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Abstract

Estimates of predictive uncertainty are important
for accurate model-based planning and reinforce-
ment learning. However, predictive uncertainties
— especially ones derived from modern deep learn-
ing systems — can be inaccurate and impose a
bottleneck on performance. This paper explores
which uncertainties are needed for model-based
reinforcement learning and argues that good un-
certainties must be calibrated, i.e. their prob-
abilities should match empirical frequencies of
predicted events. We describe a simple way to
augment any model-based reinforcement learning
agent with a calibrated model and show that doing
so consistently improves planning, sample com-
plexity, and exploration. On the HALFCHEETAH
MuJoCo task, our system achieves state-of-the-art
performance using 50% fewer samples than the
current leading approach. Our findings suggest
that calibration can improve the performance of
model-based reinforcement learning with mini-
mal computational and implementation overhead.

1. Introduction

Methods for accurately assessing predictive uncertainty
are important components of modern decision-making sys-
tems. Probabilistic methods have been used to improve the
safety, interpretability, and performance of decision-making
agents in various domains, including medicine (Saria, 2018),
robotics (Chua et al., 2018; Buckman et al., 2018), and op-
erations research (Van Roy et al., 1997).

In model-based reinforcement learning — a setting in which
an agent learns a model of the world from past experience
and uses it to plan future decisions — capturing uncer-
tainty in the agent’s model is particularly important (Deisen-
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Figure 1. Modern model-based planning algorithms with proba-
bilistic models can over-estimate their confidence (purple distri-
bution), and overlook dangerous outcomes (e.g., a collision). We
show how to endow agents with a calibrated world model that
accurately captures true uncertainty (green distribution) and im-
proves planning in high-stakes scenarios like autonomous driving
or industrial optimisation.

roth & Rasmussen, 2011). Planning with a probabilistic
model improves performance and sample complexity, es-
pecially when representing the model using a deep neural
network (Rajeswaran et al., 2016; Chua et al., 2018).

Despite their importance in decision-making, predictive
uncertainties can be unreliable, especially when derived
from deep neural networks (Guo et al., 2017a). Although
several modern approaches such as deep ensembles (Laksh-
minarayanan et al., 2017b) and approximations of Bayesian
inference (Gal & Ghahramani, 2016a;b; Gal et al., 2017) pro-
vide uncertainties from deep neural networks, these methods
suffer from shortcomings that reduce their effectiveness for
planning (Kuleshov et al., 2018).

In this paper, we study which uncertainties are needed in
model-based reinforcement learning and argue that good
predictive uncertainties must be calibrated, i.e. their prob-
abilities should match empirical frequencies of predicted
events. We propose a simple way to augment any model-
based reinforcement learning algorithm with a calibrated
model by adapting recent advances in uncertainty estimation
for deep neural networks (Kuleshov et al., 2018). We com-
plement our approach with diagnostic tools, best-practices,
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and intuition on how to apply calibration in reinforcement
learning.

We validate our approach on benchmarks for contextual
bandits and continuous control (Li et al., 2010; Todorov
et al., 2012), as well as on a planning problem in inventory
management (Van Roy et al., 1997). Our results show that
calibration consistently improves the cumulative reward and
the sample complexity of model-based agents, and also en-
hances their ability to balance exploration and exploitation
in contextual bandit settings. Most interestingly, on the
HALFCHEETAH task, our system achieves state-of-the-art
performance, using 50% fewer samples than the previous
leading approach (Chua et al., 2018). Our results suggest
that calibrated uncertainties have the potential to improve
model-based reinforcement learning algorithms with mini-
mal computational and implementation overhead.

Contributions. In summary, this paper adapts recent ad-
vances in uncertainty estimation for deep neural networks
to reinforcement learning and proposes a simple way to im-
prove any model-based algorithm with calibrated uncertain-
ties. We explain how this technique improves the accuracy
of planning and the ability of agents to balance exploration
and exploitation. Our method consistently improves perfor-
mance on several reinforcement learning tasks, including
contextual bandits, inventory management and continuous
control'.

