A Large-Scale Analysis of
Deployed Traffic Differentiation Practices

Fangfan Li

Northeastern University

David Choffnes

Northeastern University

ABSTRACT

Net neutrality has been the subject of considerable public debate over
the past decade. Despite the potential impact on content providers
and users, there is currently a lack of tools or data for stakeholders to
independently audit the net neutrality policies of network providers,
Inthis work, we address this issue by conducting a one-year study of
content-based traffic differentiation policies deployed in operational
networks, using results from 1,045,413 crowdsourced measurements
conducted by 126,249 users across 2,735 ISPs in 183 countries/re-
gions. We develop and evaluate a methodology that combines
individual per-device measurements to form high-confidence,
statistically significant inferences of differentiation practices,
including fixed-rate bandwidth limits (i.e,, throttling) and delayed
throttling practices. Using this approach, we identify differentiation
inboth cellular and WiFi networks, comprising 30 ISPs in 7 countries.
We also investigate the impact of throttling practices on video
streaming resolution for several popular video streaming providers.

CCS CONCEPTS

« Networks — Network measurement;

KEYWORDS
Network Neutrality, Traffic Differentiation

ACM Reference Format:

Fangfan Li, Arian Akhavan Nigki, David Choffnes, Phillipa Gill, and Alan
Mislove. 2019. A Large-Scale Analysis of Deployed Traffic Differentiation
Practices. In SIGCOMM '19: 2019 Conference of the ACM Special Interest Group
on Data Communication, August 19-23, 2019, Beijing, China. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3341302.3342092

1 INTRODUCTION

Net neutrality, or the notion that Internet service providers (ISPs)
should give all network traffic equal service!, has driven active
discussions, laws [2], and policies [12]. However, to date there have
been few empirical studies of ISPs’ traffic management policies that
violate net neutrality principles, or their impact on stakeholders
such as consumers, content providers, regulators, and legislators. in

'With a notable ption being ble network

Permiiasion 1o make digital or hard coples of all or part of this work for personal or classroom use
is granted without fee provided that coples are ot made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by athers than ACM must be honored. Abstracting with credit 1s
permitted. To copy otherwise, or repubilish, o post on serversor 1o redistribule to lists, requires priar
specific permission and/or a fee. Request permissions from permissi mLOrE.

SIGCOMM "1%, August 19-23, 2009, Beifing, China
© 2019 Association for Computing Machinery.
ACM [SBN 978-1-4503-5956-6/1%/08. $15.00
hups://doi.org/10 1145/3341302.3342092

Arian Akhavan Niaki

University of Massachusetts Amherst

Phillipa Gill
University of Massachusetts Amherst

130

Alan Mislove
Northeastern University

this work, we fill this gap via a large-scale study of a common form
of net neutrality violations: content-based traffic differentiation that
limits throughput for specific applications.

A large-scale study of net neutrality violations and their
implications is long overdue, given that the most recent large-scale
audits of net neutrality came a decade ago and focused on either
backbone networks [27] or a single protocol (BitTorrent) {11]. In
the intervening decade, the Internet has evolved in two key ways
that require a new approach to auditing, First, today’s dominant
source of Internet traffic is video streaming from content providers,
not BitTorrent. Second, users increasingly access the Internet from
their mobile devices, often with a spectrum-constrained cellular
connection. There is a need to conduct a study of net neutrality
violations that takes these changes into account.

We address this need using 1,045,413 measurements conducted by
126,249 users of our Wehe app, across 2,735 ISPs in 183 countries/re-
gions. From this set of raw measurements, we identify 144 15Ps
with sufficient tests to confidently identify differentiation. Wehe
builds on prior work for detecting traffic differentiation over mobile
networks [16], however, while prior work focused on detecting
differentiation on a per-device basis, we leverage our large-scale
crowd-sourced data to develop more robust differentiation detection
techniques. We then apply these techniques to conduct the
largest-scale study of content-based differentiation practices to date.

The main contributions of this paper are the methods to detect
throttling using data from a large user base, analysis of this data, and
findings related to detecting fixed-rate throttling and their impact
on affected apps . Beyond technical contributions, our findings
have been used by a European national telecom regulator, the US
FTC and FCC, US Senators, and numerous US state legislators. To
complement this study and to help consumers and regulators make
more informed decisions, we maintain a public website with updated
analysis and data [6]. This website also contains an extended version
of this paper with appendices that provide additional details of
observed throttling. We now summarize our technical contributions.

Gathering a large dataset of content-based differentiation
practices (§3) We perform the largest data collection of content-
based differentiation practices, comprising more than 1,000,000 tests,
which we continue to maintain on an ongoing basis. We adapted
prior work [16] to enable such data collection at scale.

Method for reliably detecting fixed-rate throttling from
crowdsourced measurements (§4) Individual crowdsourced
tests are subject to confounding factors such as transient periods of
poor network performance. To addressthis, we develop amethod that
reliably identifies fixed-rate throttling by leveraging tests from mul-
tiple users in the same ISP. We combine Kolmogorov-Smirnov tests,

SIGCOMM "19, August 19-23, 2019, Beijing, China

kernel density estimators, and change point detection to identify
cases of fixed-rate throttling and delayed throttling, We evaluated the
methodology (§5) with controlled lab experiments from the 4 largest
US cellular ISPs and found the results of using our methodology on
crowdsourced data are consistent with lab experiments.

