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Abstract

We introduce a new generative model where samples are produced via Langevin
dynamics using gradients of the data distribution estimated with score matching.
Because gradients can be ill-defined and hard to estimate when the data resides on
low-dimensional manifolds, we perturb the data with different levels of Gaussian
noise, and jointly estimate the corresponding scores, i.e., the vector fields of
gradients of the perturbed data distribution for all noise levels. For sampling, we
propose an annealed Langevin dynamics where we use gradients corresponding to
gradually decreasing noise levels as the sampling process gets closer to the data
manifold. Our framework allows flexible model architectures, requires no sampling
during training or the use of adversarial methods, and provides a learning objective
that can be used for principled model comparisons. Our models produce samples
comparable to GANs on MNIST, CelebA and CIFAR-10 datasets, achieving a new
state-of-the-art inception score of 8.87 on CIFAR-10. Additionally, we demonstrate
that our models learn effective representations via image inpainting experiments.

1 Introduction

Generative models have many applications in machine learning. To list a few, they have been
used to generate high-fidelity images [26, 6], synthesize realistic speech and music fragments [58],
improve the performance of semi-supervised learning [28, 10], detect adversarial examples and
other anomalous data [54], imitation learning [22], and explore promising states in reinforcement
learning [41]. Recent progress is mainly driven by two approaches: likelihood-based methods [17,
29, 11, 60] and generative adversarial networks (GAN [15]). The former uses log-likelihood (or a
suitable surrogate) as the training objective, while the latter uses adversarial training to minimize
f -divergences [40] or integral probability metrics [2, 55] between model and data distributions.

Although likelihood-based models and GANs have achieved great success, they have some intrinsic
limitations. For example, likelihood-based models either have to use specialized architectures to
build a normalized probability model (e.g., autoregressive models, flow models), or use surrogate
losses (e.g., the evidence lower bound used in variational auto-encoders [29], contrastive divergence
in energy-based models [21]) for training. GANs avoid some of the limitations of likelihood-based
models, but their training can be unstable due to the adversarial training procedure. In addition, the
GAN objective is not suitable for evaluating and comparing different GAN models. While other
objectives exist for generative modeling, such as noise contrastive estimation [19] and minimum
probability flow [50], these methods typically only work well for low-dimensional data.

In this paper, we explore a new principle for generative modeling based on estimating and sampling
from the (Stein) score [33] of the logarithmic data density, which is the gradient of the log-density
function at the input data point. This is a vector field pointing in the direction where the log data
density grows the most. We use a neural network trained with score matching [24] to learn this
vector field from data. We then produce samples using Langevin dynamics, which approximately
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works by gradually moving a random initial sample to high density regions along the (estimated)
vector field of scores. However, there are two main challenges with this approach. First, if the data
distribution is supported on a low dimensional manifold—as it is often assumed for many real world
datasets—the score will be undefined in the ambient space, and score matching will fail to provide a
consistent score estimator. Second, the scarcity of training data in low data density regions, e.g., far
from the manifold, hinders the accuracy of score estimation and slows down the mixing of Langevin
dynamics sampling. Since Langevin dynamics will often be initialized in low-density regions of the
data distribution, inaccurate score estimation in these regions will negatively affect the sampling
process. Moreover, mixing can be difficult because of the need of traversing low density regions to
transition between modes of the distribution.

To tackle these two challenges, we propose to perturb the data with random Gaussian noise of
various magnitudes. Adding random noise ensures the resulting distribution does not collapse to a
low dimensional manifold. Large noise levels will produce samples in low density regions of the
original (unperturbed) data distribution, thus improving score estimation. Crucially, we train a single
score network conditioned on the noise level and estimate the scores at all noise magnitudes. We
then propose an annealed version of Langevin dynamics, where we initially use scores corresponding
to the highest noise level, and gradually anneal down the noise level until it is small enough to be
indistinguishable from the original data distribution. Our sampling strategy is inspired by simulated
annealing [30, 37] which heuristically improves optimization for multimodal landscapes.

Our approach has several desirable properties. First, our objective is tractable for almost all pa-
rameterizations of the score networks without the need of special constraints or architectures, and
can be optimized without adversarial training, MCMC sampling, or other approximations during
training. The objective can also be used to quantitatively compare different models on the same
dataset. Experimentally, we demonstrate the efficacy of our approach on MNIST, CelebA [34],
and CIFAR-10 [31]. We show that the samples look comparable to those generated from modern
likelihood-based models and GANs. On CIFAR-10, our model sets the new state-of-the-art inception
score of 8.87 for unconditional generative models, and achieves a competitive FID score of 25.32. We
show that the model learns meaningful representations of the data by image inpainting experiments.

2 Score-based generative modeling

Suppose our dataset consists of i.i.d. samples {xi ∈ R
D}Ni=1 from an unknown data distribution

pdata(x). We define the score of a probability density p(x) to be ∇x log p(x). The score network
sθ : RD → R

D is a neural network parameterized by θ, which will be trained to approximate the
score of pdata(x). The goal of generative modeling is to use the dataset to learn a model for generating
new samples from pdata(x). The framework of score-based generative modeling has two ingredients:
score matching and Langevin dynamics.