2. Background
2.1. Model-Based Reinforcement Learning

Let S and A denote (possibly continuous) state and action
spaces in a Markov Decision Process (S, A, T, r) and let
II denote the set of all stationary stochastic policies 7 :
S — P(A) that choose actions in A given states in S. The
successor state s’ for a given action a from current state s
are drawn from the dynamics function T'(s’|s, a). We work
in the y-discounted infinite horizon setting and we will use
an expectation with respect to a policy = € II to denote
an expectation with respect to the trajectory it generates:
Er[r(s,a)] £ E[Y ;o v'7(s¢, ar)], where so ~ po, az ~
7(-|s¢), and sp41 ~ T'(+|s¢, ar) for t > 0. pg is the initial
distribution over states and 7 (s, a;) is the reward at time ¢.

Typically, S, A,~ are known, while the dynamics model
T(s'|s,a) and the reward function (s, a) are not known
explicitly. This work focuses on model-based reinforcement
learning, in which the agent learns an approximate model
T'(s'|s, a) of the world from samples obtained by interacting
with the environment and uses this model to plan its future
decisions.

'Our code is available at https://github.com/
ermongroup/CalibratedModelBasedRL

Probabilistic Models  This paper focuses on probabilistic
dynamics models T'(s'|s, a) that take a current state s € S
and action a € A, and output a probability distribution over
future states ﬁ’ . We represent the output distribution over the
next states, 7'(-|s, a), as a cumulative distribution function
Fs . : S — [0,1], which is defined for both discrete and
continuous S.

2.2. Calibration, Sharpness, and Proper Scoring Rules

A key desirable property of probabilistic forecasts is calibra-
tion. Intuitively, a transition model T'(s’|s, a) is calibrated if
whenever it assigns a probability of 0.8 to an event — such
as a state transition (s, a, ') — that transition should occur
about 80% of the time.

Formally, for a discrete state space S and when s, a, s’ are
i.i.d. realizations of random variables S, A, S’ ~ P, we say
that a transition model 7" is calibrated if

P(S' =5 |T(S =5|S,A)=p)=p
forall s € Sand p € [0,1].

When S is a continuous state space, calibration is defined
using quantiles as P(S’ < Fs_ix (p)) =pforallp € [0,1],
where F; !(p) = inf{y : p < Fi4(y)} is the quantile
function associated with the CDF Fj , over future states
s’ (Gneiting et al., 2007). A multivariate extension can be
found in Kuleshov et al. (2018).

Note that calibration alone is not enough for a model to be
good. For example, assigning the same average probability
to each transition may suffice as a calibrated model, but
this model will not be useful. Good models need to also be
sharp: intuitively, their probabilities should be maximally
certain, i.e. close to 0 or 1.

Proper Scoring Rules. In the statistics literature, proba-
bilistic forecasts are typically assessed using proper scoring
rules (Murphy, 1973; Dawid, 1984). An example is the Brier
score L(p,q) = (p — q)? defined over two Bernoulli distri-
butions with natural parameters p, g € [0, 1]. Crucially, any
proper scoring rule decomposes precisely into a calibration
and a sharpness term (Murphy, 1973):

Proper Scoring Rule = Calibration + Sharpness + const.

Most loss functions for probabilistic forecasts over both
discrete and continuous variables are proper scoring rules
(Gneiting & Raftery, 2007). Hence, calibration and sharp-
ness are precisely the two sufficient properties of a good
forecast.

2.3. Recalibration

Most predictive models are not calibrated out-of-the-box
(Niculescu-Mizil & Caruana, 2005). However, given an
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arbitrary pre-trained forecaster H : X — (Y — [0,1])
that outputs CDFs F', we may train an auxiliary model R :
[0,1] — [0, 1] such that the forecasts R o F’ are calibrated
in the limit of enough data. This recalibration procedure
applies to any probabilistic regression model and does not
worsen the original forecasts from H when measured using
a proper scoring rule (Kuleshov & Ermon, 2017).

When S is discrete, a popular choice of R is Platt scal-
ing (Platt et al., 1999); Kuleshov et al. (2018) extends Platt
scaling to continuous variables. Either of these methods can
be used within our framework.