Characterizing differentiation affecting Wehe tests (§6)
We conduct a multi-dimensional study of deployed differentiation
policies measured by Wehe. We find different network providers
using different rate limits (e.g., 1.5 Mbps and 4 Mbps) and target-
ing a different set of apps (e.g., YouTube vs. Netflix). We also find
throttling practices that are poorly disclosed, falsely denied (by one
ISP), and that change during the course of our study. Importantly,
selective throttling policies potentially give advantages to certain
content providers but not others, with implications for fair competi-
tion among content providers in throttled networks.
Characterizing video streaming implications of throttling
(§7) We study how throttling in the US impacts video streaming
resolution. We study the video resolutions selected by popular video
streaming apps that are affected by throttling, and find examples
where throttling limits video quality. We also find many cases where
video players self-limit video resolution by default, in some cases
selecting a lower resolution than throttling allows, Finally, we ob-
serve that streaming sessions experience retransmission rates up to
23%, leading to significant wasted network bandwidth that can be
addressed through more efficient throttling implementations.

2 RELATED WORK

Traffic differentiation detectton Traffic differentiation has
been the target of study for over a decade. Originally, BitTorrent
was studied by the Glasnost project [11] which manually crafted
measurements to simulate BitTorrent and BitTorrent-like packet
exchanges, followed by comparing the throughput distributions of
exchanges with and without BitTorrent payloads. NetPolice [27]
takes a different approach: detecting differentiation in backbone
15Ps by analyzing packet loss behavior of several protocols (HTTP,
BitTorrent, SMTP, etc.). Bonafide {10] is designed to detect differen-
tiation and traffic shaping in the mobile ecosystem, but still relies
on manually crafted files to specify protocels to test, supperting six
application protocols. DiffProbe [17] focuses on Skype and Vonage,
and detects differentiation by comparing latency and packet loss
between exposed and control traffic. The Packsen [26) framework
uses several statistical methods for detecting differentiation and
inferring shaper details. NANO [24] uses passive measurement from
users to infer the existence of traffic differentiation.

A limitation of prior work is that they did not generalize beyond a
few tested applications, often used simulated traffic instead of traffic
generated by real applications, and did not work from mobile devices.
However, recent work [16, 20] showed that deployed differentiation
policies often target specific applications based on keyword-based
deep packet inspection and thus are often not triggered by simulated
traffic. Chkdiff [22, 23] and Molavi Kakhki et al. [16] use application-
generated traffic, but are not evaluated at scale. As we discuss below,
we made substantial changes to the measurement and detection
methodelogy to address the limitations of these approaches.

131

Liatal

Identifying rate limiting Recent projects focus on identifying
rate limiting of Internet traffic via shaping and policing. The Shaper-
Probe [18] project detects traffic shaping using end-to-end active
probing with synthetic traffic, and it identified suspected shaping in
multiple ISPs; however, it is not deployable on mobile devices and
does not identify specific applications affected by shaping. Flach et
al. [13] quantify traffic policing for YouTube and its impact on video-
quality metrics, but this analysis does not generalize to other video
providers and requires access to a content provider’s servers, Our
approach identifies rate limiting for multiple applications without
requiring access to content providers’ servers.

3 DATA COLLECTION

We now describe the data collected by the Wehe apps (available from
the Google Play and iOS App Stores), which detect content-based dif-
ferentiation between the device and a server under our control. Wehe
is available to download from the Google Play and i0S App Stores.

3.1 Methodology

Record and replay To test for differentiation, Wehe uses the
“record and replay” technique introduced by Molavi Kakhli et al. [16].
We first record the network traffic generated by an application (e.g.,
streaming a video using the YouTube app), and include this traffic
trace in the app. When a user runs a test, Wehe then replays this
traffic between the device and an Wehe server. We emphasize that
our tests do not contact content providers’ servers. Thus, all network
traffic exchanged between the Wehe app and server are identical to
what was recorded, with the exception of different IP addresses.
Wehe runs a series of back-to-back replay pairs. In each
back-to-back pair, the original replay contains the same payloads
as recorded (e.g., YouTube traffic). This exposes the original payload
to network devices such as those that use deep packet inspection
(DPI). The other replay in the back-to-back pair is the control replay,
which contains the same traffic patterns (packet sizes, timings) but
the original payload is obscured to evade detection by DPI devices
that often rely on keyword matching in their classification [20, 21].
For the control replay, Wehe inverts the original payload bits, a
technique that our prior work [21] found to evade DPI detection.
Note that we do not use random bytes because they were found to
trigger differentiation in ways that inverted bits do not [21].

Apps tested by Wehe For this study, Wehe uses traces recorded
from YouTube, Netilix, Amazon Prime Video, NBC Sports, Vimeo,
Spotify, and Skype. We selected the first five apps because video
streaming is a common target of traffic differentiation [15, 20]. We
include Spotify because some cellular plans indicate rate limits on
streaming audio, and Skype because a telephony app may compete
with cellular providers’ voice services. The traces in Wehe consist of
video streaming from the video apps, music streaming on Spotify,
and a video call on Skype. Note that the traces are recorded by the
Wehe team, and contain no information about the users running
the tests. We use the following symbols to represent each app test:
3 for YouTube, Hfor Netflix, 8 for Amazon Prime Video, ¥k for
NBCSports, & for Skype, © for Spotify and I for Vimeo.

