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Abstract: This paper presents a method for extracting novel spectral features based on a sinusoidal1

model. The method is focused on characterizing the spectral shapes of audio signals using spectral2

peaks in frequency sub-bands. The extracted features are evaluated for predicting the levels of3

emotional dimensions, namely arousal and valence. Principal component regression, partial least4

squares regression, and deep convolutional neural network (CNN) models are used as prediction5

models for the levels of the emotional dimensions. The experimental results indicate that the proposed6

features include additional spectral information that common baseline features may not include.7

Since the quality of audio signals, especially timbre, plays a major role in affecting the perception of8

emotional valence in music, the inclusion of the presented features will contribute to decreasing the9

prediction error rate.10

Keywords: Musical emotion recognition; spectral feature extraction; sinusoidal model; principal11

component regression; deep learning; machine learning.12

1. Introduction13

Practical applications of music emotion recognition (MER) in modern electronic systems are14

becoming more prevalent. One such practical application is improving human-robot interaction (HRI)15

quality with social robots. A robot can perceive the emotional state or mood of a user not only via the16

facial expressions of the user but also the types of music the user is listening to. The robot can then17

also recommend the user with a song according to the mood of the user or other contextual conditions18

(e.g., time of the day) [1,2].19

Emotions are expressed through music via many different musical characteristics. For example,20

different chord progressions are used in different musical genres and also associated with different21

emotional effects. At the same time, different songs with the same chord progression may have22

different emotional effects due to the different arrangements of musical instruments. For example, a23

rock version of Mozart’s Symphony No. 40 may be perceived differently in terms of emotions from the24

original version.25

Although each musical instrument has a unique timbre, it is very hard to separate individual26

instrumental sounds from a whole polyphonic mix of music. However, since a polyphonic signal27

has a specific spectral shape of its own [3], it has been shown that the overall timbre of a song can be28

characterized by its spectral envelopes. It was also shown that each song is associated with a very29

definite, not noise-like, spectral envelope. Based on the observations of previous work [3], a novel30

method for extracting spectral features based on sinusoidal modeling is presented in this work.31

Since the sinusoidal transform coding (STC) method has been successful in modeling the spectral32

characteristics of audio signals [4–7], a STC method is utilized to extract spectral features for predicting33
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the levels of emotional dimensions. Moreover, previous studies also explored the possibilities of34

employing deep convolutional neural network (CNN) models for speech emotion recognition [8,9]. In35

this study, we use the deep learning method to classify different emotional states for MER.36

2. Database37

In this work, the 1000 Songs Database [10] is used for training regression models to predict the38

levels of emotional dimensions, namely valence and arousal. The database contains 1000 songs in39

total, and 744 songs are annotated by a minimum of 10 human annotators with continuous labels.40

Since obtaining the continuous labels from the annotators are both expensive and time-consuming, the41

developers of the database extracted 45 seconds excerpts from a random starting point in a given song42

[10,11].43

Two emotional dimensions, valence and arousal, are labeled in the range of [-1, 1], and the average44

sampling frequency of the annotation was 4.3 Hz. For the latest version of the database, the developers45

further resampled the annotation time series to 2 Hz sampling frequency. We have processed the46

continuous labels from annotators of the songs and averaged over each time window from the database.47

[11].48

3. Proposed Method49

One of the popular feature extraction toolkits for speech and audio analysis and classification is50

Technical University of Munich’s (TUM) open-source feature extractor (openSMILE) [12]. The toolkit51

first calculates low-level descriptors (LLDs) using a short-time window with the frame length of 30ms.52

The LLDs include the calculations of short-time energy, filter-bank energy, cepstral coefficients, and53

voicing related parameters.54

Once the LLDs are calculated, supra-level features are calculated and used for training classifiers55

and regression models. The supra-level features are characterized by regression and statistical measures56

to model the trajectories of the LLDs over time whose duration is much longer than the length of the57

window used for the LLD calculations [12].58

In previous work [2], it was shown that the choice of a duration for supra-level feature extraction59

is important and impacts the classification results significantly. When emotional dimensions were60

automatically classified into three classes per dimension, it was shown that a longer duration generally61

resulted in a better classification accuracy. In this work, the supra-level features extracted by the62

openSMILE toolkit are used as baseline features to be compared with the proposed spectral features,63

and the supra-level features are extracted at the duration of 8 seconds. The determination on the choice64

of the duration is discussed in Section 3.2 along with the description on the proposed spectral feature65

extraction method.66

Deep CNNs could also act as a feature extractor for MER. The embedding vector is extracted by67