3. What Uncertainties Do We Need In
Model-Based Reinforcement Learning?

In model-based reinforcement learning, probabilistic models
improve the performance and sample complexity of plan-
ning algorithms (Rajeswaran et al., 2016; Chua et al., 2018);
this naturally raises the question of what constitutes a good
probabilistic model.

3.1. Calibration vs. Sharpness Trade-Off

A natural way of assessing the quality of a probabilistic
model is via a proper scoring rule (Murphy, 1973; Gneiting
et al., 2007). As discussed in Section 2, any proper scoring
rule decomposes into a calibration and a sharpness term.
Hence, these are precisely the two qualities we should seek.

Crucially, not all probabilistic predictions with the same
proper score are equal: some are better calibrated, and others
are sharper. There is a natural trade-off between these terms.

In this paper, we argue that this trade-off plays an important
role when specifying probabilistic models in reinforcement
learning. Specifically, it is much better to be calibrated
than sharp, and calibration significantly impacts the perfor-
mance of model-based algorithms. Recalibration methods
(Platt et al., 1999; Kuleshov et al., 2018) allow us to ensure
that a model is calibrated, and thus improve reinforcement
learning agents.

3.2. Importance of Calibration for Decision-Making

In order to explain the importance of calibration, we provide
some intuitive examples, and then prove a formal statement.

Intuition. Consider a simple MDP with two states Sgooq
and spq. The former has a high reward 7(sg00a) = 1 and
the latter has a low reward 7(Sp,qa) = —1.

First, calibration helps us better estimate expected rewards.
Consider the expected reward 7 from taking action a in Sg0q

under the model. It is given by 7 = —1 - T(sbad\sgood, a) +

1- T(sg00d|sgood,a). If the true transition probability is

T (5go00d|Sgood, @) = 80%, but our model T predicts 60%,
then in the long run the average reward from a in Sg50q Will
not equal to 7; incorrectly estimating the reward will in turn
cause us to choose sub-optimal actions.

Similarly, suppose that the model is over-confident and
T(sgood\sgood, a) = 0; intuitively, we may decide that it
is not useful to try a in Sgg0q, as it leads to spag with 100%
probability. This is an instance of the classical exploration-
exploitation problem; many approaches to this problem
(such as the UCB family of algorithms) rely on accurate
confidence bounds and are likely to benefit from calibrated
uncertaintites that more accurately reflect the true probabil-

ity of transitioning to a particular state.

Expectations Under Calibrated Models. More con-
cretely, we can formalise our intuition about the accuracy
of expectations via the following statement for discrete vari-
ables; see the Appendix for more details.

Lemma 1. Let Q(Y|X) be a calibrated model over two
discrete variables X, Y ~ P suchthatP(Y =y | Q(Y =
y | X) = p) = p. Then any expectation of a function G(Y)
is the same under P and Q:

E [Gy)] = E
y~P(Y) z~P(X)
y~Q(Y[X=x)

[G(y)]- (1)

In model-based reinforcement learning, we take expecta-
tions in order to compute the expected reward of a sequence
of decisions. A calibrated model will allow us to estimate
these more accurately.

4. Calibrated Model-Based Reinforcement
Learning

In Algorithm 1, we present a simple procedure that aug-
ments a model-based reinforcement learning algorithm with
an extra step that ensures the calibration of its transition
model. Algorithm 1 effectively corresponds to standard
model-based reinforcement learning with the addition of
Step 4, in which we train a recalibrator R such that R o T is
calibrated. The subroutine CALIBRATE can be an instance
of Platt scaling, for discrete .S, or the method of Kuleshov
et al. (2018), when S is continuous (see Algorithm 2 in the
appendix).

In the rest of this section, we describe best practices for
applying this method.

Diagnostic Tools. An essential tool for visualising cali-
bration of predicted CDFs F, ... Fly is the reliability curve
(Gneiting et al., 2007). This plot displays the empirical
frequency of points in a given interval relative to the pre-
dicted fraction of points in that interval. Formally, we
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Algorithm 1 Calibrated Model-Based Reinforcement Learning

Input: Initial transition model 7 : S x A — P(S) and
initial dataset of state transitions D = {(s¢, ar), S¢41 i,
Repeat until sufficient level of performance is reached:

1. Run the agent and collect a dataset of state transitions
Dhew < EXECUTEPLANNING(T'). Gather all experi-
ence data D < D U Dyey.