2.1 Score matching for score estimation

Score matching [24] is originally designed for learning non-normalized statistical models based on
i.i.d. samples from an unknown data distribution. Following [53], we repurpose it for score estimation.
Using score matching, we can directly train a score network sθ(x) to estimate∇x log pdata(x) without
training a model to estimate pdata(x) first. Different from the typical usage of score matching, we opt
not to use the gradient of an energy-based model as the score network to avoid extra computation due

to higher-order gradients. The objective minimizes 1
2Epdata

[‖sθ(x)−∇x log pdata(x)‖22], which can
be shown equivalent to the following up to a constant

Epdata(x)

[

tr(∇xsθ(x)) +
1

2
‖sθ(x)‖22

]

, (1)

where ∇xsθ(x) denotes the Jacobian of sθ(x). As shown in [53], under some regularity conditions
the minimizer of Eq. (3) (denoted as sθ∗(x)) satisfies sθ∗(x) = ∇x log pdata(x) almost surely.
In practice, the expectation over pdata(x) in Eq. (1) can be quickly estimated using data samples.
However, score matching is not scalable to deep networks and high dimensional data [53] due to the
computation of tr(∇xsθ(x)). Below we discuss two popular methods for large scale score matching.

Denoising score matching Denoising score matching [61] is a variant of score matching that
completely circumvents tr(∇xsθ(x)). It first perturbs the data point x with a pre-specified noise
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use a modified version of conditional instance normalization [13] to provide conditioning on σi.
More details on our architecture can be found in Appendix A.

4.2 Learning NCSNs via score matching

Both sliced and denoising score matching can train NCSNs. We adopt denoising score matching as it
is slightly faster and naturally fits the task of estimating scores of noise-perturbed data distributions.
However, we emphasize that empirically sliced score matching can train NCSNs as well as denoising
score matching. We choose the noise distribution to be qσ(x̃ | x) = N (x̃ | x, σ2I); therefore
∇x̃ log qσ(x̃ | x) = −(x̃−x)/σ2. For a given σ, the denoising score matching objective (Eq. (2)) is

ℓ(θ;σ) ,
1

2
Epdata(x)Ex̃∼N (x,σ2I)

[ ∥

∥

∥

∥

sθ(x̃, σ) +
x̃− x

σ2

∥

∥

∥

∥

2

2

]

. (5)

Then, we combine Eq. (5) for all σ ∈ {σi}Li=1 to get one unified objective

L(θ; {σi}Li=1) ,
1

L

L
∑

i=1

λ(σi)ℓ(θ;σi), (6)

where λ(σi) > 0 is a coefficient function depending on σi. Assuming sθ(x, σ) has enough capacity,
sθ∗(x, σ) minimizes Eq. (6) if and only if sθ∗(x, σi) = ∇x log qσi

(x) a.s. for all i ∈ {1, 2, · · · , L},
because Eq. (6) is a conical combination of L denoising score matching objectives.

There can be many possible choices of λ(·). Ideally, we hope that the values of λ(σi)ℓ(θ;σi)
for all {σi}Li=1 are roughly of the same order of magnitude. Empirically, we observe that when
the score networks are trained to optimality, we approximately have ‖sθ(x, σ)‖2 ∝ 1/σ. This

inspires us to choose λ(σ) = σ2. Because under this choice, we have λ(σ)ℓ(θ;σ) = σ2ℓ(θ;σ) =
1
2E[‖σsθ(x̃, σ) + x̃−x

σ
‖22]. Since x̃−x

σ
∼ N (0, I) and ‖σsθ(x, σ)‖2 ∝ 1, we can easily conclude

that the order of magnitude of λ(σ)ℓ(θ;σ) does not depend on σ.

We emphasize that our objective Eq. (6) requires no adversarial training, no surrogate losses, and no
sampling from the score network during training (e.g., unlike contrastive divergence). Also, it does
not require sθ(x, σ) to have special architectures in order to be tractable. In addition, when λ(·) and
{σi}Li=1 are fixed, it can be used to quantitatively compare different NCSNs.

4.3 NCSN inference via annealed Langevin dynamics

Algorithm 1 Annealed Langevin dynamics.

Require: {σi}Li=1, ǫ, T .
1: Initialize x̃0

2: for i← 1 to L do
3: αi ← ǫ · σ2

i /σ
2
L ⊲ αi is the step size.