When running Wehe, users can select which apps to test, and
a test consists of up to two replay pairs. The Skype test uses UDP,
while the others use TCP. Among TCP tests, NBCSports and

Large-Scale Analysis of Deployed Differentiation

Spotify use HTTF, and the others use HTTPS. Thus our approach
supports both plaintext and encrypted flows. For the tests that use
HTTPS, we simply replay the exact same encrypted bytes over
TCP connections between the Wehe app and a Wehe server. Note
that since Wehe simply replays the trace as it was recorded, Wehe
does not incorporate any dynamic behavior (e.g., adaptive bitrate
streaming) that the recorded app might incorporate.

We support UDP traffic in our tests, but do not currently use QUIC
traces. An open important research challenge is how to emulate
QUIC congestion control, given that we cannot trivially distinguish
new payload bytes from retransmissions due to header encryption.

Detecting differentiation for each test After replaying traces
for an app, Wehe checks for differentiation and displays the result to
the user. Wehe uses a Kolmogorov-Smirnov (KS) test [14] to compare
the throughput distributions of the original and the control replays of
agiven application trace. Wehe samples throughput using fixed time
intervals, based on the recorded trace duration: if the replay takes
t seconds when recorded, each interval is t/100 seconds. Because
our record and replay approach sends data no faster than it was
recorded, we are guaranteed to have at least 100 samples for each
test. However, if the test occurs in an environment where there is
a bandwidth bottleneck, the replay can take more than t seconds.
If s0, we continue to sample at the same rate after ¢ seconds, and
thus would record more than 100 samples. Similar to Net Police [27],
Wehe conducts jackknife non-parametric resampling to test the
validity of the KS statistic. Wehe indicates to the user that there is
differentiation only if both the KS test is statistically significant (i.c.,
p-value less than 0.05, and the resampled KS tests lead to the same
result 95% of the time) and the difference in average throughputs is
significant (i.e., at least a 10% difference in average throughput) {16].

3.2 Implementation

Prior work detected differentiation using packet captures recorded
at the replay server [16)], assuming that packets received at the
server (e.g., TCP ACK packets) came directly from the client.
However, we found empirically that this is not the case, largely due
to transparent TCP proxies that split the end-to-end connection into
two TCP connections. In this case, the server cannot observe rate
limits imposed only on the client-proxy connection. To address this,
Wehe records traces both from the server side and from the client
via periodic throughput measurements collected at the application
layer (obtaining raw packet traces would require users to root their
phones, which we wish to avoid). We use both traces to identify
differentiation and the direction that is affected.

Prior work found that three back-to-back tests yielded low false
positive and negative rates for differentiation detection [16]. How-
ever, anecdotal reports from Wehe users indicated that the time
required to run these tests (16 minutes to test all apps) was a limiting
factor in using Wehe. To mitigate this issue, Wehe first analyzes the
result of one pair of back-to-back tests for an app. If there is no differ-
entiation detected, then Wehe does not run additional tests for the
app. If there is differentiation detected, Wehe runs an additional pair
of back-to-back tests and reports differentiation to the user only if it
is detected in both tests. The use of only one or two tests might cause
higher error rates in results reported to individual app users. In §4

132

SIGCOMM "19, August 19-23, 2019, Beijing, China

we analyze data from all tests of the same app in the same ISP across
our user base to gain additional statistical confidence in our results,

3.3 Confounding factors and limitations

Wehe accounts for the following confounding factors when report-
ing results to users. First, bandwidth volatility (e.g., due 10 poor
signal strength, cross traffic, etc.) could cause Wehe to incorrectly
identify differentiation. To reduce the impact of this, Wehe performs
multiple back-to-back tests and reports differentiation to users
only when at least two pairs of tests indicate differentiation. This
conservative approach may result in false negatives, where Wehe
does not report differentiation to the user. In the next section, we
discuss how we aggregate data across our user base to mitigate false
negatives and positives due to volatility.

Second, the network may retain history such that one replay
test impacts the treatment of the next replay. We instituted random
ordering of original and bit-inverted replays, and found no evidence
of history affecting our results.

Third, Wehe is subject to the same limitations prior work [16]:
it cannot detect differentiation based on IP addresses, peering
arrangements, interconnection congestion, traffic volume, or
other factors independent of IP payloads. Detecting differentiation
based on IP addresses, peering arrangements, and interconnection
congestion would seem to require access to content servers {and/or
their IPs)—Wehe alane cannot detect such cases because the paths
our measurements follow are potentially different than the ones
between clients and content servers.

Though outside the scope of this work, Wehe can be augmented to
detect differentiation based on traffic volumes. Specifically, our tests
preserve the recorded application’s content stream in terms of packet
timings and packet sizes, and could trigger differentiation based on
those properties. However, both the inverted and original payloads
could trigger the same behavior, so we would need to add a second
control test (that does not lock like any app’s traffic volumes) to
identify differentiation, Similarly, Wehe could incorporate tests using
the real apps undertest, inaddition to our controlled ones using Wehe,
todetect differentiation based on factors other than payload contents.
We consider such approaches to be interesting areas for future work.

