


Calibrated Model-Based Deep Reinforcement Learning

and intuition on how to apply calibration in reinforcement

learning.

We validate our approach on benchmarks for contextual

bandits and continuous control (Li et al., 2010; Todorov

et al., 2012), as well as on a planning problem in inventory

management (Van Roy et al., 1997). Our results show that

calibration consistently improves the cumulative reward and

the sample complexity of model-based agents, and also en-

hances their ability to balance exploration and exploitation

in contextual bandit settings. Most interestingly, on the

HALFCHEETAH task, our system achieves state-of-the-art

performance, using 50% fewer samples than the previous

leading approach (Chua et al., 2018). Our results suggest

that calibrated uncertainties have the potential to improve

model-based reinforcement learning algorithms with mini-

mal computational and implementation overhead.

Contributions. In summary, this paper adapts recent ad-

vances in uncertainty estimation for deep neural networks

to reinforcement learning and proposes a simple way to im-

prove any model-based algorithm with calibrated uncertain-

ties. We explain how this technique improves the accuracy

of planning and the ability of agents to balance exploration

and exploitation. Our method consistently improves perfor-

mance on several reinforcement learning tasks, including

contextual bandits, inventory management and continuous

control1.

2. Background

2.1. Model-Based Reinforcement Learning

Let S and A denote (possibly continuous) state and action

spaces in a Markov Decision Process (S,A, T, r) and let

Π denote the set of all stationary stochastic policies π :
S ! P(A) that choose actions in A given states in S . The

successor state s0 for a given action a from current state s
are drawn from the dynamics function T (s0|s, a). We work

in the γ-discounted infinite horizon setting and we will use

an expectation with respect to a policy π 2 Π to denote

an expectation with respect to the trajectory it generates:

Eπ[r(s, a)] , E [
P

1

t=0 γ
tr(st, at)], where s0 ⇠ p0, at ⇠

π(·|st), and st+1 ⇠ T (·|st, at) for t � 0. p0 is the initial

distribution over states and r(st, at) is the reward at time t.

Typically, S,A, γ are known, while the dynamics model

T (s0|s, a) and the reward function r(s, a) are not known

explicitly. This work focuses on model-based reinforcement

learning, in which the agent learns an approximate model

T̂ (s0|s, a) of the world from samples obtained by interacting

with the environment and uses this model to plan its future

decisions.

1Our code is available at https://github.com/

ermongroup/CalibratedModelBasedRL

Probabilistic Models This paper focuses on probabilistic

dynamics models bT (s0|s, a) that take a current state s 2 S
and action a 2 A, and output a probability distribution over

future states s0. We represent the output distribution over the

next states, bT (·|s, a), as a cumulative distribution function

Fs,a : S ! [0, 1], which is defined for both discrete and

continuous S .

2.2. Calibration, Sharpness, and Proper Scoring Rules

A key desirable property of probabilistic forecasts is calibra-

tion. Intuitively, a transition model bT (s0|s, a) is calibrated if

whenever it assigns a probability of 0.8 to an event — such

as a state transition (s, a, s0) — that transition should occur

about 80% of the time.

Formally, for a discrete state space S and when s, a, s0 are

i.i.d. realizations of random variables S,A, S0 ⇠ P, we say

that a transition model bT is calibrated if

P (S0 = s0 | bT (S0 = s0|S,A) = p) = p

for all s0 2 S and p 2 [0, 1].

When S is a continuous state space, calibration is defined

using quantiles as P (S0  F�1
S,A(p)) = p for all p 2 [0, 1],

where F�1
s,a (p) = inf{y : p  Fs,a(y)} is the quantile

function associated with the CDF Fs,a over future states

s0 (Gneiting et al., 2007). A multivariate extension can be

found in Kuleshov et al. (2018).

Note that calibration alone is not enough for a model to be

good. For example, assigning the same average probability

to each transition may suffice as a calibrated model, but

this model will not be useful. Good models need to also be

sharp: intuitively, their probabilities should be maximally

certain, i.e. close to 0 or 1.

