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Abstract

Compressed sensing techniques enable effi-
cient acquisition and recovery of sparse, high-
dimensional data signals via low-dimensional
projections. In this work, we propose Un-
certainty Autoencoders, a learning framework
for unsupervised representation learning in-
spired by compressed sensing. We treat the
low-dimensional projections as noisy latent
representations of an autoencoder and di-
rectly learn both the acquisition (i.e., encod-
ing) and amortized recovery (i.e., decoding)
procedures. Our learning objective optimizes
for a tractable variational lower bound to the
mutual information between the datapoints
and the latent representations. We show how
our framework provides a unified treatment
to several lines of research in dimensionality
reduction, compressed sensing, and genera-
tive modeling. Empirically, we demonstrate
a 32% improvement on average over compet-
ing approaches for the task of statistical com-
pressed sensing of high-dimensional datasets.

1 INTRODUCTION

The goal of unsupervised representation learning is to
learn transformations of the input data which suc-
cinctly capture the statistics of an underlying data
distribution [1]. In this work, we propose a learning
framework for unsupervised representation learning in-
spired by compressed sensing. Compressed sensing is
a class of techniques used to efficiently acquire and
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recover high-dimensional data using compressed mea-
surements much fewer than the data dimensionality.
The celebrated results in compressed sensing posit that
sparse, high-dimensional datapoints can be acquired
using much fewer measurements (roughly logarithmic)
than the data dimensionality [2, 3, 4]. The acquisition
is done using certain classes of random matrices and
the recovery procedure is based on LASSO [5, 6].

The assumptions of sparsity are fairly general and can
be applied “out-of-the-box” for many data modali-
ties, e.g., images and audio are typically sparse in the
wavelet and Fourier basis respectively. However, such
assumptions ignore the statistical nature of many real-
world problems. For representation learning in par-
ticular, we have access to a training dataset from an
underlying domain. In this work, we use this data to
learn the acquisition and recovery procedures, thereby
sidestepping generic sparsity assumptions. In particu-
lar, we view the compressed measurements as the la-
tent representations of an uncertainty autoencoder.

An uncertainty autoencoder (UAE) parameterizes
both the acquisition and recovery procedures for com-
pressed sensing. The learning objective for a UAE is
based on the InfoMax principle, which seeks to learn
encodings that maximize the mutual information be-
tween the observed datapoints and noisy representa-
tions [7]. Since the mutual information is typically
intractable in high-dimensions, we instead maximize
tractable variational lower bounds [8, 9]. In doing so,
we introduce a parameteric decoder that is trained to
recover the original datapoint via its noisy representa-
tion. Unlike LASSO-based recovery, a parametric de-
coder amortizes the recovery process, which requires
only a forward pass through the decoder at test time
and thus enables scalability to large datasets [10, 11].

Notably, the framework of uncertainty autoencoders
unifies and extends several lines of prior research in un-
supervised representation learning. First, we show the-
oretically under suitable assumptions that an uncer-
tainty autoencoder is an implicit generative model of
the underlying data distribution [12], i.e., a UAE per-
mits sampling from the learned data distribution even
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though it does not specify an explicit likelihood func-
tion. Hence, it directly contrasts with variational au-
toencoders (VAE) which specify a likelihood function
(which is intractable and approximated by a tractable
evidence lower bound) [13]. Unlike a VAE, a UAE does
not require specifying a prior over the latent represen-
tations and hence offsets pathologically observed sce-
narios that cause the latent representations to be un-
informative when used with expressive decoders [14].

Next, we show that an uncertainty autoencoder, under
suitable assumptions, is a generalization of principal
component analysis (PCA). While earlier results con-
necting standard autoencoders with PCA assume lin-
ear encodings and decodings [15, 16, 17], our result sur-
prisingly holds even for non-linear decodings. In prac-
tice, linear encodings learned jointly with non-linear
decodings based on the UAE objective vastly outper-
form the linear encodings obtained via PCA. For di-
mensionality reduction on the MNIST dataset, we ob-
served an average improvement of 5.33% over PCA
when the low-dimensional representations are used for
classification under a wide range of settings.

We evaluate UAEs for statistical compressed sensing
of high-dimensional datasets. On the MNIST, Om-
niglot, and CelebA datasets, we observe average im-
provements of 38%, 31%, and 28% in recovery over the
closest benchmark across all measurements considered.
Finally, we demonstrate that uncertainty autoencoders
demonstrate good generalization performance across
domains in experiments where the encoder/decoder
trained on a source dataset are transferred over for
compressed sensing of another target dataset.

2 PRELIMINARIES

We use upper case to denote probability distributions
and assume they admit absolutely continuous densities
on a suitable reference measure, denoted by lower case
notation. We also use upper and lower case for random
variables and their realizations respectively.