Last, there is no known API to determine a user’s data plan or
any differentiation policies on the plan, so we cannot compare Wehe
findings with stated policies,

3.4 Ethics

Our work involves human subjects, and we took care to follow
community best practices when conducting our work. Wehe collects
anonymized data from user devices as part of an IRB-approved study.
First, as described below, we collect only data that we deemed neces-
sary to characterize differentiation and assess confounding factors.
Second, when Wehe is opened by the user for the first time—and
before any data is collected—users undergo informed consent via an
[RB-approved consent form that specifies the data collected and how
it is used. Once users consent, they can initiate tests; if the user does
not consent, the app closes immediately. Third, data collection occurs
only when users initiate tests, and users can opt out of data collection
(and request deletion of data) at any time. Our data-collection and
management process has been deemed GDPR-compliant.

SIGCOMM "19, August 19-23, 2019, Beijing, China

3.5 Dataset

The data generated by Wehe tests includes throughput samples,
as well as the following for each back-to-back test: (1) the server
timestamp at the beginning of the test, (2) the first three octets (/24)
of the client’s [P address, (3) the client’s mobile carrier as reported
by the operating system, (4) the client’s operating system and phone
model, (5) the network connection type (WiFi or cellular), and (6)
the coarse-grained GPS location (collected with user permission).
We describe the reason for collecting each of these items below.

The timestamp allows us to identify trends over time. The
carrier name allows us to identify the cellular provider for tests on
celtular networks. The client’s anonymized IP address information
and network type allow us to identify the ISP being tested for
WiFi connections?, and to identify whether there are subnet-level
differences in detected differentiation.

The coarse-grained GPS location {10km precision) allows us
to identify regional differences in ISPs’ policies (e.g., in response
to state-level net neutrality regulations in the US). The Wehe app
first requests the geolocation of the user via the operating system'’s
precise GPS location feature, the Wehe server then geo-codes the
geolocation (i.e., looking up the city/state/country) and stores
only the truncated geolocation (i.e., with 10 km precision). Users
can choose not to share their GPS locations without limiting app

functionality. In 15% of tests, the users opted out of location sharing,

The OS and phone model allow us to distinguish whether ISPs
discriminate against these factors, or to what extent OSes and phone
models might bias the results.

Summary of dataset
Between Jan. 18, 2018 and Jan. 24, 2019, 59,326 iOS users and 66,923
Android users installed Wehe and ran at least one test.

In total, Wehe conducted 1,045,413 tests. We plot the distribution
of tests over time in Figure 2 (note the log scale on the y-axis). We
observe a peak of 77,000 tests on January 19, 2018, when a news
article raised awareness of the app [3). There were three other press
events that raised awareness of the app; we still observe several
hundred tests per day. Wehe users come from at least 183 countries
based on geolocation.

Like any crowdsourced dataset, ours is subject to several biases
that may impact the generality of our findings. We cannot control
when, where, or why users run our tests, and thus we do not have
uniform or complete coverage of any ISP or app tested. Figure 1
shows the distribution of test locations, where the intensity of the
color for each country reflects the number of tests completed in the
country. More than 607 of our tests come from the US, most likely
due to the recent changes in net neutrality rules combined with
US-centric press articles. The phone models used in our tests skew
toward higher-end devices, Table 2 shows the top phone models and
OSes for users in the Wehe dataset. A large fraction of our US tests
come from large cellular providers, meaning lower-cost providers
{e.g., MVNOs) are under-represented.

Despite these biases, our analysis covers 2,735 ISPs’ in 183
countries, and identifies differentiation in 30 ISPs in 7 countries, We

Using the “OrgName" field from whois queries to reglonal Internet registries.
$We noticed that sotne ISPs used multiple "OrgNames® {¢.g., Bouygues and BouyguesTelecom); thus,
some 15Pa may be counted multiple times,

We summarize our dataset in Table 1.

133

Liatal.
Heplay Users{%) | CellularTests | WiFiTests
T ¥ TouTube | 108B13(25%) | 57.009 199,850
Wnetfix 83,369 (66%) | 66,320 112473
8, Amazon 77.252061%) | 61,851 102,529
O spatify 65,644 (52%) 42,306 90,967
B skype 60,658 (48%) | 37.509 72,250
Hvimeo 49,701 (39%) | N8I | &1
MWNBC Sports | 49.605(39%) | w70l | 71,201
Total 126249 | MBI | 667099
Table 1: Overview of Wehe data analyzed in this paper.
105 Android
Usen 59,326 65,921
1051122 5% || Android7.0 7%
1051125 7% || AndroidBon | %
Top five OS5 versiom 105121 5% Android8.10 | 8%
105 11.4.1 4% || Androld730 | 5%
1051126 % || Androtdena | 4%
Phone X 19% || PhelzXL 7%
{Phone 7 14% Samsung 58 19%
Top five phone models {Phone 65 125 Pixel X1 13%
{Phone 7Plus | 11% Sammung Sa+ | 1.3%
{Phone 6 kid Pixel 17%

Table 2: Summary of Wehe users’ phone models. There is a
bias toward newer phones and OSes, with devices capable of
displaying content in HD.

Figure 1: Number of tests per country (log scale). Note that
15% of our tests do not have GPS data {(e.g., if the user did
not provide permission to collect GPS locations), and we
excluded them from any geolocation-based analysis.

e
-]
-

WiFi ledts

. cellular tests
F104 N

P, I

g 10°] JI"‘J‘“I‘-_-“_‘_"._\ Jl ’ I‘Ik hy "‘:"VII' . 'I.III'

§ oy ‘4%,‘4.,%‘] e YA,
2 10¢ L
10\55-» o o 10“;,‘: «p\"m 10.\5-&' ,p\.,:\‘ _p\qm

Figure 2: Number of Wehe tests per day (log scale).

believe this to be the largest study of content-based differentiation
practices.