Proper Scoring Rules. In the statistics literature, proba-

bilistic forecasts are typically assessed using proper scoring

rules (Murphy, 1973; Dawid, 1984). An example is the Brier

score L(p, q) = (p� q)2 defined over two Bernoulli distri-

butions with natural parameters p, q 2 [0, 1]. Crucially, any

proper scoring rule decomposes precisely into a calibration

and a sharpness term (Murphy, 1973):

Proper Scoring Rule = Calibration + Sharpness + const.

Most loss functions for probabilistic forecasts over both

discrete and continuous variables are proper scoring rules

(Gneiting & Raftery, 2007). Hence, calibration and sharp-

ness are precisely the two sufficient properties of a good

forecast.

2.3. Recalibration

Most predictive models are not calibrated out-of-the-box

(Niculescu-Mizil & Caruana, 2005). However, given an
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arbitrary pre-trained forecaster H : X ! (Y ! [0, 1])
that outputs CDFs F , we may train an auxiliary model R :
[0, 1] ! [0, 1] such that the forecasts R � F are calibrated

in the limit of enough data. This recalibration procedure

applies to any probabilistic regression model and does not

worsen the original forecasts from H when measured using

a proper scoring rule (Kuleshov & Ermon, 2017).

When S is discrete, a popular choice of R is Platt scal-

ing (Platt et al., 1999); Kuleshov et al. (2018) extends Platt

scaling to continuous variables. Either of these methods can

be used within our framework.

3. What Uncertainties Do We Need In

Model-Based Reinforcement Learning?

In model-based reinforcement learning, probabilistic models

improve the performance and sample complexity of plan-

ning algorithms (Rajeswaran et al., 2016; Chua et al., 2018);

this naturally raises the question of what constitutes a good

probabilistic model.

3.1. Calibration vs. Sharpness Trade-Off

A natural way of assessing the quality of a probabilistic

model is via a proper scoring rule (Murphy, 1973; Gneiting

et al., 2007). As discussed in Section 2, any proper scoring

rule decomposes into a calibration and a sharpness term.

Hence, these are precisely the two qualities we should seek.

Crucially, not all probabilistic predictions with the same

proper score are equal: some are better calibrated, and others

are sharper. There is a natural trade-off between these terms.

In this paper, we argue that this trade-off plays an important

role when specifying probabilistic models in reinforcement

learning. Specifically, it is much better to be calibrated

than sharp, and calibration significantly impacts the perfor-

mance of model-based algorithms. Recalibration methods

(Platt et al., 1999; Kuleshov et al., 2018) allow us to ensure

that a model is calibrated, and thus improve reinforcement

learning agents.

3.2. Importance of Calibration for Decision-Making

In order to explain the importance of calibration, we provide

some intuitive examples, and then prove a formal statement.

Intuition. Consider a simple MDP with two states sgood

and sbad. The former has a high reward r(sgood) = 1 and

the latter has a low reward r(sbad) = �1.

First, calibration helps us better estimate expected rewards.

Consider the expected reward r̂ from taking action a in sgood

under the model. It is given by r̂ = �1 · T̂ (sbad|sgood, a) +

1 · T̂ (sgood|sgood, a). If the true transition probability is

T (sgood|sgood, a) = 80%, but our model T̂ predicts 60%,

then in the long run the average reward from a in sgood will

not equal to r̂; incorrectly estimating the reward will in turn

cause us to choose sub-optimal actions.

Similarly, suppose that the model is over-confident and

T̂ (sgood|sgood, a) = 0; intuitively, we may decide that it

is not useful to try a in sgood, as it leads to sbad with 100%

probability. This is an instance of the classical exploration-

exploitation problem; many approaches to this problem

(such as the UCB family of algorithms) rely on accurate

confidence bounds and are likely to benefit from calibrated

uncertaintites that more accurately reflect the true probabil-

ity of transitioning to a particular state.