Compressed sensing (CS). Let the datapoint and
measurements be denoted with multivariate random
variables X ∈ R

n and Y ∈ R
m respectively. The goal

is to recover X given the measurements Y . For the
purpose of compressed sensing, we assume m < n and
relate these variables through a measurement matrix
W ∈ R

m×l and a parameterized acquisition function
fψ : Rn → R

l (for any integer l > 0) such that:

y =Wfψ(x) + ǫ (1)

where ǫ is the measurement noise. If we let fψ(·) be
the identity function (i.e., fψ(x) = x for all x), then

we recover a standard system of underdetermined lin-
ear equations where measurements are linear combina-
tions of the datapoint corrupted by noise. In all other
cases, the acquisition function transforms x such that
fψ(x) is potentially more amenable for compressed
sensing. For instance, fψ(·) could specify a change
of basis that encourages sparsity, e.g., a Fourier basis
for audio. Note that we allow the codomain of the
mapping fψ(·) to be defined on a higher or lower di-
mensional space (i.e., l 6= n in general).

Sparse CS. To obtain nontrivial solutions to an un-
derdetermined system, X is assumed to be sparse in
some basis B. We are not given any additional in-
formation about X. The measurement matrix W is
a random Gaussian matrix and the recovery is done
via LASSO [2, 3, 4]. LASSO solves for a convex ℓ1-
minimization problem such that the reconstruction x̂
for any datapoint x is given as: x̂ = argminx ‖Bx‖1+
λ‖y−Wx‖22 where λ > 0 is a tunable hyperparameter.

Statistical CS. In statistical compressed sens-
ing [18], we are additionally given access to a set of
signals D, such that each x ∈ D is assumed to be sam-
pled i.i.d. from a data distribution Qdata. Using this
dataset, we learn the the measurement matrix W and
the acquisition function fψ(·) in Eq. (1).

At test time, we directly observe the measurements
ytest that are assumed to satisfy Eq. (1) for a target
datapoint xtest ∼ Qdata(X) and the task is to provide
an accurate reconstruction x̂test. Evaluation is based
on the reconstruction error between xtest and x̂test.
Particularly relevant to this work, we can optionally
learn a recovery function gθ : R

m → R
n to reconstruct

X given the measurements Y .

This amortized approach [11] is in contrast to stan-
dard LASSO-based decoding which solves an optimiza-
tion problem for every new datapoint at test time. If
we learned the recovery function gθ(·) during train-
ing, then x̂test = gθ(ytest) and the ℓ2 error is given by
‖xtest − gθ(ytest)‖2. Such a recovery process requires
only a function evaluation at test time and permits
scaling to large datasets [10, 11].

Autoencoders. An autoencoder is a pair of param-
eterized functions (e, d) designed to encode and de-
code datapoints. For a standard autoencoder, let
e : R

n → R
m and d : R

m → R
n denote the en-

coding and decoding functions respectively for an n-
dimensional datapoint and an m-dimensional latent
space. The learning objective minimizes the l2 recon-
struction error over a dataset D:

min
e,d

∑

x∈D

‖x− d(e(x))‖22 (2)
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where the encoding and decoding functions are typi-
cally parameterized using neural networks.

3 UNCERTAINTY AUTOENCODER

Consider a joint distribution between the signals
X and the measurements Y , which factorizes as
Qφ(X,Y ) = Qdata(X)Qφ(Y |X). Here, Qdata(X) is
a fixed data distribution and Qφ(Y |X) is a parame-
terized observation model that depends on the mea-
surement noise ǫ, as given by Eq. (1). In partic-
ular, φ corresponds to collectively the set of mea-
surement matrix parameters W and the acquisition
function parameters ψ. For instance, for isotropic
Gaussian noise ǫ with a fixed variance σ2, we have
Qφ(Y |X) = N (Wfψ(X), σ2Im).

In an uncertainty autoencoder, we wish to learn the
parameters φ that permit efficient and accurate recov-
ery of a signal X using the measurements Y . In order
to do so, we propose to maximize the mutual informa-
tion between X and Y :

max
φ

Iφ(X,Y ) =

∫
qφ(x, y) log

qφ(x, y)

qdata(x)qφ(y)
dxdy

= H(X)−Hφ(X|Y ) (3)

where H denotes differential entropy. The intuition is
simple: if the measurements preserve maximum infor-
mation about the signal, we can hope that recovery
will have low reconstruction error. We formalize this
intuition by noting that this objective is equivalent to
maximizing the average log-posterior probability of X
given Y . In fact, in Eq. (3), we can omit the term cor-
responding to the data entropy (since it is independent
of φ) to get the following equivalent objective:

max
φ

−Hφ(X|Y ) = EQφ(X,Y )[log qφ(x|y)]. (4)

Even though the mutual information is maximized and
equals the data entropy when Y = X, the dimension-
ality constraints on m ≪ n, the parametric assump-
tions on fψ(·), and the noise model prohibit learning
an identity mapping. Note that the properties of noise
ǫ such as the distributional family and sufficient statis-
tics are externally specified. For example, these could
be specified based on properties of the measurement
device for compressed sensing. More generally for
unsupervised representation learning, we treat these
properties as hyperparameters tuned based on the re-
construction loss on a held-out set, or any other form
of available supervision. It is not suggested to optimize
for these statistics during learning as the UAE would
tend to shrink this noise to zero to maximize mutual
information, thus ignoring measurement uncertainty
in the context of compressed sensing and preventing

generalization to out-of-distribution examples for rep-
resentation learning. The theoretical results in Sec-
tion 4 analyze the effect of noise more formally.