2. Let Dyain, Dear < PARTITIONDATA(D) be the train-
ing and calibration sets, respectively.

3. Train a transition model 7' TRAINMODEL (Dyain ).

4. Train the recalibrator R < CALIBRATE(]A“, Dea)-

5. LetT < RoT be the new, recalibrated transition
model.

choose m thresholds 0 < p; < --- < p,, < 1 and,
for each threshold p;, compute the empirical frequency
pj =yt : Fe(y) <pj,t =1,....N|/N

Plotting {(p;, p;)} gives us a sense of the calibration of the
model (see Figure 2), with a straight line corresponding to
perfect calibration. An equivalent, alternative visualisation
is to plot a histogram of of the probability integral transform
{F;(y:)}Y; and see if it looks like a uniform distribution
(Gneiting et al., 2007).

These visualisations can be quantified by defining the cali-
bration loss® of a model:

cal(Fy,y1,... Froyy) = Y (B — pi)% 2
j=1

as the sum of the squares of the residuals (p; — p;)?. These
diagnostic tools should be evaluated on unseen data distinct
from the training and calibration sets as it may reveal signs
of overfitting.

4.1. Applications to Deep Reinforcement Learning

Although deep neural networks can significantly improve
model-based planning algorithms (Higuera et al., 2018;
Chua et al., 2018), their estimates of predictive uncertainty
are often inaccurate (Guo et al., 2017a; Kuleshov et al.,
2018).

Variational Dropout. One popular approach to deriving
uncertainty estimates from deep neural networks involves
using dropout. Taking the mean and the variance of dropout
samples leads to a principled Gaussian approximation of
the posterior predictive distribution from a Bayesian neural
network (in regression) (Gal & Ghahramani, 2016a). To

2This is the calibration term in the two-component decomposi-
tion of the Brier score.

use Algorithm 1 we may instantiate CALIBRATE with the
method of Kuleshov et al. (2018) and pass it the predictive
Gaussian derived from the dropout samples.

More generally, our method can be naturally applied on top
of any probabilistic model without any need to modify or
retrain this model.

5. The Benefits of Calibration in Model-Based
Reinforcement Learning

Next, we examine specific ways in which Algorithm 1 can
improve model-based reinforcement learning agents.

5.1. Model-Based Planning

The first benefit of a calibrated model is enabling more
accurate planning using standard algorithms such as value
iteration or model predictive control (Sutton & Barto, 2018).
Each of these methods involves estimates of future reward.
For example, value iteration performs the update

V'(s) + Eqn(.|s) Z T(s']s,a)(r(s") + V(s))
s'esS

Crucially, this algorithm requires accurate estimates of the
expected reward ), ¢ T(s'|s,a)r(s"). Similarly, online
planning algorithms involve computing the expected reward
of a finite sequence of actions, which has a similar form. If
the model is miscalibrated, then the predicted distribution
T'(s'|s, a) will not accurately reflect the true distribution of
states that the agent will encounter in the real world. As a
result, planning performed in the model will be inaccurate.

More formally, let us define the value of a policy 7 as
V(n) = Esuo, [V (5)], where o is the stationary distribu-
tion of the Markov chain induced by 7. Let V'(r) be an
estimate of the value of 7 in a second MDP in which we
replaced the transition dynamics by a calibrated model T’
learned from data. Then, the following holds.

Theorem 1. Ler (S, A, T,r) be a discrete MDP and let
be a stochastic policy over this MDP. The value V (1) of
policy T under the true dynamics T' is equal to the value
V() of the policy under any set of calibrated dynamics T.

Effectively, having a calibrated model makes it possible to
compute accurate expectations of rewards, which in turn
provides accurate estimates of the values of states and poli-
cies. Accurately estimating the value of a policy makes it
easier to choose the best one by planning.