Expectations Under Calibrated Models. More con-

cretely, we can formalise our intuition about the accuracy

of expectations via the following statement for discrete vari-

ables; see the Appendix for more details.

Lemma 1. Let Q(Y |X) be a calibrated model over two

discrete variables X,Y ⇠ P such that P(Y = y | Q(Y =
y | X) = p) = p. Then any expectation of a function G(Y )
is the same under P and Q:

E
y⇠P(Y )

[G(y)] = E
x⇠P(X)

y⇠Q(Y |X=x)

[G(y)] . (1)

In model-based reinforcement learning, we take expecta-

tions in order to compute the expected reward of a sequence

of decisions. A calibrated model will allow us to estimate

these more accurately.

4. Calibrated Model-Based Reinforcement

Learning

In Algorithm 1, we present a simple procedure that aug-

ments a model-based reinforcement learning algorithm with

an extra step that ensures the calibration of its transition

model. Algorithm 1 effectively corresponds to standard

model-based reinforcement learning with the addition of

Step 4, in which we train a recalibrator R such that R � T is

calibrated. The subroutine CALIBRATE can be an instance

of Platt scaling, for discrete S, or the method of Kuleshov

et al. (2018), when S is continuous (see Algorithm 2 in the

appendix).

In the rest of this section, we describe best practices for

applying this method.

Diagnostic Tools. An essential tool for visualising cali-

bration of predicted CDFs F1, . . . FN is the reliability curve

(Gneiting et al., 2007). This plot displays the empirical

frequency of points in a given interval relative to the pre-

dicted fraction of points in that interval. Formally, we
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Algorithm 1 Calibrated Model-Based Reinforcement Learning

Input: Initial transition model bT : S ⇥ A ! P(S) and

initial dataset of state transitions D = {(st, at), st+1}
N
t=1

Repeat until sufficient level of performance is reached:

1. Run the agent and collect a dataset of state transitions

Dnew  EXECUTEPLANNING( bT ). Gather all experi-

ence data D  D [Dnew.

2. Let Dtrain,Dcal  PARTITIONDATA(D) be the train-

ing and calibration sets, respectively.

3. Train a transition model bT  TRAINMODEL(Dtrain).

4. Train the recalibrator R CALIBRATE( bT ,Dcal).

5. Let bT  R � bT be the new, recalibrated transition

model.

choose m thresholds 0  p1  · · ·  pm  1 and,

for each threshold pj , compute the empirical frequency

p̂j = |yt : Ft(yt)  pj , t = 1, . . . , N |/N

Plotting {(pj , p̂j)} gives us a sense of the calibration of the

model (see Figure 2), with a straight line corresponding to

perfect calibration. An equivalent, alternative visualisation

is to plot a histogram of of the probability integral transform

{Ft(yt)}
N
t=1 and see if it looks like a uniform distribution

(Gneiting et al., 2007).

These visualisations can be quantified by defining the cali-

bration loss2 of a model:

cal(F1, y1, . . . Ft, yY ) =

mX

j=1

(p̂j � pj)
2, (2)

as the sum of the squares of the residuals (p̂j � pj)
2. These

diagnostic tools should be evaluated on unseen data distinct

from the training and calibration sets as it may reveal signs

of overfitting.

4.1. Applications to Deep Reinforcement Learning

Although deep neural networks can significantly improve

model-based planning algorithms (Higuera et al., 2018;

Chua et al., 2018), their estimates of predictive uncertainty

are often inaccurate (Guo et al., 2017a; Kuleshov et al.,

2018).

Variational Dropout. One popular approach to deriving

uncertainty estimates from deep neural networks involves

using dropout. Taking the mean and the variance of dropout

samples leads to a principled Gaussian approximation of

the posterior predictive distribution from a Bayesian neural

network (in regression) (Gal & Ghahramani, 2016a). To

2This is the calibration term in the two-component decomposi-
tion of the Brier score.

use Algorithm 1 we may instantiate CALIBRATE with the

method of Kuleshov et al. (2018) and pass it the predictive

Gaussian derived from the dropout samples.