4 DETECTING DIFFERENTIATION

We now describe our methodology for identifying and character-
izing differentiation using aggregate data collected from multiple
users and tests. Specifically, we focus on how we detect fixed-rate
bandwidth limits, which we refer to as throttling. This is by far the

SIGCOMM '19, August 19-23, 2019, Beijing, China

3.5 Dataset

The data generated by Wehe tests includes throughput samples,
as well as the following for each back-to-back test: (1) the server
timestamp at the beginning of the test, (2) the first three octets (/24)
of the client’s [P address, (3) the client’s mobile carrier as reported
by the operating system, (4) the client’s operating system and phone
model, (5) the network connection type (WiFi or cellular), and {6)

the coarse-grained GPS location (collected with user permission).

We describe the reason for collecting each of these items below.

The timestamp allows us to identify trends over time. The
carrier name allows us to identify the cellular provider for tests on
cellular networks. The client’s anonymized IP address information
and network type allow us to identify the ISP being tested for
WiFi connections?, and to identify whether there are subnet-level
differences in detected differentiation.

The coarse-grained GPS location (10 km precision) allows us
to identify regional differences in ISPs’ policies (e.g., in response
to state-level net neutrality regulations in the US). The Wehe app
first requests the geolocation of the user via the operating system’s
precise GPS location feature, the Wehe server then geo-codes the
geclocation (i.e, looking up the city/state/country) and stores
only the truncated geolocation (i.e., with 10 km precision). Users
can choose not to share their GPS locations without limiting app

functionality. In 15% of tests, the users opted out of location sharing.

The OS and phone model allow us to distinguish whether ISPs
discriminate against these factors, or to what extent OSes and phone
models might bias the results,

Summary of dataset
Between Jan. 18, 2018 and Jan. 24, 2019, 59,326 iOS users and 66,923
Android users installed Wehe and ran at least one test,

In total, Wehe conducted 1,045,413 tests. We plot the distribution
of tests over time in Figure 2 (note the log scale on the y-axis). We
observe a peak of 77,000 tests on January 19, 2018, when a news
article raised awareness of the app [3]. There were three other press
events that raised awareness of the app; we still observe several
hundred tests per day, Wehe users come from at least 183 countries
based on geolocation.

Like any crowdsourced dataset, ours is subject to several biases
that may impact the generality of our findings. We cannot control
when, where, or why users run our tests, and thus we do not have
uniform or complete coverage of any ISP or app tested. Figure 1
shows the distribution of test locations, where the intensity of the
color for each country reflects the number of tests completed in the
country. More than 60% of our tests come from the US, most likely
due to the recent changes in net neutrality rules combined with
US-centric press articles. The phone models used in our tests skew
toward higher-end devices, Table 2 shows the top phone models and
OSes for users in the Wehe dataset. A large fraction of our US tests
come from large cellular providers, meaning lower-cost providers
(e.g., MVNOs) are under-represented.

Despite these hiases, our analysis covers 2,735 ISPs® in 183
countries, and identifies differentiation in 30 ISPs in 7 countries. We

2Using the "OrgName" field from whols queries (o reglonal Iternct registries.
*We noticed that some 1SPs used multiple *OrgNames” {¢.g.. Bouygues and BouyguesTelecom): thus,
some 1SPs may be counted multiple times.

We summarize our dataset in Table 1,

133

Li at al.
Repla Users{®) | CellularTests | WiF{Tests
EFYouTube | 106813 85%) | 97,000 149,850
A erfliv 3,369 (66%) 66,320 112473
8 Amozon 17.212061%) 61851 102529
O spotify 65,644 (52%) 41,306 90,963
6 skype 60.658 (43%) 37,589 72,250
B vimeo 19701 (39%) 33538 67,233
_ #WNBCSperts | 49,605 (39%) 38701 71701
Toul 126249 | 78304 567,099
Table 1: Overview of Wehe data analyzed in this paper.
105 Androtd
Users 59326 66,923
10511.22 5% || Androld 7.0 7%
10511.25 7% || AndroidBoo | 5%
Top five OS vensions 0§ 12.1 5% Android 810 | .8%
DS 1141 4% || Android7.Ll | 5%
10511.26 3% || Android6ol | an
[Phone X 19% || Plel2XL 22%
iPhone 7 14% || Samsungss 9%
Top five phone models || iPhone 63 12% Pixel XL 1.8%
iPhone7Plus { 11% || SamsungS8+ | 1.4%
iPhone 6 7% || Pixel 17%

Table 2: Summary of Wehe users’ phone models. There is a
bias toward newer phones and OSes, with devices capable of
displaying content in HD.

»

Figure 1: Number of tests per country (log scale). Note that
15% of our tests do not have GP'S data (e.g., if the user did
not provide permission to collect GPS locations), and we
excluded them from any geolocation-based analysis.

-
o
v

—— WIF) tests

% l'|| cellutar tests
Bige " |

3 [4 ,|I| }

#100 1 -'-J'l.l 1 '} il |

T.; II"\- el J *l Iy R |‘" L "'I Al II'

E ke J\r‘-"ﬁj |Il\l'-

Z 100

13 1] 1] 1l .Y 13

'@‘p 'ﬁ“p w‘“n 1°\°D o '1""‘5A 19-@9

Figure 2: Number of Wehe tests per day (log scale).

believe this to be the largest study of content-based differentiation
practices.