CNNs and a fully connected layer on top of the model is used for predicting different classes. In this68

study, the deep CNNs are the pre-trained models and transfer learning is utilized for our target task.69

3.1. Sinusoidal transform coding70

In speech processing, a linear-predictive coefficient (LPC) is commonly used to model a spectral71

envelope, also known as a formant. However, it is not so trivial to find the spectral envelopes of72

musical signals due to their polyphonic nature. Because the spectral characteristics of high frequency73

content can be precisely represented using sinusoidal transform coding (STC) [4–6], a method for74

extracting features representing the spectral shapes and envelopes of a musical signal using STC is75

introduced in this work.76

Since STC can precisely represent spectral features, including preservation of high frequency77

components, STC is often utilized to model the spectral characteristics of audio signals. STC models78

the input audio signal as the sum of K sinusoids. In discrete short-time, the sinusoidal signals at mth
79

analysis frame are then represented as follows:80
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s(n; m) =
K

∑
k=1

Ak(m) cos[(n− n(o;k)(m))2π fk(m) + ψ(m)], (1)

where Ak(m) and fk(m) are the k-th amplitude and harmonic frequency at m-th frame, and n(o;k)(m)81

is the onset time of its corresponding k-th components Ak(m) and fk(m) [6].82

Many different methods exist for estimating Ak(m) and fk(m). Adaptive quasi-harmonic model83

(aQHM) [13] and Analysis-by-Synthesis/Overlap-and-Add (ABS/OLA) [14] were proposed to estimate84

the sinusoidal components using iterative methods to reduce a reconstruction error rate. Serra and85

Smith introduced a method for modeling musical signals by modelling time-varying spectra as86

a collection of sinusoids and a time-varying filtered noise component as white noise through a87

time-varying filter [5].88

However, these methods are computationally expensive and may not be suitable for real-time89

implementation. A more simple and straightforward method for estimating the spectral components90

is a peak-picking routine operation in a spectral envelope estimation vocoder (SEEVOC) framework [6,91

15].92

The SEEVOC method first searches for the largest peak, A1 at f1 in the interval [ fo
2 , 3 fo

2 ], then93

searches for the largest peak in the next interval [ f1 +
fo
2 , f1 +

3 fo
2 ]. The process is continued until the94

edge of the audio bandwidth is reached [15]. Without confusing spurious sidelobes, the procedure will95

locate the peaks of a spectrum [15]. A spectral line connecting the peaks is a spectral envelope estimate96

as shown in Fig. 1 (a).97

3.2. Feature extraction using sinusoidal transform coding98

The sampling frequency of the corpus is 44.1 kHz. However, it was observed that the most of the99

songs in the corpus have insignificant amount of energy behind 16 kHz. Thus, the input audio data100

were initially filtered with a lowpass filter that had a cutoff frequency at 16 kHz.101

The lowpass-filtered signals were then split into multiple frequency sub-bands utilizing the102

Bark frequency scale. The Bark frequency scale is defined psychoacoustically and it forms 24 critical103

bands. Since a critical band does not always include a sufficient number of spectral peaks, for feature104

extraction, a group of four neighboring critical bands of the Bark scales are grouped together to form a105

sub-band. The six sub-bands have the frequency ranges: [0 400), [400 920), [920 1720), [1720 3150), [3150106

6400), and [6400 15500). The sinusoidal components, Ak and fk, were found by using the SEEVOC107

peak-picking routine in each sub-band. An example of peak-picking results using the SEEVOC is108

shown in Fig. 1 (a).109

As mentioned in Section 1, each musical instrument has a unique timbre. Moreover, in110

contemporary music, applying sound effects, such as tremolo, distortion, flange, etc., is very common.111

Thus, when a musical instrument is passed through an effector, the timbre of the instrument changes,112

and the conveyed emotions also change. For example, a spectrum of a C major chord played by a piano113

and another spectrum of the same chord played by the same piano with a tremolo effect are shown in114