More generally, our method can be naturally applied on top

of any probabilistic model without any need to modify or

retrain this model.

5. The Benefits of Calibration in Model-Based

Reinforcement Learning

Next, we examine specific ways in which Algorithm 1 can

improve model-based reinforcement learning agents.

5.1. Model-Based Planning

The first benefit of a calibrated model is enabling more

accurate planning using standard algorithms such as value

iteration or model predictive control (Sutton & Barto, 2018).

Each of these methods involves estimates of future reward.

For example, value iteration performs the update

V 0(s) Ea⇠π(·|s)

"
X

s02S

T̂ (s0|s, a)(r(s0) + V (s0))

#
.

Crucially, this algorithm requires accurate estimates of the

expected reward
P

s02S T̂ (s0|s, a)r(s0). Similarly, online

planning algorithms involve computing the expected reward

of a finite sequence of actions, which has a similar form. If

the model is miscalibrated, then the predicted distribution

T̂ (s0|s, a) will not accurately reflect the true distribution of

states that the agent will encounter in the real world. As a

result, planning performed in the model will be inaccurate.

More formally, let us define the value of a policy π as

V (π) = Es⇠σπ
[V (s)], where σπ is the stationary distribu-

tion of the Markov chain induced by π. Let V 0(π) be an

estimate of the value of π in a second MDP in which we

replaced the transition dynamics by a calibrated model bT
learned from data. Then, the following holds.

Theorem 1. Let (S,A, T, r) be a discrete MDP and let π

be a stochastic policy over this MDP. The value V (π) of

policy π under the true dynamics T is equal to the value

V 0(π) of the policy under any set of calibrated dynamics bT .

Effectively, having a calibrated model makes it possible to

compute accurate expectations of rewards, which in turn

provides accurate estimates of the values of states and poli-

cies. Accurately estimating the value of a policy makes it

easier to choose the best one by planning.

5.2. Balancing Exploration and Exploitation

Balancing exploration and exploitation successfully is a

fundamental challenge for many reinforcement learning

(RL) algorithms. A large family of algorithms tackle this





Calibrated Model-Based Deep Reinforcement Learning

however, the linear assumption might not hold, resulting in

miscalibrated estimates of the expected reward.

In Table 1, we can see that indeed there is no signifi-

cant difference in performance between the CalLinUCB

and LinUCB algorithms on the synthetic linear dataset—

they both preform optimally. On the UCI datasets how-

ever, we see a noticeable improvement with CalLinUCB

on almost all tasks, suggesting that recalibration aids ex-

ploration/exploitation in a setting where the model is mis-

specified. Note that both CalLinUCB and LinUCB perform

below the optimum on these datasets, implying linear mod-

els are not expressive enough in general for these tasks.

Analysis. To get a sense of the effect of calibration on

the model’s confidence estimates, we can plot the predicted

reward with 90% confidence intervals that the algorithm

expected for a chosen arm a at timestep t. We can then com-

pare how good this prediction was with respect to the true

observed reward. Specifically, we can look at the timesteps

where the CalLinUCB algorithm picked the optimal action

but the LinUCB algorithm did not, and look at both the

algorithms’ belief about the predicted reward from both of

these actions. An example of this plot can be seen in the

appendix on Figure 4.

A key takeaway from this plot is that the uncalibrated al-

gorithm systematically underestimates the expected reward

from the optimal action and overestimates the expected re-

ward of the action it chose instead, resulting in suboptimal

actions. The calibrated model does not suffer from this

defect, and thus performs better on the task.

6.2. Model-Based Planning

6.2.1. INVENTORY MANAGEMENT

Our first model-based planning task is inventory manage-

ment (Van Roy et al., 1997). A decision-making agent

controls the inventory of a perishable good in a store. Each

day, the agent orders items into the store; if the agent under-

orders, the store runs out of stock; if the agent over-orders,

perishable items are lost due to spoilage. Perishable inven-

tory management systems have the potential to positively

impact the environment by minimizing food waste and en-

abling a more effective use of resources (Vermeulen et al.,

2012).