4 DETECTING DIFFERENTIATION

We now describe our methodology for identifying and character-
izing differentiation using aggregate data collected from multiple
users and tests. Specifically, we focus on how we detect fixed-rate
bandwidth limits, which we refer to as throttling. This is by far the

Large-Scale Analysis of Deployed Differentiation

most common type of differentiation that we observed, and the rest
of the paper focuses exclusively on fixed-rate throttling.

Our approach relies on the following steps. Similar to prior work,
we use the KS test statistic to detect differentiation by comparing
throughput distributions for a collection of original replays to those
from control replays [16] (§4.1). For replays where differentiation is
detected, we detect one or more throttling rates using kernel density
estimation (KDE), under the assumption that throughput samples
from clients throttled at the same rate will cluster around this value
(§4.2).

Using this approach to detect throttling rates works well if an
entire replay is throttled; however, we find in practice that certain
devices enforce fixed-rate throttling only after a burst of packets
pass unthrottled, as previously reported by Flach et al [13]. We use
change point detection on throughput timeseries data to identify
delayed throttling periods {e.g., if they are based on time or number
of bytes) and omit unthrottled samples when determining the
throttling rate (§4.3).

4.1 Identifying differentiation

When identifying differentiation using crowdsourced data, we
group tests according to the ISP and the app being tested (e.g.,
YouTube, Netflix, etc.), which we refer to as an ISP-app pair. We
use all tests for a given ISP-app pair, where each test consists
of one originel replay and one bit-inverted replay regardless of
whether throttling was detected individually. We focus on 1SPs
with enough tests to apply the detection methodology; namely,
we conservatively require 100 total tests or 10 tests where Wehe
identified differentiation.? In total, 144 1SPs meet the criteria.

Our null hypothesis is that there is no differentiation for an
ISP-app pair. If this is the case, the distribution of throughput
samples observed for original and bit-inverted replays should be
similar. To test this, we form two distributions: O is the collection of
all throughput samples for all original replays for the ISP-app pair
and ! is the collection of all throughput samples for all bit-inverted
replays for the 1SP-app pair. Note that the number of samples in O
and [are identical by construction (we include only complete pairs
of back-to-back replays).

We then test whether O and I are drawn from different distribu-
tions by using the Jackknife re-sampling KS Test described earlier,
Specifically, we reject the null hypothesis if the KS-Test indicates
different distributions with a p-value is 0.05 or less, and the random
subsamples of the distribution yield the same result 95% or more
of the time,

By aggregating large numbers of tests, we can mitigate the
impact of confounding factors such as (random) network dynamics,
which should affect both distributions roughly equally given the
large number of samples we examine. If we detect differentiation
for an ISP-app pair, we next determine whether there is fixed-rate
throttling for the pair.

4.2 Inferring throttling rates

The technique we use to detect fixed-rate throttling for an
ISP-app pair is based on the hypothesis that when an ISP deploys
content-specific fixed-rate throttling, this policy affects multiple

‘ﬂuscthnshuldwer:pldudbeumct}wynvnidcdfnlu,. itives for detecting diffy

134

SIGCOMM *19, August 19-23, 2019, Beijing, China

users (e.g., those with the same data plan). If this occurs, we expect
that multiple tests would be throttled in the same way, and thus
the distribution of average throughputs for these tests would be
centered at the throttling rate instead of being randomly distributed
across the range of available bandwidth for a network.

To detect when average throughputs group around a given
rate, we use kernel density estimation (KDE), which estimates the
probability density function (PDF) of random variables (in our
case, throughput). The intuition behind using KDE is that if the
random variable (throughput) contains many samples at or near
a certain value, the value should have a probability density that is
relatively large. Thus, fixed-rate throttling should lead to relatively
large probability densities at or near the throttling rate when using
KDE. Note that KDE analysis may yield a PDF that has multiple
local maxima, meaning the approach can be used to detect multiple
throttling rates (or access technology limits),

There are two key challenges for nsing KDE effectively to identify
fixed-rate throttling. First, we must determine what thresholds to use
for identifying local maxima in the PDF that correspond to fixed-rate
throttling. Second, we must eliminate confounding factors such as
rate limits that are not based on the content of network traffic.
Setting thresholds for detection For the first challenge, we
use the following heuristic. We assume that at least some fraction
[of the total throughput averages, n, for an ISP-app pair are at the
throttling rate, and f represents our detection threshold (i.e., we can
detect fixed rate throttling affecting at least f»n tests). We then use
an approximation that the remaining (i.e., unthrottled) samples are
randomly distributed across the available bandwidth for the ISP.3
Finally, we generate data according to this model, run KDE (using a
Gaussian kernel with a bandwidth of 0.1), determine the density for
the f throttled samples and use that as our detection threshold ¢.

More specifically, for each 15P-app pair we find the number
of replays n and the average throughput range [x, y]. We then
construct a distribution consisting of (1 - f) * n data points with
values uniformly distributed between x and y, and f * n data points
with the value (y—x)/2. We run KDE on this distribution, and set
our detection threshold f to the density value at (y-x)/2 (containing
& fraction f of the values). We evaluated the methodology with
f=0.02 in §5, and we found no false positives or negatives.