Fig. 1 (b). As shown in the figure, the overall shapes of the spectral envelops are somewhat similar;115

however, the tremolo effect causes more spectral peaks and sidelobes. The similar phenomenon can be116

observed when the autocorrelation of the spectrum are taken as shown in Fig. 1 (c). In previous work117

[7], it was shown that harmonic peaks represented in an autocorrelation domain of the short-time118

Fourier transform, RFF( flag), was less susceptible to white noise than the those represented in a119

general frequency domain. Meanwhile both the spectrum and RFF( flag) can uniquely characterize120

the harmonic components of the input signals. For this reason, the peak locations and magnitudes of121

RFF( flag) were also extracted for feature extraction.122

After obtaining the sinusoidal components, their derivatives, ∆s, were also calculated (inter-peak123

amplitude differences Ak+1 − Ak and inter-peak frequency differences fk+1 − fk). The six vectors (Ak,124

fk, ∆Ak, ∆ fk, and the peak locations and magnitudes of RFF) in each sub-band were then represented125
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by statistical and regression measures as LLDs. The statistical and regression measures applied to the126

six vectors are marked with * in Table 1.127

Similar to human language, an emotion or impression can be expressed in a musical phrase, where128

the musical phrase, in general, consists of four measures [16]. Thus, the songs in the database were129

segmented roughly by a phrase level. For segmentation, the tempo of each song in the database was130

calculated using a tempo analyzer [17], then average tempo of the songs was obtained. The obtained131

average tempo for the songs is 117.5 beats-per-minute. In contemporary music, the time signature of132

4/4, where each measure consists of four beats, is commonly used; thus, the average duration of a133

measure in the dataset is approximately 2 seconds, and a musical phrase of the songs in the database134

is roughly 8 seconds long. For feature extraction, the LLDs were first calculated using a 30-ms analysis135

window, then their trajectories over the duration of 8 seconds were characterized by regression and136

statistical measures to obtain the spectral features as shown in Table 1. The features were extracted137

every 4 second (50% overlap). The overview of the proposed method is depicted in Fig. 2, where Xb( f )138

represents Fourier transform coefficients corresponding to a sub-band among the six sub-bands.

Table 1. List of statistical and regression measures applied to low-level descriptors.

.

num. description
1 maximum
2 minimum
3 mean∗

4 standard deviation
5 kurtosis∗

6 skewness
7∼9 1st, 2nd, & 3rd quartiles∗

10 interquartile range∗

11∼12 1st & 99th percentiles∗

13 RMS value
14 slope of linear regression∗

15 approximation error of linear regression∗

∗: applied to Ak, fk, ∆Ak, ∆ fk, and the peak locations and magnitudes of RFF.
139

3.3. Feature extraction using transfer learning140

Deep CNNs have achieved impressive performances in many computer vision tasks recently.141

However, given the fact that training a deep CNN model from scratch is complicated and142

time-consuming, transfer learning [18] proposes a useful training paradigm. We can utilize an existing143

pre-trained model as a starting point for our target task of classifying the spectrogram images generated144

from the song database on the emotion domains of arousal and valence. We define a source domain145

D = {X , p(x)} consisting of a feature space X and a data distribution p(x), and define a task domain146

T = {Y, f (·)} consisting of a label space Y and an objective predictive function f (·), where the147

predictive function f can be written as P(y|x) for y ∈ Y and x ∈ X. Given a source domain Ds and148

learning task Ts, a target domain DT and learning task TT , transfer learning aims to better learn the149

target predictive function fT(·) in DT using the knowledge from DS and TS, where DS 6= DT and150

TS 6= TT . The pre-trained networks were trained on DS which should be a large database. Here, the151

last fully connected layer or the connected container of the deep network will be replaced to fit our152

target dataset, and the rest of the pre-trained deep network would act as a feature extractor. The model153

with the new fully connected layer will be trained on our target database, DS, to optimize the results.154

In this study, we used different state-of-the-art pre-trained deep networks to train the dataset and155

compare the results.156
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Figure 1. (a) Harmonic peaks selected by SEEVOC peak-picking routine for a song in the database, (b)
short-time Fourier transforms of a C major chord played by a piano with and without a tremolo effect,
and (c) their corresponding autocorrelations, RFF.
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Figure 2. The proposed feature extraction method overview.