Estimating mutual information between arbitrary high
dimensional random variables can be challenging.
However, we can lower bound the mutual informa-
tion by introducing a variational approximation to the
model posterior Qφ(X|Y ) [8]. Denoting this approxi-
mation as Pθ(X|Y ), we get the following lower bound:

Iφ(X,Y ) ≥ H(X) + EQφ(X,Y ) [log pθ(x|y)] . (5)

Comparing Eqs. (3, 4, 5), we can see that the sec-
ond term in Eq. (5) approximates the intractable nega-
tive conditional entropy, −Hφ(X|Y ) with a variational
lower bound. Optimizing this bound leads to a de-
coding distribution given by Pθ(X|Y ) with variational
parameters θ. The bound is tight when there is no
distortion during recovery, or equivalently when the
decoding distribution Pθ(X|Y ) matches the true pos-
terior Qφ(X|Y ) (i.e., the Bayes optimal decoder).

Stochastic optimization. Formally, the uncer-
tainty autoencoder (UAE) objective is given by:

max
θ,φ

EQφ(X,Y ) [log pθ(x|y)] . (6)

In practice, the data distribution Qdata(X) is unknown
and accessible only via a finite dataset D. Hence, ex-
pectations with respect to Qdata(X) and its gradients
can be estimated using Monte Carlo methods. This
allows us to express the UAE objective as:

max
θ,φ

∑

x∈D

EQφ(Y |x) [log pθ(x|y)] := L(φ, θ;D). (7)

Tractable evaluation of the above objective is closely
tied to the distributional assumptions on the noise
model. This could be specified externally based
on, e.g., properties of the sensing device in com-
pressed sensing. For the typical case of an isotropic
Gaussian noise model, we know that Qφ(Y |X) =
N (Wfψ(X), σ2Im), which is easy-to-sample.

While Monte Carlo gradient estimates with respect to
θ can be efficiently obtained via linearity of expecta-
tion, gradient estimation with respect to φ is challeng-
ing since these parameters specify the sampling dis-
tribution Qφ(Y |X). One solution is to evaluate score
function gradient estimates along with control vari-
ates [19, 20, 21]. Alternatively, many continuous dis-
tributions (e.g., the isotropic Gaussian and Laplace
distributions) can be reparameterized such that it is
possible to obtain samples by applying a determinis-
tic transformation to samples from a fixed distribu-
tion and typically leads to low-variance gradient esti-
mates [13, 22, 23, 24].
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Table 1: PCA vs. UAE. Average test classification accuracy for the MNIST dataset.

Dimensions Method kNN DT RF MLP AdaB NB QDA SVM

2 PCA 0.4078 0.4283 0.4484 0.4695 0.4002 0.4455 0.4576 0.4503
UAE 0.4644 0.5085 0.5341 0.5437 0.4248 0.5226 0.5316 0.5256

5 PCA 0.7291 0.5640 0.6257 0.7475 0.5570 0.6587 0.7321 0.7102
UAE 0.8115 0.6331 0.7094 0.8262 0.6164 0.7286 0.7961 0.7873

10 PCA 0.9257 0.6354 0.6956 0.9006 0.7025 0.7789 0.8918 0.8440
UAE 0.9323 0.5583 0.7362 0.9258 0.7165 0.7895 0.9098 0.8753

25 PCA 0.9734 0.6382 0.6889 0.9521 0.7234 0.8635 0.9572 0.9194
UAE 0.9730 0.5407 0.7022 0.9614 0.7398 0.8306 0.9580 0.9218

50 PCA 0.9751 0.6381 0.6059 0.9580 0.7390 0.8786 0.9632 0.9376
UAE 0.9754 0.5424 0.6765 0.9597 0.7330 0.8579 0.9638 0.9384

100 PCA 0.9734 0.6380 0.4040 0.9584 0.7136 0.8763 0.9570 0.9428
UAE 0.9731 0.6446 0.6241 0.9597 0.7170 0.8809 0.9595 0.9431

Results. The ℓ2 reconstruction errors are shown in
Figure 4. LASSO (blue curves) does not involve any
learning, and hence its performance is same as Fig-
ure 2. The CS-VAE (red) performance degrades sig-
nificantly in comparison, even performing worse than
LASSO in some cases. The UAE based methods out-
perform these approaches and UAE-SE (green) fares
better than UAE-SD (yellow). Qualitative differences
are highlighted in Figure 5 for m = 25 measurements.

5.3 Dimensionality reduction

Dimensionality reduction is a common preprocessing
technique for specifying features for classification. We
compare PCA and UAE on this task. While Theo-
rem 2 posits that the two techniques are equivalent
in the regime of high noise given optimal UAE decod-
ings, we set the noise as a hyperparameter based on a
validation set to enable out-of-sample generalization.