5.2. Balancing Exploration and Exploitation

Balancing exploration and exploitation successfully is a
fundamental challenge for many reinforcement learning
(RL) algorithms. A large family of algorithms tackle this



Calibrated Model-Based Deep Reinforcement Learning

LinUCB CalLinUCB Optimal
Linear 1209.8 £12.1 1210.3 £12.1 1231.8
Beta 1176.3 £11.9 1174.6 £12.0 1202.3
Mushroom | 1429.4 +£154.0 | 1676.1 +164.1 | 3122.0
Covertype | 558.14 +3.5 677.8+5.0 1200.0
Adult 131.3+1.2 1989 +4.7 1200.0
Census 207.6 £ 1.7 603.7 + 3.8 1200.0

Table 1. Performance of calibrated/uncalibrated LinUCB on a vari-
ety of datasets, averaged over 10 trials. The calibrated algorithm
(CalLinUCB) does better on all non-synthetic datasets (bottom
four rows) and has similar performance on the synthetic datasets
(top two rows).

problem using notions of uncertainty/confidence to guide
their exploration process. For example, upper confidence
bound (UCB, Auer et al. (2002)) algorithms pick the action
which has the highest upper bound on its reward confidence
interval.

In situations where the outputs of the algorithms are uncal-
ibrated, the confidence intervals might provide unreliable
upper confidence bounds, resulting in suboptimal perfor-
mance. For example, in a two-arm bandit problem, if a
model is under-estimating the reward of the best arm and
has high confidence, it’s upper confidence bound will be
low, and it will not be selected. More generally, UCB-style
methods need uncertainty estimates to be on the same “order
of magnitude” so that arms can be compared against each
other; calibration helps ensure that.

6. Experiments

We evaluate our calibrated model-based reinforcement learn-
ing method on several different environments and algo-
rithms, including contextual bandits, inventory management,
and continuous control for robotics.

6.1. Balancing Exploration and Exploitation

To test the effect of calibration on exploration/exploitation,
we look at the contextual multi-armed bandit problem (Li
et al., 2010). At each timestep, an agent is shown a context
vector x and must pick an arm a¢ € A from a finite set
A. After picking an arm, the agent receives a reward r,, x
which depends both on the arm picked and also on the
context vector shown to the agent. The agent’s goal over
time is to learn the relationship between the context vector
and reward gained from each arm so that it can pick the arm
with the highest expected reward at each timestep.

Setup. For our experiments, we focus on the LinUCB
algorithm (Li et al., 2010) — a well-known instantiation of
the UCB approach to contextual bandits. LinUCB assumes
a linear relationship between the context vector and the

expected reward of an arm: for each arm a € A, there is an
unknown coefficient vector 6 such that E[r, ] = x " 0%.

LinUCB learns a predictive distribution over this reward
using Bayesian ridge regression, in which 67 has a Gaussian
posterior N'(6,,3,). The posterior predictive distribution is
also Gaussian, with mean xTéa and with standard deviation
VxT37 %, Thus, the algorithm picks the arm with the
highest a-quantile, given by

arg max (xTéa +a-/ fo]alx> . 3)

acA

We apply the recalibration scheme in Algorithm 1 of
Kuleshov et al. (2018) to these predicted Gaussian distribu-
tions.

Data. We evaluate the calibrated version (CalLinUCB)
and uncalibrated version (LinUCB) of the LinUCB algo-
rithm on both synthetic data that satisfies the linearity as-
sumption of the algorithm, as well as on real UCI datasets
from Li et al. (2010). We run the tests on 2000 examples
over 10 trials and compute the average cumulative reward.

Average Cumulative Reward Over Time

0.2

Average Cumulative Reward
o
@

0.1
= LinUCB
0.0 = CalibratedLinUCB

0 250 500 750 1000 1250 1500 1750 2000
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Figure 2. Top: Performnce of CalibLinUCB and LinUCB on the
UCI covertype dataset. Bottom: Calibration curves of the LinUCB
algorithms on the covertype dataset

Results. We expect the LinUCB algorithm to already be
calibrated on the synthetic linear data since the model is
well-specified, implying no difference in performance be-
tween CalLinUCB and LinUCB. On the real UCI datasets
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however, the linear assumption might not hold, resulting in
miscalibrated estimates of the expected reward.