4. Experimental Results157

We present our results from the above two approaches of model-based feature extraction and158

deep-learning models. First, we applied traditional machine learning algorithms for predicting159

the arousal and valence levels, and the performance of the regression models in correlation to160

PCA component sizes were discussed. Next, we applied the recent techniques in deep learning161

for classifying emotional states based on the arousal-valence 2D plane, and the classification accuracy162

of state-of-the-art deep learning models are reported.163

4.1. Model-based approach based on spectral features and conventional machine learning algorithms164

Three regression methods were used for predicting the scores indicating the activation and valence165

levels ranged from -1 and 1. The three regression methods used are principal component regression166

(PCR), partial least squares (PLS) regression, and a feedforward network. The feedforward network167

uses tan-sigmoid transfer functions in 30 hidden layers and a linear transfer function in the output layer.168
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To evaluate the predictive power of the STC-based features, the baseline features and the STC-based169

features were first evaluated separately, then the combined set (baseline + STC) was evaluated.170
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Figure 3. RMSEs for the arousal dimension using (a) principal component regression models and (b)
partial least square models. RMSEs for the valence dimension using (c) principal component regression
models and (d) partial least square models.

The three regression methods were trained and tested using a 10-fold cross-validation technique,171

wherein the segments of a song are only included in the same fold. The features were extracted at a172

phrase level. As described in Section 3.2, the phrase level is 8 seconds long with 50% overlap. Moreover,173

the number of principal and predictor components for the PCR and PLS methods were varied from174

1 to 150 and from 1 to 20, respectively. For the feedforward method, the number of hidden layers175

was varied from 1 to 30, but no clear trend was observed. The root mean square errors (RMSE) were176

calculated for evaluation. For PCR and PLS, the prediction RMSE are shown in Fig. 3 with varying the177

number of components.178

The STC-based features alone may not outperform the baseline features; however, the inclusion179

of the STC-based features with the baseline features show an improvement in reducing the prediction180

errors. Using the PCR method, a trend of decrease in RMSE can be observed as the number of the181

principal components increases. After a certain point, the reduction rate in RMSE seems to be saturated.182

We further increased the number of principal components from 150 to 300; however the error reduction183

rate was not significant. For the arousal dimension, using the combined features with 150 principal184

components, the RMSE was 0.144, whereas using the baseline features alone, the RMSE was 0.147.185

Using the PLS method, the lowest errors in the activation dimension were obtained when using 4186

components for the combined features, and using 7 components for the baseline features. As shown in187

Fig. 3 (a), a larger number of components does not provide a better prediction error. The lowest RMSE188

was 0.144 when the combined features were used, and it was 0.146 when the baseline features were189

used alone. Using the feedforward method, the combined features provided the lowest RMSE with 9190

hidden layers. The lowest RMSE using the feedforward method was 0.165, whereas it was 0.172 when191

the baseline features were used alone.192
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Table 2. Regression prediction results using the baseline features, STC-based features, and the combined
features. The three regression models used are principal component regression (PCR), partial least
square (PLS), and feedforward neural network (FF) models.

.

RMSE
Arousal Valence

PLS PCR FF PLS PCR FF
base. 0.146 0.147 0.172 0.156 0.156 0.169
STC 0.149 0.150 0.179 0.156 0.157 0.172
base+STC 0.144 0.144 0.165 0.151 0.150 0.158

Peason’s coefficient
Arousal Valence

PLS PCR FF PLS PCR FF
base. 0.785 0.781 0.732 0.601 0.612 0.570
STC 0.775 0.770 0.730 0.600 0.585 0.551
base+STC 0.793 0.793 0.754 0.630 0.634 0.609

In human emotion analysis, it is well known that classifying the valence dimension is relatively193

difficult when only audio modality is used [19–21]. Similarly, the prediction errors (RMSEs) for the194

valence dimension is higher than the RMSEs of the activation dimension as shown in Fig. 3 (b). For the195

valence dimension, using the PCR method, the lowest RMSE was 0.151 using the combined features,196

and it was 0.156 using the baselined features alone. Using the PLS method, the lowest RMSE was197