Eliminating confounding factors The heuristic above identi-
fies characteristic throughput values containing more samples than
would be expected from a uniformly random distribution; however,
not all such values are due to fixed-rate throttling. For example, an
ISP may impose rate limits on all traffic for a device (e.g., due to us-
age or access-technology limits). Importantly, such behavior should
impact both the original replays and the bit-inverted replays.

To eliminate such cases, we first remove from consideration
any average throughput values that have high density in both
the original and bit-inverted distributions, Next, we include only
throughput values with high density and that correspond to
throttling rates observed by Wehe tests that indicated differentiation
to the user. For this, we run the same KDE analysis described above,
but only on tests where the Wehe app identified differentiation.

SThis is not true in practlce, but serves as a usefisl first-order app
valuesof interest,

lan 1o identify th

1
By

S1GCOMM ’19, August 19-23, 2019, Beijing, China

00-
53

400
S 300

2 6
Average throughput (Mbps)

4 B 10 12

Liat al.

0.35
03028
0255

0158
0.10 8
0055
0.00

6
Average throughput {Mbps}

8 10 12 14

Figure 3: Identification of throttling rate. The x-axis is the average throughput, and the y-axes are a histogram of tests {bars)
and probability density function (PDF, gray curve) of average throughputs for all YouTube original replays (left) and all
YouTube bit-inverted replays (right) from all tests in Sprint network. The horizontal line is the density threshold for detecting
potential throttling rates, with green dots are the values above the threshold. We remove values that appear in both original
and bit-inverted, leaving 2.0 Mbps as the detected throttling rate.

- 1.5Mbps |

w0

Q.

F-]

215

210

35l |

g 5 i |

E —W*MW*WW
b S ke, I e 7 T I O T U

1] 10 20 30 40 50 60 70
Time (s}

Figure 4: Throughput over time for a Netflix test over
T-Mobile, showing delayed throttling, Note that the first few
seconds of the transfer include rates up to 20 Mbps, after
which they drop to 1.5 Mbps (horizontal line).

As an example of this approach, the left plot in Figure 3 shows
a histogram of average throughput values for all YouTube original
replays over Sprint, and the estimated PDF {grey curve) from running
KDE. The horizontal line indicates our detection threshold, t, which
identifies high-density values near 2 Mbps and 10 Mbps. The right
figure plots the same, but for the bit-inverted replays; note that
both original and bit-inverted distributions have above-threshold
density values at 10 Mbps, indicating that this throughput value
is not due to content-based differentiation. Finally, we confirm
that tests where the Wehe app indicated differentiation exhibited
throttling at 2 Mbps using KDE analysis, and conclude that 2 Mbps
is the throttling rate for this ISP-app pair.

4.3 Accounting for delayed throttling

The methods described so far in this section assume that if fixed-rate
throttling occurs, it affects the entirety of a Wehe test experiencing
throttling. In the case of T-Mobile, we found empirically that this
assumption was violated because they engage in delayed throttling,
previously reported by Flach et al. [13]. Figure 4 shows a timeseries
of throughput for a Netflix replay that is subject to this policy:
initially the transfer achieves throughput up to 20 Mbps; afterward,
the transfer drop to 1.5 Mbps (horizontal line).

Previous work found that delayed throttling was implemented by
limiting the number of bytes that are unthrottled, and identified the
behavior using the number of bytes that are transferred before the
first packet is dropped (13]. In our work, we seek to avoid assump-
tions about whether such delayed throttling is based on bytes or time,

135

and to use techniques that are insensitive to packet drops caused
by reasons other than delayed throttling, instead, we assume that
adetectable delayed throttling session will have at least one phase
change, and that all tests for an ISP-app pair affected by delayed throt-
tling will experience the same delay (j.e., number of seconds or bytes),
Thus, to detect delayed throttling for an ISP-app pair, we use change
point detection {to identify the phase change) and KDE to identify
whether the change occurs after a number of seconds or bytes,

Our null hypothesis is that there is no delayed throttling. If
this were true, a phase change could be caused by reasons such
as bandwidth volatility, and we would expect that the delay would
be randomly distributed. To test this hypothesis, we investigate
only tests for an ISP-app pair with exactly one phase change, and
determine the distribution of delays.

To detect phase changes, we use the PELT algorithm [19] and
filter out any tests that do not have exactly one change point. We
tuned the detection algorithm so that it would detect change points
from tests where we replayed Netflix on T-Mobile's network using
our lab devices. To determine whether the change point indicates
statistically significant throughput on either side of the boundary,
we use a KS test to compare the distributions of throughput before
and after the change point. If they are different, we add the change
point time and bytes to the list of change points for the I1SP-app pair.

After gathering lists of change points, we use KDE® to determine
whether the change points for the ISP-app pair are randomly dis-
tributed or instead cluster together around a time or number of bytes.
Ifthere is arelatively large density value at a given number of bytes or
time, then wereject the null hypothesis and flag the ISP-app pair asex-
periencing delayed throttling, according to bytes or time, whichever
has the largest density value. As an example, Fig. 5 shows the distri-
bution and estimated PDF of delayed throttling bytes for Netflix on T-
Mobile, where most of the change points are detected around 7 MB.”

If delayed throttling is detected, we filter out throughput samples
during the delay and detect the throttling rate as described in the
previous section,

4.4 Limitations and Caveats
The methodology for detecting fixed-rate throttling presented in
this paper is subject to the following limitations,

SWithan ically derived threshold density of 0.1,
TThe change point thmes have substantially lower density.