In Table 1, we can see that indeed there is no signifi-
cant difference in performance between the CalLinUCB
and LinUCB algorithms on the synthetic linear dataset—
they both preform optimally. On the UCI datasets how-
ever, we see a noticeable improvement with CalLinUCB
on almost all tasks, suggesting that recalibration aids ex-
ploration/exploitation in a setting where the model is mis-
specified. Note that both CalLinUCB and LinUCB perform
below the optimum on these datasets, implying linear mod-
els are not expressive enough in general for these tasks.

Analysis. To get a sense of the effect of calibration on
the model’s confidence estimates, we can plot the predicted
reward with 90% confidence intervals that the algorithm
expected for a chosen arm « at timestep ¢. We can then com-
pare how good this prediction was with respect to the true
observed reward. Specifically, we can look at the timesteps
where the CalLinUCB algorithm picked the optimal action
but the LinUCB algorithm did not, and look at both the
algorithms’ belief about the predicted reward from both of
these actions. An example of this plot can be seen in the
appendix on Figure 4.

A key takeaway from this plot is that the uncalibrated al-
gorithm systematically underestimates the expected reward
from the optimal action and overestimates the expected re-
ward of the action it chose instead, resulting in suboptimal
actions. The calibrated model does not suffer from this
defect, and thus performs better on the task.

6.2. Model-Based Planning
6.2.1. INVENTORY MANAGEMENT

Our first model-based planning task is inventory manage-
ment (Van Roy et al.,, 1997). A decision-making agent
controls the inventory of a perishable good in a store. Each
day, the agent orders items into the store; if the agent under-
orders, the store runs out of stock; if the agent over-orders,
perishable items are lost due to spoilage. Perishable inven-
tory management systems have the potential to positively
impact the environment by minimizing food waste and en-
abling a more effective use of resources (Vermeulen et al.,
2012).

Model. We formalize perishable inventory management
for one item using a Markov decision process (S, A, P, ).
States s € S are tuples (ds, gs) consisting of a calendar
day d, and an inventory state ¢, € Z%, where L > 1 is
the item shelf-life. Each component (g,); indicates the
number of units in the store that expire in [ days; the total
inventory level is t, = Zle(qs)l. Transition probabilities
P are defined as follows: each day sees a random demand

Calibrated  Uncalibrated — Heuristic
Shipped 332,150 319,692 338,011
Wasted 7,466 3,148 13,699
Stockouts 9,327 17,358 11,817
% Waste 2.2% 1.0% 4.1%
% Stockouts | 2.8% 5.4% 3.5%
Reward -16,793 -20,506 -25,516

Table 2. Performance of calibrated model planning on an inventory
management task. Calibration significantly improves cumulative
reward. Numbers are in units, averaged over ten trials.

of D(s) € Z units and sales of max(t(*) — D(s),0) units,
sampled at random from all the units in the inventory; at
the end of the state transition, the shelf-life of the remaining
items is decreased by one (spoiled items are recorded and
thrown away). Actions a € A C Z correspond to orders:
the store receives items with a shelf life of L before entering
the next state s’. In our experiments we choose the reward r
to be the sum of waste and unmet demand due to stock-outs.

Data. We use the Corporacion Favorita Kaggle dataset,
which consists of historical sales from a supermarket chain
in Ecuador. We experiment on the 100 highest-selling items
and use data from 2014-01-01 to 2016-05-31 for training
and data from 2016-06-01 to 2016-08-31 for testing.

Algorithms. We learn a probabilistic model M:S —
(R — [0,1]) of the demand D(s’) in a future state s’ based
on information available in the present state s. Specifically,
we train a Bayesian DenseNet (Huang et al., 2017) to predict
sales on each of the next five days based on features from
the current day (sales serve as a proxy for demand). We use
autoregressive features from the past four days, 7-, 14-, and
28-day rolling means of historical sales, binary indicators
for the day of the week and the week of the year, and sine
and cosine features over the number of days elapsed in the
year. The Bayesian DenseNet has five layers of 128 hidden
units with a dropout rate of 0.5 and parametric ReLU non-
linearities. We use variational dropout (Gal & Ghahramani,
2016b) to compute probabilistic forecasts from the model.