Model. We formalize perishable inventory management

for one item using a Markov decision process (S,A, P, r).
States s 2 S are tuples (ds, qs) consisting of a calendar

day ds and an inventory state qs 2 Z
L, where L � 1 is

the item shelf-life. Each component (qs)l indicates the

number of units in the store that expire in l days; the total

inventory level is ts =
PL

l=1(qs)l. Transition probabilities

P are defined as follows: each day sees a random demand

Calibrated Uncalibrated Heuristic

Shipped 332,150 319,692 338,011
Wasted 7,466 3,148 13,699
Stockouts 9,327 17,358 11,817

% Waste 2.2% 1.0% 4.1%
% Stockouts 2.8% 5.4% 3.5%

Reward -16,793 -20,506 -25,516

Table 2. Performance of calibrated model planning on an inventory

management task. Calibration significantly improves cumulative

reward. Numbers are in units, averaged over ten trials.

of D(s) 2 Z units and sales of max(t(s) �D(s), 0) units,

sampled at random from all the units in the inventory; at

the end of the state transition, the shelf-life of the remaining

items is decreased by one (spoiled items are recorded and

thrown away). Actions a 2 A ✓ Z correspond to orders:

the store receives items with a shelf life of L before entering

the next state s0. In our experiments we choose the reward r
to be the sum of waste and unmet demand due to stock-outs.

Data. We use the Corporacion Favorita Kaggle dataset,

which consists of historical sales from a supermarket chain

in Ecuador. We experiment on the 100 highest-selling items

and use data from 2014-01-01 to 2016-05-31 for training

and data from 2016-06-01 to 2016-08-31 for testing.

Algorithms. We learn a probabilistic model M̂ : S !
(R! [0, 1]) of the demand D(s0) in a future state s0 based

on information available in the present state s. Specifically,

we train a Bayesian DenseNet (Huang et al., 2017) to predict

sales on each of the next five days based on features from

the current day (sales serve as a proxy for demand). We use

autoregressive features from the past four days, 7-, 14-, and

28-day rolling means of historical sales, binary indicators

for the day of the week and the week of the year, and sine

and cosine features over the number of days elapsed in the

year. The Bayesian DenseNet has five layers of 128 hidden

units with a dropout rate of 0.5 and parametric ReLU non-

linearities. We use variational dropout (Gal & Ghahramani,

2016b) to compute probabilistic forecasts from the model.

We use our learned distribution over D(s0) to perform on-

line planning on the test set using model predictive control

(MPC) learned on the training set. Specifically, we sample

5,000 random trajectories over a 5-step horizon, and choose

the first action of the trajectory with the highest expected

reward under the model. We estimate the expected reward

of each trajectory using 300 Monte Carlo samples from the

model.

We also compare the planning approach to a simple heuristic

rule that always sets the inventory to 1.5 · E[D(s0)], which

is the expected demand multiplied by a small safety factor.



Calibrated Model-Based Deep Reinforcement Learning

Results. We evaluate the agent within the inventory man-

agement MDP; the demand D(s) is instantiated with the

historical sales on test day d(s) (which the agent did not

observe). We measure total cumulative waste and stockouts

over the 100 items in the dataset, and we report them as a

fraction of the total number of units shipped to the store.

Table 2 shows that calibration improves the total cumulative

reward by 14%. The calibrated model incurs waste and out-

of-stocks ratios of 2.2% and 2.8%, respectively, compared

to 1.0% and 5.4% for the uncalibrated one. These values

are skewed towards a smaller waste, while the objective

function penalizes both equally. The heuristic has ratios of

4.1% and 3.5%.