0.151 using the combined features, and it was 0.156 using the baselined features alone. Using the198

feedforward method, the lowest RMSE was 0.158 using the combined features, and it was 0.169 using199

the baseline features alone. Again, the inclusion of the STC-based features shows an improvement in200

prediction error.201

It is believed that the proposed STC-based features are more suitable for capturing the quality of202

audio signals, such as timbre, harmonicity, etc. Since the quality of audio signals, especially timbre,203

plays a major role in affecting the perception of emotional valence in music [22], the inclusion of the204

STC-based features was more effective in improving the prediction accuracy of the valence dimension205

than the one of the arousal dimension. Similar improvements were demonstrated when the Pearson’s206

correlation coefficients between the ground-truth labels and the predicted labels were calculated. The207

overall results are shown in Table 2, and it is shown that the best results were obtained when the208

baseline features were combined with the STC-based features.209

4.2. Deep learning approach using transfer learning210

Given that the spectral features show discriminative nature in different emotional music data, a211

deep learning technique was used for classifying different emotional music clusters. More than 3200212

spectrogram images were generated from the dataset by Fourier transform. Fig 4 shows the flow chart213

of the overall deep CNN approach.214

Figure 4. The flow chart of the overall deep learning approach.

The arousal and valence values of the samples from the dataset were scaled to the range of [1,100],215

which are mapped onto a 2D-plane of arousal and valence. Some generated sample images from each216

class are shown in Fig.5 (a). The window size for the Fourier transform was 60 seconds for every217

spectrogram image. As shown in Fig. 5 (b), we separated the 2D plane into 9 sub-areas where each218

sub-area has the same size of the area. The points located in the same area were grouped into the219
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same class and 8 classes were separated from the dataset. However, it is shown that in Fig. 5 (b),220

the dataset is imbalanced where the classes are not represented equally, and most of the data points221

are clustered in class 5. This problem can be alleviated by adding more weights to the classes with222

fewer samples. A stratified 5-fold cross-validation based on the ID of the songs was run to ensure the223

test set only contains the unseen data because the spectrogram images from the same song would be224

similar. Furthermore, the process of the stratification could ensure each fold preserve the percentage of225

samples for each class to better represent the whole dataset.226

Figure 5. (a) Sample images from each class, (b) the scatter plot for arousal vs. valence domain values

Table 3. Classification results using transfer learning scheme. The pre-trained deep neural networks
used are VGG, AlexNet, Inception, ResNet, DenseNet and ResNext.

Performance Comparison
Model Name Top-1 Acc. Top-5 Acc. Best performance Trainable

Params.
VGG-11 64.79±1.51% 95.52±2.17% 66.56% 32776
VGG-13 65.05±1.32% 96.62±1.83% 65.61% 32776
VGG-16 64.77±1.44% 96.36±2.08% 66.93% 32776
VGG-19 64.58±1.49% 95.86±2.06% 66.77% 32776
AlexNet 65.00±1.01% 96.07±1.74% 65.61% 32776
Inception-V3 64.53±1.44% 95.36±1.64% 66.40% 16392
ResNet-18 64.86±1.16% 95.45±2.05% 66.78% 4,104
ResNet-34 65.04±1.34% 95.85±1.91% 66.72% 4,104
ResNet-50 65.24±1.35% 95.63±1.66% 67.42% 16392
ResNet-101 65.11±1.35% 96.23±1.84% 67.10% 16392
ResNet-152 65.31±1.02% 95.92±1.69% 66.61% 16392
DenseNet-121 64.79±1.37% 95.64±2.36% 67.26% 8200
DenseNet-169 64.94±1.45% 96.68±2.13% 67.10% 13320
DenseNet-201 64.67±1.32% 96.91±2.05% 66.45% 15368
ResNext-50 65.45±1.29% 96.17±2.38% 67.10% 16392
ResNext-101 65.31±1.02% 96.26±1.91% 66.61% 16392

Several pre-trained deep networks were evaluated for classifying the spectrogram images. The227

purpose of using different deep networks for this study is to developdeveloping a guideline for228

choosing a deep learning model in future research. The present study aims to determine the better229

performance model for our target task, so all the hyper-parameters, optimizer, and loss function of230

the deep learning models are set to be the same. We set the training epochs to 60, and introduced the231

stochastic gradient descent optimizer to train the network, and used the cross-entropy function to232

evaluate the loss. For the reason that the deep models we used in this study were pre-trained on the233