We use our learned distribution over D(s’) to perform on-
line planning on the test set using model predictive control
(MPC) learned on the training set. Specifically, we sample
5,000 random trajectories over a 5-step horizon, and choose
the first action of the trajectory with the highest expected
reward under the model. We estimate the expected reward
of each trajectory using 300 Monte Carlo samples from the
model.

We also compare the planning approach to a simple heuristic
rule that always sets the inventory to 1.5 - E[D(s’)], which
is the expected demand multiplied by a small safety factor.
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Results. We evaluate the agent within the inventory man-
agement MDP; the demand D(s) is instantiated with the
historical sales on test day d(s) (which the agent did not
observe). We measure total cumulative waste and stockouts
over the 100 items in the dataset, and we report them as a
fraction of the total number of units shipped to the store.

Table 2 shows that calibration improves the total cumulative
reward by 14%. The calibrated model incurs waste and out-
of-stocks ratios of 2.2% and 2.8%, respectively, compared
to 1.0% and 5.4% for the uncalibrated one. These values
are skewed towards a smaller waste, while the objective
function penalizes both equally. The heuristic has ratios of
4.1% and 3.5%.

6.2.2. MUJOCO ENVIRONMENTS

Our second model-based planning task is continuous control
from OpenAl Gym (Brockman et al., 2016) and the Mu-
joco robotics simulation environment (Todorov et al., 2012).
Here the agent makes decisions about its torque controls
given observation states (e.g. location / velocity of joints)
that maximizes the expected return reward. These environ-
ments are standard benchmark tasks for deep reinforcement
learning.

Setup. We consider calibrating the probablistic ensemble
dynamics model proposed in (Chua et al., 2018). In this
approach, the agent learns an ensemble of probabilistic neu-
ral networks (PE) that captures the environment dynamics
St+1 ~ fo(st, at), which is used for model-based planning
with model predictive control. The policy and ensemble
model are then updated in an iterative fashion. Chua et al.
(2018) introduce several strategies for particle-based state
propagation, including trajectory sampling with bootstraped
models (PE-TS); and distribution sampling (PE-DS), which
samples from a multimodal distribution as follows:

St41 ™~ N(E[Sfﬂ]vvar[sfﬂ])a Sfﬂ ~ fo(st,a:) (4)
PE-TS and PE-DS achieve the highest sample efficiency
among the methods proposed in (Chua et al., 2018).

To calibrate the model, we add a final sigmoid recalibration
layer to the sampling procedure in PE-DS at each step. This
logistic layer is applied separately per output state dimen-
sion and serves as the recalibrator . It is trained on the
procedure described in Algorithm 2, after every trial, on a
separate calibration set using cross entropy loss.

We consider three continuous control environments from
Chua et al. (2018) 3. For model learning and model-
based planning, we follow the training procedure and
hyperparameters in Chua et al. (2018), as described in

3We omitted the reacher environment because the reference
papers did not have SAC results for it.

https://github.com/kchua/handful-of-trials. We also com-
pare our method against Soft Actor-Critic (Haarnoja et al.,
2018) which is one of the state-of-the-art model-free rein-
forcement learning algorithms. We use the final conver-
gence reward of SAC as a criterion for the highest possible
reward achieved in the task (although it may require orders
of magnitude more samples from the environment).

Results. One of the most important criteria for evaluating
reinforcement learning algorithms is sample complexity, i.e,
the amount of interactions with the environment in order
to reach a certain high expected return. We compare the
sample complexities of SAC, PE-DS and calibrated PE-DS
in Figure 3. Compared to the model-free SAC method, both
the model-based methods use much fewer samples from
the environment to reach the convergence performance of
SAC. However, our recalibrated PE-DS method compares
favorably to PE-DS on all three environments.