Setup. We learn the principal components and
UAE projections on the MNIST training set for vary-
ing number of dimensions. We then learn classi-
fiers based on the these projections. Again, we
use a linear encoder for the UAE for a fair evalua-
tion. Since the inductive biases vary across differ-
ent classifiers, we considered 8 commonly used clas-
sifiers: k-Nearest Neighbors (kNN), Decision Trees
(DT), Random Forests (RF), Multilayer Perceptron
(MLP), AdaBoost (AdaB), Gaussian Naive Bayes
(NB), Quadratic Discriminant Analysis (QDA), and
Support Vector Machines (SVM) with a linear kernel.

Results. The performance of the PCA and UAE fea-
ture representations for different number of dimensions
is shown in Table 1. We find that UAE outperforms
PCA in a majority of the cases. Further, this trend is
largely consistent across classifiers. The improvements
are especially high when the number of dimensions is
low, suggesting the benefits of UAE as a dimensional-
ity reduction technique for classification.

6 RELATED WORK

In this section, we contrast uncertainty autoencoders
with related works in autoencoding, compressed sens-
ing, and mutual information maximization.

Autoencoders. To contrast uncertainty autoen-
coders with other commonly used autoencoding
schemes, consider a UAE with a Gaussian observation
model with fixed isotropic covariance for the decoder
of all the autoencoding objectives we discuss subse-
quently. The UAE objective can be simplified as:

min
θ,φ

Ex,y∼Qφ(X,Y )

[
‖x− gθ(y)‖22

]

Standard Autoencoder. If we assume no measure-
ment noise (i.e., ǫ = 0) and assume the observation
model Pθ(X|Y ) to be a Gaussian with mean gθ(Y )
and a fixed isotropic Σ, then the UAE objective re-
duces to minimizing the mean squared error between
the true and recovered datapoint:

min
θ,W,ψ

Ex∼Qdata(X)

[
‖x− gθ(Wfψ(x))‖22

]

This special case of a UAE corresponds to a standard
autoencoder [32] where the measurements Y signify a
hidden representation for X. However, this case lacks
the interpretation of an implicit generative model since
the assumptions of Theorem 1 do not hold.

Denoising Autoencoders. A DAE [33] adds noise
at the level of the input datapoint X to learn robust
representations. For a UAE, the noise model is defined
at the level of the compressed measurements. Again,
with the assumptions of a Gaussian decoder, the DAE
objective can be expressed as:

min
θ,W,ψ

Ex∼Qdata(X),x̃∼C(X̃|x)

[
‖x− g(Wfψ(x̃))‖22

]

where C(·|X) is some predefined noise corruption
model. Similar to Theorem 1, a DAE also learns an
implicit model of the data distribution [34, 35].
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Variational Autoencoders. A VAE [13, 22] explic-
itly learns a latent variable model Pθ(X,Y ) for the
dataset. The learning objective is a variational lower
bound to the marginal log-likelihood assigned by the
model to the data X , which notationally corresponds
to EQdata(X)[logPθ(x)]. The variational objective that
maximizes this quantity can be simplified as:

min
θ,φ

Ex,y∼Qφ(X,Y )

[
‖x− gθ(y)‖22

]

+ Ex∼Qdata
[KL(Qφ(Y |x), P (Y ))]

The learning objective includes a reconstruction error
term, akin to the UAE objective. Crucially, it also in-
cludes a regularization term to minimize the KL diver-
gence of the variational posterior over Y with a prior
distribution over Y . A key difference is that a UAE
does not explicitly need to model the prior distribution
over Y . On the downside, a VAE can perform efficient
ancestral sampling while a UAE requires running rel-
atively expensive Markov Chains to obtain samples.

Recent works have attempted to unify the variants of
variational autoencoders through the lens of mutual
information [36, 37, 14]. These works also highlight
scenarios where the VAE can learn to ignore the la-
tent code in the presence of a strong decoder thereby
affecting the reconstructions to attain a lower KL loss.
One particular variant, the β-VAE, weighs the addi-
tional KL regularization term with a positive factor
β and can effectively learn disentangled representa-
tions [38, 39]. Although [38] does not consider this
case, the UAE can be seen as a β-VAE with β = 0.

To summarize, our uncertainty autoencoding formula-
tion provides a combination of unique desirable prop-
erties for representation learning that are absent in
prior autoencoders. As discussed, a UAE defines an
implicit generative model without specifying a prior
(Theorem 1) even under realistic conditions (Corol-
lary 1; unlike DAEs) and has rich connections with
PCA even for non-linear decoders (Theorem 2; unlike
any kind of existing autoencoder).