4: for t← 1 to T do
5: Draw zt ∼ N (0, I)

6: x̃t ← x̃t−1 +
αi

2
sθ(x̃t−1, σi) +

√
αi zt

7: end for
8: x̃0 ← x̃T

9: end for
return x̃T

After the NCSN sθ(x, σ) is trained, we propose
a sampling approach—annealed Langevin dy-
namics (Alg. 1)—to produced samples, inspired
by simulated annealing [30] and annealed im-
portance sampling [37]. As shown in Alg. 1, we
start annealed Langevin dynamics by initializing
the samples from some fixed prior distribution,
e.g., uniform noise. Then, we run Langevin dy-
namics to sample from qσ1

(x) with step size
α1. Next, we run Langevin dynamics to sample
from qσ2

(x), starting from the final samples of
the previous simulation and using a reduced step
size α2. We continue in this fashion, using the fi-
nal samples of Langevin dynamics for qσi−1

(x)
as the initial samples of Langevin dynamic for
qσi

(x), and tuning down the step size αi gradually with αi = ǫ · σ2
i /σ

2
L. Finally, we run Langevin

dynamics to sample from qσL
(x), which is close to pdata(x) when σL ≈ 0.

Since the distributions {qσi
}Li=1 are all perturbed by Gaussian noise, their supports span the whole

space and their scores are well-defined, avoiding difficulties from the manifold hypothesis. When
σ1 is sufficiently large, the low density regions of qσ1

(x) become small and the modes become less
isolated. As discussed previously, this can make score estimation more accurate, and the mixing of
Langevin dynamics faster. We can therefore assume that Langevin dynamics produce good samples
for qσ1

(x). These samples are likely to come from high density regions of qσ1
(x), which means
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6 Related work

Our approach has some similarities with methods that learn the transition operator of a Markov chain
for sample generation [4, 51, 5, 16, 52]. For example, generative stochastic networks (GSN [4, 1])
use denoising autoencoders to train a Markov chain whose equilibrium distribution matches the
data distribution. Similarly, our method trains the score function used in Langevin dynamics to
sample from the data distribution. However, GSN often starts the chain very close to a training
data point, and therefore requires the chain to transition quickly between different modes. In
contrast, our annealed Langevin dynamics are initialized from unstructured noise. Nonequilibrium
Thermodynamics (NET [51]) used a prescribed diffusion process to slowly transform data into
random noise, and then learned to reverse this procedure by training an inverse diffusion. However,
NET is not very scalable because it requires the diffusion process to have very small steps, and needs
to simulate chains with thousands of steps at training time.

Previous approaches such as Infusion Training (IT [5]) and Variational Walkback (VW [16]) also
employed different noise levels/temperatures for training transition operators of a Markov chain.
Both IT and VW (as well as NET) train their models by maximizing the evidence lower bound of
a suitable marginal likelihood. In practice, they tend to produce blurry image samples, similar to
variational autoencoders. In contrast, our objective is based on score matching instead of likelihood,
and we can produce images comparable to GANs.

There are several structural differences that further distinguish our approach from previous methods
discussed above. First, we do not need to sample from a Markov chain during training. In contrast,
the walkback procedure of GSNs needs multiple runs of the chain to generate “negative samples”.
Other methods including NET, IT, and VW also need to simulate a Markov chain for every input to
compute the training loss. This difference makes our approach more efficient and scalable for training
deep models. Secondly, our training and sampling methods are decoupled from each other. For
score estimation, both sliced and denoising score matching can be used. For sampling, any method
based on scores is applicable, including Langevin dynamics and (potentially) Hamiltonian Monte
Carlo [38]. Our framework allows arbitrary combinations of score estimators and (gradient-based)
sampling approaches, whereas most previous methods tie the model to a specific Markov chain.
Finally, our approach can be used to train energy-based models (EBM) by using the gradient of an
energy-based model as the score model. In contrast, it is unclear how previous methods that learn
transition operators of Markov chains can be directly used for training EBMs.

Score matching was originally proposed for learning EBMs. However, many existing methods
based on score matching are either not scalable [24] or fail to produce samples of comparable
quality to VAEs or GANs [27, 49]. To obtain better performance on training deep energy-based
models, some recent works have resorted to contrastive divergence [21], and propose to sample with
Langevin dynamics for both training and testing [12, 39]. However, unlike our approach, contrastive
divergence uses the computationally expensive procedure of Langevin dynamics as an inner loop
during training. The idea of combining annealing with denoising score matching has also been
investigated in previous work under different contexts. In [14, 7, 66], different annealing schedules
on the noise for training denoising autoencoders are proposed. However, their work is on learning
representations for improving the performance of classification, instead of generative modeling.
The method of denoising score matching can also be derived from the perspective of Bayes least
squares [43, 44], using techniques of Stein’s Unbiased Risk Estimator [35, 56].

7 Conclusion

We propose the framework of score-based generative modeling where we first estimate gradients of
data densities via score matching, and then generate samples via Langevin dynamics. We analyze
several challenges faced by a naïve application of this approach, and propose to tackle them by
training Noise Conditional Score Networks (NCSN) and sampling with annealed Langevin dynamics.
Our approach requires no adversarial training, no MCMC sampling during training, and no special
model architectures. Experimentally, we show that our approach can generate high quality images
that were previously only produced by the best likelihood-based models and GANs. We achieve the
new state-of-the-art inception score on CIFAR-10, and an FID score comparable to SNGANs.
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