6.2.2. MUJOCO ENVIRONMENTS

Our second model-based planning task is continuous control

from OpenAI Gym (Brockman et al., 2016) and the Mu-

joco robotics simulation environment (Todorov et al., 2012).

Here the agent makes decisions about its torque controls

given observation states (e.g. location / velocity of joints)

that maximizes the expected return reward. These environ-

ments are standard benchmark tasks for deep reinforcement

learning.

Setup. We consider calibrating the probablistic ensemble

dynamics model proposed in (Chua et al., 2018). In this

approach, the agent learns an ensemble of probabilistic neu-

ral networks (PE) that captures the environment dynamics

st+1 ⇠ fθ(st, at), which is used for model-based planning

with model predictive control. The policy and ensemble

model are then updated in an iterative fashion. Chua et al.

(2018) introduce several strategies for particle-based state

propagation, including trajectory sampling with bootstraped

models (PE-TS); and distribution sampling (PE-DS), which

samples from a multimodal distribution as follows:

st+1 ⇠ N (E[spt+1],Var[s
p
t+1]), spt+1 ⇠ fθ(st, at) (4)

PE-TS and PE-DS achieve the highest sample efficiency

among the methods proposed in (Chua et al., 2018).

To calibrate the model, we add a final sigmoid recalibration

layer to the sampling procedure in PE-DS at each step. This

logistic layer is applied separately per output state dimen-

sion and serves as the recalibrator R. It is trained on the

procedure described in Algorithm 2, after every trial, on a

separate calibration set using cross entropy loss.

We consider three continuous control environments from

Chua et al. (2018) 3. For model learning and model-

based planning, we follow the training procedure and

hyperparameters in Chua et al. (2018), as described in

3We omitted the reacher environment because the reference
papers did not have SAC results for it.

https://github.com/kchua/handful-of-trials. We also com-

pare our method against Soft Actor-Critic (Haarnoja et al.,

2018) which is one of the state-of-the-art model-free rein-

forcement learning algorithms. We use the final conver-

gence reward of SAC as a criterion for the highest possible

reward achieved in the task (although it may require orders

of magnitude more samples from the environment).

Results. One of the most important criteria for evaluating

reinforcement learning algorithms is sample complexity, i.e,

the amount of interactions with the environment in order

to reach a certain high expected return. We compare the

sample complexities of SAC, PE-DS and calibrated PE-DS

in Figure 3. Compared to the model-free SAC method, both

the model-based methods use much fewer samples from

the environment to reach the convergence performance of

SAC. However, our recalibrated PE-DS method compares

favorably to PE-DS on all three environments.

Notably, the calibrated PE-DS method outperforms both PE-

DS by a significant margin on the HalfCheetah environment,

reaching near optimal performance at only around 180k

timesteps. To our knowledge, the calibrated PE-DS is the

most efficient method on these environments in terms of

sample complexity.

Analysis. In Figure 5 in the appendix, we visualise the

1-step prediction accuracy for action dimension zero in the

Cartpole environment for both PE-DS and calibrated PE-

DS. This figure shows that the calibrated PE-DS model is

more accurate, has tighter uncertainty bounds, and is better

calibrated, especially in earlier trials. Interestingly, we also

observe a superior expected return for calibrated PE-DS for

earlier trials in Figure 3, suggesting that being calibrated

is correlated with improvements in model-based prediction

and planning.

7. Discussion

Limitations. A potential failure mode for our method

arises when not all forecasts are from the same family of

distributions. This can lead to calibrated, but diffuse con-

fidence intervals. Another limitation of the method is its

scalability to high-dimensional spaces. In our work, the

uncalibrated forecasts were fully factored, and could be re-

calibrated component-wise. For non-factored distributions,

recalibration is computationally intractable and requires

approximations such as ones developed for multi-class clas-

sification (Zadrozny & Elkan, 2002).

Finally, it is possible that uncalibrated forecasts are still

effective if they induce a model that correctly ranks the

agent’s actions in terms of their expected reward (even when

the estimates of the reward themselves are incorrect).
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