Generative modeling and compressed sensing.
The closely related works of [30, 31] also use gener-
ative models for compressed sensing. As highlighted
in Section 5, their approach is radically different from
UAE. Similar to [30], a UAE learns a data distribution.
However, in doing so, it additionally learns an acquisi-
tion/encoding function and a recovery/decoding func-
tion, unlike [30, 31] which rely on generic random ma-
trices and ℓ2 decoding. The cost of implicit learning in
a UAE is that some of its inference capabilities, such
as likelihood evaluation and sampling, are intractable
or require running Markov chains. However, these in-
ference queries are orthogonal to compressed sensing.
Finally, our decoding is amortized and scales to large

datasets, unlike [30, 31] which solve an independent
optimization problem for each test datapoint.

Mutual information maximization. The princi-
ple of mutual information maximization, often referred
to as InfoMax in prior work, was first proposed for
learning encodings for communication over a noisy
channel [7]. The InfoMax objective has also been ap-
plied for statistical compressed sensing for learning
both linear and non-linear encodings [26, 40, 41]. Our
work differs from these existing frameworks in two fun-
damental ways. First, we optimize for a tractable vari-
ational lower bound to the MI that which allows our
method to scale to high-dimensional data. Second,
we learn an amortized [10, 11] decoder in addition to
the encoder that sidesteps expensive, per-example op-
timization for the test datapoints.

Further, we improve upon the IM algorithm pro-
posed originally for variational information maximiza-
tion [8]. While the IM algorithm proposes to opti-
mize the lower bound on the mutual information in
alternating “wake-sleep” phases for optimizing the en-
coder (“wake”) and decoder (“sleep”) analogous to the
expectation-maximization procedure used in [26], we
optimize the encoder and decoder jointly using a single
consistent objective leveraging recent advancements in
gradient based variational stochastic optimization.

7 CONCLUSION

In this work, we presented uncertainty autoencoders
(UAE), a framework for unsupervised representation
learning via variational maximization of mutual infor-
mation between an input signal and its latent rep-
resentation. We presented connections of our frame-
work with many related threads of research, in partic-
ular with respect to implicit generative modeling and
principal component analysis. Empirically, we showed
that UAEs are a natural candidate for statistical com-
pressed sensing, wherein we can learn the acquisition
and recovery functions jointly.

In the future, it would be interesting to incorporate ad-
vancements in compressed sensing based on complex
neural network architectures [42, 43, 44, 45, 46] within
the UAE framework for real world applications, e.g.,
medical imaging. Unlike the rich theory surround-
ing the compressed sensing of sparse signals, a simi-
lar theory surrounding generative model-based priors
on the signal distribution is lacking. Recent works
have made promising progress in developing a theory
of SGD based recovery methods for nonconvex inverse
problems, which continues to be an exciting direction
for future work [30, 47, 31, 48].
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A Proofs of Theoretical Results

A.1 Proof of Theorem 1

Proof. We can rewrite the UAE objective in Eq. (6) as:

EQφ(X,Y ) [log pθ(x|y)] = EQφ(Y )

[∫
qφ(x|y) log pθ(x|y)dx

]
(10)

= −Hφ(X|Y )− EQφ(Y ) [KL(Qφ(X|y)‖Pθ(X|y))] . (11)

The KL-divergence is non-negative and minimized when its argument distributions are identical. Hence, for a
fixed optimal value of θ = θ∗, if there exists a φ in the space of encoders being optimized that satisfies:

pθ∗(X|Y ) = qφ(X|Y ) (12)

for all X,Y with p∗θ(Y ) 6= 0, then it corresponds to the optimal encoder, i.e.,

φ = φ∗. (13)

For any value of φ, we know the following Gibbs chain converges to Qφ(X,Y ) if the chain is ergodic:

y(t) ∼ Qφ(Y |x(t)) (14)

x(t+1) ∼ Qφ(X|y(t)). (15)

Substituting the results from Eqs. (12-15) in the Markov chain transitions in Eqs. (8, 9) finishes the proof.

A.2 Proof of Corollary 1

Proof. By using earlier results (Proposition 2 in [49]), we need to show that the Markov chain defined in Eqs. (8)-
(9) is Φ-irreducible with a Gaussian noise model.1 That is, there exists a measure such that there is a non-zero
probability of transitioning from every set of non-zero measure to every other such set defined on the same
measure using this Markov chain.

Consider the Lebesgue measure. Formally, given any (x, y) and (x′, y′) such that the density q(x, y) > 0
and q(x′, y′) > 0 for the Lebesgue measure, we need to show that the probability density of transitioning
q(x′, y′|x, y) > 0.

(1) Since q(y|x) > 0 for all x ∈ R
n, y ∈ R

m (by Gaussian noise model assumption), we can use Eq. (8) to
transition from (x, y) to (x, y′) with non-zero probability.

(2) Next, we claim that the transition probability q(x′|y) is non-negative for all x′, y. By Bayes rule, we have:

q(x′|y) = q(y|x′)q(x′)
q(y)

.

Since q(x, y) > 0 and q(x′, y′) > 0, the marginals q(y) and q(x′) are positive. Again, q(y|x′) > 0 for all x′ ∈ R
n,

y ∈ R
m by the Gaussian noise model assumption. Hence, q(x′|y) is positive. Finally, using the optimality

assumption for the posteriors p(x′|y) matching q(x′|y) for all x′, y′, we can use Eq. (9) to transition from (x, y′)
to (x′, y′) with non-zero probability.