ImageNet dataset which is not similar to our target dataset, we freeze all the layers of the networks and234
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only train the last fully connected layer to avoid overfitting. As shown in Fig 4, the pre-trained models235

act as a feature extractor that generates the embedding feature vectors, and a replaced fully connected236

layer was used to classify them. Depending on the differences between the architecture of these models,237

the trainable parameters during training will be different. Table 3 shows the results of different deep238

network architectures we used in this study, which includes VGG [23], AlexNet [24], Inception [25],239

ResNet [26], DenseNet [27] and ResNext [28]. Given the fact that only the last fully connected layer240

will be trained in this study, the trainable parameters will be different. Regardless of the difficulty of241

estimating arousal and valence dimensions when only using audio modality, the imbalanced issue242

makes it hard for training. Finally, the results show that the state-of-the-art architecture, ResNext-50,243

achieved an average top-1 validation accuracy of 65.45%, which outperforms other deep models.244

5. Conclusion245

To enable fast and reliable emotion detection from music, the spectral features were extracted246

based on a sinusoidal model and evaluated for predicting the levels of arousal and valence in music.247

Since the extracted spectral features were designed to characterize the quality of audio signals such248

as timbre and harmonicity, an improvement in prediction accuracy was obtained as expected. When249

each feature set was tested separately, the STC-based feature set alone was not as effective as the250

baseline feature set; however, additional resolving power was revealed when the two feature sets were251

combined. The results indicate that the STC-based features include spectral characteristics that the252

baseline features may not include.253

We also applied the recent deep learning methods for classifying different emotional states based254

on the spectrogram images mapped onto the 2D domain of arousal and valence. The results were255

improved by employing the most advanced deep learning network structure combined with the256

spectral data extracted from music. However, in this study, only spectral features from short-time257

window were considered to classify the emotional states. An improvement in classification accuracy258

could be expected by introducing neural networks capable of learning memory-based relations in259

the time domain, such as the long short-term memory (LSTM) networks. The input of the LSTM260

would be a sequence of spectral features and the network output context vector will be used for261

classifying emotional states, and we aim to further analyze the implication of deep learning techniques262

in enhancing real-time affective audio perception.263
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through the National Robotics Initiative (NRI) program and the National Science Foundation (NSF) Disability and265

Rehabilitation Engineering (DARE) program under the grant #1846658.266

References267

1. Baltrunas, L.; Amatriain, X. Towards time-dependant recommendation based on implicit feedback.268

Citeseer.269

2. Kim, J.C.; Azzi, P.; Jeon, M.; Howard, A.M.; Park, C.H. Audio-based emotion estimation for interactive270

robotic therapy for children with autism spectrum disorder. 2017 14th International Conference on271

Ubiquitous Robots and Ambient Intelligence (URAI). IEEE, 2017, pp. 39–44.272

3. Aucouturier, J.J.; Pachet, F.; Sandler, M. " The way it sounds": timbre models for analysis and retrieval of273

music signals. IEEE Transactions on Multimedia 2005, 7, 1028–1035.274

4. Kim, J.; Clements, M. Time-scale modification of audio signals using multi-relative onset time estimations275

in sinusoidal transform coding. 2010 Conference Record of the Forty Fourth Asilomar Conference on276

Signals, Systems and Computers. IEEE, 2010, pp. 558–561.277

5. Serra, X.; Smith, J. Spectral modeling synthesis: A sound analysis/synthesis system based on a deterministic278

plus stochastic decomposition. Computer Music Journal 1990, 14, 12–24.279

6. Quatieri, T.F.; McAulay, R.J. Shape invariant time-scale and pitch modification of speech. IEEE Transactions280

on Signal Processing 1992, 40, 497–510.281



Version February 17, 2020 submitted to Appl. Sci. 10 of 11

7. Kim, J.C.; Rao, H.; Clements, M.A. Speech intelligibility estimation using multi-resolution spectral282

features for speakers undergoing cancer treatment. The Journal of the Acoustical Society of America 2014,283