Notably, the calibrated PE-DS method outperforms both PE-
DS by a significant margin on the HalfCheetah environment,
reaching near optimal performance at only around 180k
timesteps. To our knowledge, the calibrated PE-DS is the
most efficient method on these environments in terms of
sample complexity.

Analysis. In Figure 5 in the appendix, we visualise the
1-step prediction accuracy for action dimension zero in the
Cartpole environment for both PE-DS and calibrated PE-
DS. This figure shows that the calibrated PE-DS model is
more accurate, has tighter uncertainty bounds, and is better
calibrated, especially in earlier trials. Interestingly, we also
observe a superior expected return for calibrated PE-DS for
earlier trials in Figure 3, suggesting that being calibrated
is correlated with improvements in model-based prediction
and planning.

7. Discussion

Limitations. A potential failure mode for our method
arises when not all forecasts are from the same family of
distributions. This can lead to calibrated, but diffuse con-
fidence intervals. Another limitation of the method is its
scalability to high-dimensional spaces. In our work, the
uncalibrated forecasts were fully factored, and could be re-
calibrated component-wise. For non-factored distributions,
recalibration is computationally intractable and requires
approximations such as ones developed for multi-class clas-
sification (Zadrozny & Elkan, 2002).

Finally, it is possible that uncalibrated forecasts are still
effective if they induce a model that correctly ranks the
agent’s actions in terms of their expected reward (even when
the estimates of the reward themselves are incorrect).
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Figure 3. Performance on different control tasks. The calibrated algorithm does at least as good, and often much better than the uncalibrated
models. Plots show maximum reward obtained so far, averaged over 10 trials. Standard error is displayed as the shaded areas.

Extensions to Safety. Calibration also plays an important
role in the domain of RL safety (Berkenkamp et al., 2017).
In situations where the agent is planning its next action, if it
determines the 90% confidence interval of the predicted next
state to be in a safe area but this confidence is miscalibrated,
then the agent has a higher chance of entering a failure state.

8. Related Work

Model-based Reinforcement Learning. Model-based
RL is effective in low-data and/or high-stakes regimes such
as robotics (Chua et al., 2018), dialogue systems (Singh
et al., 2000), education (Rollinson & Brunskill, 2015), sci-
entific discovery (Mclntire et al., 2016), or conservation
planning (Ermon et al., 2012). A big challenge of model-
based RL is the model bias, which is being addressed by
solutions such as model ensembles (Clavera et al., 2018;
Kurutach et al., 2018; Depeweg et al., 2016; Chua et al.,
2018) or combining with model-free approaches (Buckman
etal., 2018).

Calibration. Two of the most widely used calibration pro-
cedures are Platt scaling (Platt et al., 1999) and isotonic
regression (Niculescu-Mizil & Caruana, 2005). They can be
extended from binary to multi-class classification (Zadrozny
& Elkan, 2002), to structured prediction (Kuleshov & Liang,
2015), and to regression (Kuleshov et al., 2018). Calibra-

tion has recently been studied in the context of deep neural
networks (Guo et al., 2017b; Gal et al., 2017; Lakshmi-
narayanan et al., 2017a), identifying important shortcomings
in their uncertainties.

Probabilistic forecasting. Calibration has been studied
extensively in statistics (Murphy, 1973; Dawid, 1984) as
a criterion for evaluating forecasts (Gneiting & Raftery,
2007), including from a Bayesian perspective Dawid (1984).
Recent studies on calibration have focused on applications
in weather forecasting (Gneiting & Raftery, 2005), and have
led to implementations in forecasting systems (Raftery et al.,
2005). Gneiting et al. (2007) introduced a number of defini-
tions of calibration for continuous variables, complementing
early work on classification (Murphy, 1973).

9. Conclusion

Probabilistic models of the environment can significantly
improve the performance of reinforcement learning agents.
However, proper uncertainty quantification is crucial for
planning and managing exploration/exploitation tradeoffs.
We demonstrated a general recalibration technique that can
be combined with most model-based reinforcement learning
algorithms to improve performance. Our approach leads to
minimal computational overhead, and empirically improves
performance across a range of tasks.
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