From (1) and (2), we see that there is a non-zero probability of transitioning from (x, y) to (x′, y′). Hence, under
the assumptions of the corollary the Markov chain in Eqs. (8, 9) is ergodic.

1Note that the symbol Φ here is different from the parameters denoted by little φ used in the rest of the paper.
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A.3 Proof of Theorem 2

Proof. Under an optimal decoder, the model posterior Pθ(X|Y ) matches the true posterior Qφ(X|Y ) and hence,
the UAE objective can be simplified as:

EQφ(X,Y )[log qφ(x|y)] = EQφ(X,Y )[log qφ(x, y)− log qφ(y)]

= −H(X)− EQdata(X)[H(Y |x)]− EQφ(X,Y )[log qφ(y)]. (16)

The first term corresponds to the negative of the data entropy, is independent of φ and σ, and hence it can be
removed. For the second term, note that Y |x is a normal distributed random variable and hence its entropy is
given by a constant 1

2 log 2πeσ
2. Only the third term depends on φ.

Removing the data entropy term since it is a constant independent of both φ and σ, we can define a modified
objective M(W,D, σ) as:

M(W,D, σ) := EQφ(X,Y )[log qφ(y)] +
1

2
log 2πeσ2. (17)

As σ → ∞, the optimal encodings maximizing the mutual information can be specified as:

W ∗ = lim
σ→∞

argmax
W

−M(W,D, σ). (18)

We can lower-bound M(W,D, σ) using Jensen’s inequality:

M(W,D, σ) = EQφ(X,Y )[logExj∼Qdata(X) [qφ(y|xj)]] +
1

2
log 2πeσ2

=
1

|D|
∑

xi∈D

EQφ(Y |X)


log 1

|D|
∑

xj∈D

qφ(y|xj)


+

1

2
log 2πeσ2

≥ 1

|D|
∑

xi∈D

EQφ(Y |X)


∑

xj∈D

1

|D| log qφ(y|xj)


+

1

2
log 2πeσ2

:= C(W,D, σ) (19)

where we have used the fact that the data distribution is uniform over the entire dataset (by assumption).

Finally, we denote the non-negative slack term for the above inequality as S(W,D, σ) such that:

M(W,D, σ) = C(W,D, σ) + S(W,D, σ). (20)

Overview of proof strategy: We will first simplify expressions for the lower bound C(W,D, σ) and slack term
S(W,D, σ). Then, we will show that as σ → ∞, the ratio of the slack term and the lower bound converges
pointwise to 0 and hence, the lower bound is arbitrarily close to M(W,D, σ) in this regime for a fixed W .
Further, we will show that the convergence is uniform in W . Finally, we will note that the optimal encodings
W ∗ for the lower bound correspond to the stated expressions for W in the proof statement.

As a first step, we consider simplifications of the lower bound and the slack term.
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Lower bound: C(W,D, σ)

C(W,D, σ) = 1

|D|
∑

xi∈D

Eǫ∼N (0,σ2I)


 1

|D|
∑

xj∈D

[log qφ(Wxi + ǫ|xj)]


+

1

2
log 2πeσ2

=
1

|D|2
∑

xi,xj∈D

Eǫ∼N (0,σ2I)[log qφ(Wxi + ǫ|xj)] +
1

2
log 2πeσ2

= − 1

|D|2
∑

xi,xj∈D

Eǫ∼N (0,σ2I)

[
(Wxi + ǫ−Wxj)

T (Wxi + ǫ−Wxj)

2σ2
+

1

2
log 2πσ2

]
+

1

2
log 2πeσ2

= − 1

|D|2
∑

xi,xj∈D

Eǫ∼N (0,σ2I)

[
(Wxi −Wxj)

T (Wxi −Wxj) + 2ǫT (Wxi −Wxj) + ǫT ǫ

2σ2

]
+

1

2

= − 1

|D|2
∑

xi,xj∈D

(
(Wxi −Wxj)

T (Wxi −Wxj)

2σ2
+

1

2

)
+

1

2

= − 1

|D|2
∑

xi,xj∈D

(
(Wxi −Wxj)

T (Wxi −Wxj)

2σ2

)
. (21)

Slack: S(W,D, σ)

S(W,D, σ) = −C(W,D, σ) +M(W,D, σ)

= − 1

|D|
∑

xi∈D

EQφ(Y |X)


 1

|D|
∑

xj∈D

log qφ(y|xj)


+

1

|D|
∑

xi∈D

EQφ(Y |X)


log 1

|D|
∑

xj∈D

qφ(y|xj)




= − 1

|D|
∑

xi∈D

EQφ(Y |X)

[
EQdata(X)

[
log

qφ(y, xj)

qdata(xj)

]]
+

1

|D|
∑

xi∈D

EQφ(Y |X) [log qφ(y)]

=
1

|D|
∑

xi∈D

EQφ(Y |X)