136, EL315–EL321.284

8. Satt, A.; Rozenberg, S.; Hoory, R. Efficient Emotion Recognition from Speech Using Deep Learning on285

Spectrograms. INTERSPEECH, 2017, pp. 1089–1093.286

9. Badshah, A.M.; Ahmad, J.; Rahim, N.; Baik, S.W. Speech emotion recognition from spectrograms with287

deep convolutional neural network. 2017 international conference on platform technology and service288

(PlatCon). IEEE, 2017, pp. 1–5.289

10. Soleymani, M.; Caro, M.N.; Schmidt, E.M.; Sha, C.Y.; Yang, Y.H. 1000 songs for emotional analysis of music.290

Proceedings of the 2nd ACM international workshop on Crowdsourcing for multimedia. ACM, 2013, pp.291

1–6.292

11. Aljanaki, A.; Yang, Y.H.; Soleymani, M. Emotion in Music Task at MediaEval 2014. MediaEval, 2014.293

12. Eyben, F.; Wöllmer, M.; Schuller, B. Opensmile: the munich versatile and fast open-source audio feature294

extractor. Proceedings of the 18th ACM international conference on Multimedia. ACM, 2010, pp.295

1459–1462.296

13. Pantazis, Y.; Rosec, O.; Stylianou, Y. Adaptive AM–FM signal decomposition with application to speech297

analysis. IEEE Transactions on Audio, Speech, and Language Processing 2010, 19, 290–300.298

14. George, E.B.; Smith, M.J. Analysis-by-synthesis/overlap-add sinusoidal modeling applied to the analysis299

and synthesis of musical tones. Journal of the Audio Engineering Society 1992, 40, 497–516.300

15. Paul, D. The spectral envelope estimation vocoder. IEEE Transactions on Acoustics, Speech, and Signal301

Processing 1981, 29, 786–794.302

16. Jusczyk, P.W.; Krumhansl, C.L. Pitch and rhythmic patterns affecting infants’ sensitivity to musical phrase303

structure. Journal of experimental psychology: Human perception and performance 1993, 19, 627.304

17. Jensen, J.H.; Christensen, M.G.; Ellis, D.P.; Jensen, S.H. A tempo-insensitive distance measure for cover305

song identification based on chroma features. 2008 IEEE International Conference on Acoustics, Speech306

and Signal Processing. IEEE, 2008, pp. 2209–2212.307

18. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Transactions on knowledge and data engineering 2009,308

22, 1345–1359.309

19. Kim, J.C.; Clements, M.A. Multimodal affect classification at various temporal lengths. IEEE Transactions310

on Affective Computing 2015, 6, 371–384.311

20. Metallinou, A.; Wollmer, M.; Katsamanis, A.; Eyben, F.; Schuller, B.; Narayanan, S. Context-sensitive312

learning for enhanced audiovisual emotion classification. IEEE Transactions on Affective Computing 2012,313

3, 184–198.314

21. Russell, J.A.; Bachorowski, J.A.; Fernández-Dols, J.M. Facial and vocal expressions of emotion. Annual315

review of psychology 2003, 54, 329–349.316

22. Hailstone, J.C.; Omar, R.; Henley, S.M.; Frost, C.; Kenward, M.G.; Warren, J.D. It’s not what you play,317

it’s how you play it: Timbre affects perception of emotion in music. The quarterly Journal of Experimental318

psychology 2009, 62, 2141–2155.319

23. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv320

preprint arXiv:1409.1556 2014.321

24. Krizhevsky, A. One weird trick for parallelizing convolutional neural networks. arXiv preprint322

arXiv:1404.5997 2014.323

25. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for324

computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,325

pp. 2818–2826.326

26. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE327

conference on computer vision and pattern recognition, 2016, pp. 770–778.328

27. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks.329

Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708.330

28. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks.331

Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1492–1500.332



Version February 17, 2020 submitted to Appl. Sci. 11 of 11

c© 2020 by the authors. Submitted to Appl. Sci. for possible open access publication under the terms and conditions333

of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).334

http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Database
	Proposed Method
	Sinusoidal transform coding
	Feature extraction using sinusoidal transform coding 
	Feature extraction using transfer learning

	Experimental Results
	Model-based approach based on spectral features and conventional machine learning algorithms
	Deep learning approach using transfer learning

	Conclusion
	References