Large-Scale Analysis of Deployed Differentiation

500
8
g4o00
% 300
u
8200
Z 100

0 2 4 6 a
Megabytes

10

Figure 5: Detecting delayed throttling bytes for Netflix in
T-Mobile. For each change point {(in bytes) an the x-axis, the
figure shows a histogram and estimated PDF generated from
KDE. The green dot {(at 7 MB) indicates the detected number
bytes before throttling begins,

Record/replay limitations The recorded traffic that we use
for an app in Wehe's replay tests may not always match the traffic
generated by the app. For example, if a video provider switches from
HTTP to HTTPS, our tests would be out of date until we create a
new recording. Likewise, a throttling device may update its rules for
detecting traffic before we deploy a new recording, and this could
lead to false negatives. We periodically check for changes to appsthat
wetest in Wehe, e.g., we updated our recordings in mid-January, 2019
after Amazon Prime Video changed from using HTTPS to HTTP.
Detection limits ~ We can find evidence of fixed-rate throttling
only when we have sufficient tests {(and a sufficient fraction of tests
being throttled to the same rate) from an ISP to obtain statistical
significance. We detected differentiation for 39 ISPs, but we see no
evidence of fixed-rate throttling for 9 of them. Specifically, for these 9
cases we found differences between original and bit-inverted average
throughputs, but we did not detect fixed-rate throttling after running
KDE. We do not know the root causes for these cases.

5 EVALUATION OF DETECTION METHOD

We now evaluate our detection method using controlled experiments
from the four largest US cellular providers. Ideally, we would
compare our detection results with ground-truth information from
each ISP in our study, but gaining access to each network in our
crowdsourced data would be infeasible. Further, even if we had this
information, we could not control for confounding factors such as
varying network conditions, the user’s data plan or usage history.

Instead, we validate that our detection methodology produces
findings that are consistent with controlled experiments performed
in our lab. For the largest four US carriers, we do find consistent
results—our lab tests indicate content-based differentiation and
fixed-rate throttling that matches results produced by our analysis
of data from Wehe users,

5.1 Lab experiment setup

We purchased SIM cards from AT&T, Sprint, T-Mobile and Verizon.

We intentionally purchased prepaid plans that mention indicators
of throttling practices, such as “video streaming at 480p” or “video
optimized streaming.” Note that none of the disclosures indicated
which video providers are targeted for throttling, nor how the
targeting is done. We conducted lab experiments in Jan. 2018, May

136

SIGCOMM "19, August 19-23, 2019, Beijing, China

2018 and Jan. 2019 for AT&T, T-Mobile and Verizon, and the tests for
Sprint only in January, 2019 due to difficulty acquiring a prepaid SIM.

For each experiment, we ran each of the 7 Wehe tests on each
SIM card 10 times. We include two sets of tests for Vimeo (with
two different domains) and Amazon Prime Video (one using HTTPS
and one using HTTP) in Jan. 2019 to reflect the change in how the
service delivered video that month.

Since the data plan disclosures did not indicate which video
services were throttled, we do not have ground truth for which Wehe
tests should be affected. Instead, our hypothesis is that if our lab
tests are affected by content-based differentiation, then we should
be able to detect exactly which content triggers throttling, We use
the “binary randomization” method [20] for identifying content
that triggers DPI classification rules used in throttling deployments

5.2 Comparison with Wehe data

To compare the lab findings with crowdsourced Wehe data, we
build subsets of Wehe data, one each from Jan., 2018 and May 2018,
and twao from Jan, 2019 to reflect updated recordings released that
month. We then use the methodology from the previous section
to detect fixed rate-throttling and compare our findings with those
from lab experiments, Additional findings from our lab setting are
discussed in Appendix A.

Table 3 presents a summary of findings, showing that our lab
tests and crowdsourced data are consistent. There are at Jeast three
columns for each 1SP-app pair, representing tests from Jan., 2018,
May 2018 and Jan., 2019, There is an additional column for Amazon
and Vimeo where we separate out the tests based on whether they
were done using older (the third column) or newer traces (the
fourth column). A shaded cell indicates that our method detected
differentiation using crowdsourced tests for that ISP-app pair from
that specific month, while a white cell means that we did not. A

shows that the result from Wehe data matches the lab experiment
for an 15P-app pair during that menth, and a “-” indicates cases
where we have no lab experiments (January/May 2018 for Sprint).

Table 3 shows that all cases of throttling in lab experiments were
also detected in Wehe tests. We could not verify consistency for all
Wehe crowdsourced findings; namely, our tests indicate throttling
of Skype video in the first nine months of 2018, but we did not have
a Sprint SIM for lab tests then.

6 CHARACTERIZING DIFFERENTIATION

We now present our findings from all Wehe tests in our dataset. In
this section, we focus on cases where throttling is detected for at
least one ISP-app pair, Table 4 summarizes the results. Additional
detail of the findings in Table 4 are presented in Appendix C. While
the majority of tests come from WiFi networks, the majority of
detected differentiation occurs in cellular netwarks, We discuss our
findings in more detail below,

6.1 Identified differentiation

We identified 30 ISPs in 7 countries that throttle at least one Wehe
test. Nearly all cases of detected throttling affect video streaming
services, with YouTube being throttled the most often (25 cases),
and Vimeo being throttled the least (3 cases).