[
EQdata(X)

[
log

qdata(xj)

qφ(xj |y)qφ(y)

]]
+

1

|D|
∑

xi∈D

EQφ(Y |X) [log qφ(y)]

=
1

|D|
∑

xi∈D

EQφ(Y |X) [KL (Qdata(X), Qφ(X|y))]

= − 1

|D|2
∑

xi,xj∈D

EQφ(Y |X) [log qφ(xj |y) + log |D|]

= − log |D| − 1

|D|2
∑

xi,xj∈D

Eǫ∼N (0,σ2I) [log qφ(xj |Wxi + ǫ)] (22)

We can simplify the posteriors Qφ(xj |Wxi + ǫ) as:

Qφ(xj |Wxi + ǫ) =
Qφ(xj ,Wxi + ǫ)

Qφ(Wxi + ǫ)

=
Qφ(xj)Qφ(Wxi + ǫ|xj)∑

xk∈D Qφ(Wxi + ǫ|xk)Qφ(xk)
=

exp
(
−(W (xi−xj)+ǫ)

T (W (xi−xj)+ǫ)/2σ2

)
∑
xk∈D exp

(
−(W (xi−xk)+ǫ)

T (W (xi−xk)+ǫ)/2σ2

) (23)

where we have used the fact that the data distribution is uniform and the decoder is isotropic Gaussian.
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Substituting the above expression for the slack term:

S(W,D, σ) = − log |D| − 1

|D|2
∑

xi,xj∈D

Eǫ∼N (0,σ2I)

[(
− (W (xi − xj) + ǫ)T (W (xi − xj) + ǫ)

2σ2

)

− log
∑

xk∈D

exp

(
− (W (xi − xk) + ǫ)T (W (xi − xk) + ǫ)

2σ2

)]

=
1

|D|2
∑

xi,xj∈D

[
(Wxi −Wxj)

T (Wxi −Wxj)

2σ2
+

1

2

+ Eǫ∼N (0,σ2I)

(
log

∑

xk∈D

exp

(
− (W (xi − xk) + ǫ)T (W (xi − xk) + ǫ)

2σ2

)
− log |D|

)

︸ ︷︷ ︸∫
γ(σ,ǫ,W,D,xi)dǫ

]
. (24)

For any fixed xi,W , the integrand γ(σ, ǫ,W,D, xi) in Eq. (24) can be seen as a sequence of functions indexed by
σ. We next make the claim that dominated convergence in ǫ holds for this sequence for all xi,W . We show so
by first observing that γ(σ, ǫ,W,D, xi) converges pointwise to a constant (=0) as σ → ∞ and thereafter deriving
integrable upper and lower bounds for γ(σ, ǫ,W,D, xi) below that are independent of σ.

For the upper bound, we note that:

log
∑

xj∈D

exp

(
− (Wxi + ǫ−Wxj)

T (Wxi + ǫ−Wxj)

2σ2

)
≤ max
xj∈D

− (Wxi + ǫ−Wxj)
T (Wxi + ǫ−Wxj)

2σ2
+ log |D|

≤ log |D|. (25)

This gives an upper bound on the integrand γ(σ, ǫ,W,D, xi):

γ(σ, ǫ,W,D, xi) ≤ − 1√
2πσ2

exp

(
− ǫT ǫ

2σ2

)
[log |D| − log |D|]

= 0. (26)

For the lower bound, we note that:

log
∑

xj∈D

exp

(
− (Wxi + ǫ−Wxj)

T (Wxi + ǫ−Wxj)

2σ2

)
≥ max
xj∈D

(
− (Wxi + ǫ−Wxj)

T (Wxi + ǫ−Wxj)

2σ2

)

= − min
xj∈D

(
(Wxi + ǫ−Wxj)

T (Wxi + ǫ−Wxj)

2σ2

)
.

(27)

.

Hence, we have the following lower bound:

γ(σ, ǫ,W,D, xi) ≥ − 1√
2πσ2

exp

(
− ǫT ǫ

2σ2

)(
min
xj∈D

(Wxi + ǫ−Wxj)
T (Wxi + ǫ−Wxj)

2σ2
− log |D|

)

≥ − 1√
πǫT ǫ

(
1

ǫT ǫ

[
min
xj∈D

(Wxi + ǫ−Wxj)
T (Wxi + ǫ−Wxj)

]
− 2 log |D|

)

= − 1√
πǫT ǫ

(
1

ǫT ǫ

[
min
xj∈D

(Wxi −Wxj)
T (Wxi −Wxj) + 2(Wxi −Wxj)

T ǫ+ ǫT ǫ

]
− 2 log |D|

)

≥ − 1√
πǫT ǫ

(
4k21k

2
2

ǫT ǫ
+

4k1k2√
ǫT ǫ

+ 1− 2 log |D|
)

(28)

where we used the inequalities exp(−1/z) ≤ z3/2, exp(−1/z) ≤ z1/2 for any z > 0 in the second step (with
z = 2σ2

/ǫT ǫ) and Cauchy-Schwarz for the last step (since ‖x‖2 ≤ k1 for all x ∈ D, ‖W‖F ≤ k2 for some positive
constants k1, k2 ∈ R

+ by assumption).
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Since both the upper and lower bounds for the integrand are independent of σ, dominated convergence holds for
the third term in Eq. (24).

