based on a sinusoidal model and evaluated for predicting the levels of arousal and valence in music.
Since the extracted spectral features were designed to characterize the quality of audio signals such
as timbre and harmonicity, an improvement in prediction accuracy was obtained as expected. When
each feature set was tested separately, the STC-based feature set alone was not as effective as the
baseline feature set; however, additional resolving power was revealed when the two feature sets were
combined. The results indicate that the STC-based features include spectral characteristics that the
baseline features may not include.

We also applied the recent deep learning methods for classifying different emotional states based
on the spectrogram images mapped onto the 2D domain of arousal and valence. The results were
improved by employing the most advanced deep learning network structure combined with the
spectral data extracted from music. However, in this study, only spectral features from short-time
window were considered to classify the emotional states. An improvement in classification accuracy
could be expected by introducing neural networks capable of learning memory-based relations in
the time domain, such as the long short-term memory (LSTM) networks. The input of the LSTM
would be a sequence of spectral features and the network output context vector will be used for
classifying emotional states, and we aim to further analyze the implication of deep learning techniques
in enhancing real-time affective audio perception.

Funding: This research is supported by the National Institutes of Health (NIH) under the grant #R01-HD082914
through the National Robotics Initiative (NRI) program and the National Science Foundation (NSF) Disability and
Rehabilitation Engineering (DARE) program under the grant #1846658.
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