Consequently, we can evaluate limits to obtain a limiting ratio between the slack term and the lower bound:

lim
σ→∞

S(W,D, σ)
C(W,D, σ) = 0 (29)

using the expressions derived in Eq. (21) and Eq. (24), dominated convergence for interchanging limits and
expectations, along with L’Hôpital’s rule.

We can now rewrite Eq. (20) as:

M(W,D, σ) = C(W,D, σ)
(
1 +

S(W,D, σ)
C(W,D, σ)

)
. (30)

By the (ǫ, δ) definition of limit, we know that for any fixed W that satisfies ‖W‖F ≤ k2 and ∀ǫ > 0, there exists
a δ > 0 such that ∀σ > δ, we have:

|M(W,D, σ)− C(W,D, σ)| < ǫ. (31)

Next, we note that the slack term S(W,D, σ) is monotonic in σ and converges pointwise for any fixed W that
satisfies ‖W‖F ≤ k2.

lim
σ→∞

S(W,D, σ) = lim
σ→∞

M(W,D, σ)− C(W,D, σ) = 0. (32)

Using Dini’s Theorem, this implies the convergence of the slack term is uniform in W as σ → ∞. Hence, for all
W that satisfy ‖W‖F ≤ k2 and ∀ǫ > 0, there exists a δ > 0 such that ∀σ > δ, we have:

|M(W,D, σ)− C(W,D, σ)| < ǫ. (33)

Since the argmax operator preserves continuity (via Berge’s maximum theorem) and is assumed to be identifiable,
we conclude that ∀W satisfying ‖W‖F ≤ k2 and ∀ǫ > 0, there exists a δ > 0 such that ∀σ > δ, we have:

|W ∗ − argmax
W

∑

xi,xj∈D

(
Wxi −Wxj)

T (Wxi −Wxj)
)
| < ǫ (34)

which finishes the proof.
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Table 2: Frobenius norms of the UAE encodings and random Gaussian projections for MNIST and Omniglot
datasets.

m Random Gaussian Matrices MNIST-UAE Omniglot-UAE

2 39.57 6.42 2.17
5 63.15 5.98 2.66
10 88.98 7.24 3.50
25 139.56 8.53 4.71
50 198.28 9.44 5.45
100 280.25 10.62 6.02

B Experimental details

For MNIST, we use the train/valid/test split of 50, 000/10, 000/10, 000 images. For Omniglot, we use
train/valid/test split of 23, 845/500/8, 070 images. For CelebA, we used the splits as provided by [29] on
the dataset website. All images were scaled such that pixel values are between 0 and 1. We used the Adam
optimizer with a learning rate of 0.001 for all the learned models. For MNIST and Omniglot, we used a batch
size of 100. For CelebA, we used a batch size of 64. Further, we implemented early stopping based on the best
validation bounds after 200 epochs for MNIST, 500 epochs for Omniglot, and 200 epochs for CelebA.

B.1 Hyperparameters for compressed sensing on MNIST and Omniglot

For both datasets, the UAE decoder used 2 hidden layers of 500 units each with ReLU activations. The en-
coder was a single linear layer with only weight parameters and no bias parameters. The encoder and decoder
architectures for the VAE baseline are symmetrical with 2 hidden layers of 500 units each and 20 latent units.
We used the LASSO baseline implementation from sklearn and tuned the Lagrange parameter on the validation
sets. For the baselines, we do 10 random restarts with 1, 000 steps per restart and pick the reconstruction with
best measurement error as prescribed in [30]. Refer to [30] for further details of the baseline implementations.

Table 2 shows the average norms for the random Gaussian matrices used in the baselines and the learned UAE
encodings. The lower norms for the UAE encodings suggest that the UAE baseline is not trivially overcoming
noise by increasing the norm of W .

B.2 Hyperparameters for dimensionality reduction

For PCA and each of the classifiers, we used the standard implementations in sklearn with default parameters
and the following exceptions:

• KNN: n neighbors = 3

• DT: max depth = 5

• RF: max depth = 5, n estimators = 10, max features = 1

• MLP: alpha=1

• SVC: kernel=linear, C=0.025

B.3 Statistical compressed sensing on CelebA dataset

For the CelebA dataset, the dimensions of the images are 64×64×3 and σ = 0.01. The naive pixel basis does not
augur well for compressed sensing on such high-dimensional RGB datasets. Following [30], we experimented with
the Discrete Cosine Transform (DCT) and Wavelet basis for the LASSO baseline. Further, we used the DCGAN
architecture [50] as in [30] as our main baseline. For the UAE approach, we used additional convolutional layers
in the encoder to learn a 256 dimensional feature space for the image before projecting it down to m dimensions.






