
Massively Parallel Automated Software Tuning
Jakub Kurzak

University of Tennessee
Knoxville, Tennessee
kurzak@icl.utk.edu

Yaohung M. Tsai
University of Tennessee
Knoxville, Tennessee
ytsai2@vols.utk.edu

Mark Gates
University of Tennessee
Knoxville, Tennessee
mgates3@icl.utk.edu

Ahmad Abdelfattah
University of Tennessee
Knoxville, Tennessee
ahmad@icl.utk.edu

Jack Dongarra∗
University of Tennessee
Knoxville, Tennessee
dongarra@icl.utk.edu

ABSTRACT
This article presents an implementation of a distributed autotuning
engine developed as part of the Bench-testing OpenN Software
Autotuning Infrastructure project. The system is geared towards
performance optimization of computational kernels for graphics
processing units, and allows for the deployment of vast autotuning
sweeps to massively parallel machines. The software implements
dynamic work scheduling to distributed-memory resources and
takes advantage of multithreading for parallel compilation and
dispatches kernel launches to multiple accelerators. This paper lays
out the main design principles of the system and discusses the basic
mechanics of the initial implementation. Preliminary performance
results are presented, encountered challenges are discussed, and
the future directions are outlined.

CCS CONCEPTS
• Software and its engineering→Massively parallel systems.

KEYWORDS
automated software tuning, graphics processing unit
ACM Reference Format:
Jakub Kurzak, Yaohung M. Tsai, Mark Gates, Ahmad Abdelfattah, and Jack
Dongarra. 2019. Massively Parallel Automated Software Tuning. In 48th
International Conference on Parallel Processing (ICPP 2019), August 5–8, 2019,
Kyoto, Japan. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3337821.3337908

1 INTRODUCTION
The goal of the Bench-testing OpeN Software Autotuning Infras-
tructure (BONSAI) project is to develop a toolset for facilitating
huge autotuning sweeps of computational kernels for graphics pro-
cessing units (GPUs). This article describes BONSAI’s distributed
∗Jack Dongarra also holds appointments at Oak Ridge National Laboratory and the
University of Manchester.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP 2019, August 5–8, 2019, Kyoto, Japan
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6295-5/19/08. . . $15.00
https://doi.org/10.1145/3337821.3337908

bench-testing engine for deploying large tuning sweeps to mas-
sively parallel distributed-memory machines with multiple GPUs
per node. Such machines are becoming ubiquitous in scientific and
engineering computing and right now seem to be the only viable
path toward reaching exascale. At the same time, autotuning is
one of the main performance engineering tools for GPU kernel
development. Also, as we further discuss in Section 2, there is a
clear need for deploying really massive sweeps. Yet, no software
infrastructure exists for utilizing the vast available resources in the
autotuning process.

One important factor is the relation between autotuning and
machine learning. While machine learning is commonly applied to
the problem of performance tuning, BONSAI’s ability to produce
exhaustive sweeps creates a unique opportunity to establish the
ground truth for the ultimate validation of different machine learn-
ing approaches. Not without significance is the growing popularity
of deep learning and its dependence on the availability of large
datasets for training. BONSAI offers vast possibilities for applying
deep neural networks (DNNs) to the problem of automated soft-
ware tuning in new creative ways by allowing us to produce input
datasets of unprecedented sizes for the training phase.

2 MOTIVATION
We argue that the current trends in high-end computing can be
judged by taking a look at the largest systems on the TOP500 list. 1
Consider the architecture of the number one system on the list, the
Summit supercomputer at the Oak Ridge Leadership Computing Fa-
cility (OLCF). 2 Summit contains three NVIDIA V100 GPUs per each
POWER9 CPU. The peak double-precision floating-point perfor-
mance of the CPU is 22 (cores) × 24.56GFLOPS = 540.32GFLOPS .
The peak performance of the GPUs is 3 (devices) × 7.8 TFLOPS =
23.4 TFLOPS . I.e., 97.7% of performance is on the GPU side, and
only 2.3% of performance is on the CPU side. This means that
maximum offload to GPUs is paramount and aggressive optimiza-
tions are crucial. This also means that vast numbers of GPUs are
readily available for the process of autotuning. Consider that to
place the Summit system on the TOP500 list the High-Performance
Linpack (HPL) benchmark[5] had to run for approximately 9 hours
using 27,648 GPUs. If the resources were used instead for a tuning
sweep, it would be equivalent to over 28 years of serial tuning using
one GPU.

1https://www.top500.org
2https://en.wikichip.org/wiki/supercomputers/summit

https://doi.org/10.1145/3337821.3337908
https://doi.org/10.1145/3337821.3337908
https://doi.org/10.1145/3337821.3337908
https://www.top500.org
https://en.wikichip.org/wiki/supercomputers/summit

ICPP 2019, August 5–8, 2019, Kyoto, Japan Jakub Kurzak et al.

The question remains whether such massive sweeps are justified.
Here we try to make the case for such runs. One of the prime
examples is the omnipresent matrix multiplication kernel, also
known as the gemm routine in linear algebra lingo. Consider an
implementation of the gemm kernel using NVIDIA’s CUDA [9, 12]
platform. The kernel can have up to nine blocking factors, can be
implemented with or without the use of single instruction, multiple
data (SIMD) instructions, can be implemented with or without the
use of texture memory, can be invoked with two values for the
cudaFuncCache setting and two values for cudaSharedMemConfig
setting.3 In addition, the kernel is needed in single precision and
double precision, and in real arithmetic and complex arithmetic.
On top of that, it needs to support four combination of the transa
and transb input arguments.4 Finally, the performance of gemm
is sensitive to the sizes of the input matrices, and ideally would
be tuned for a range of different sizes, which adds three more
dimensions (m,n,k) to the search space.

Another important issue is the potential sensitivity of the kernel
being tuned to the input data, the prime example here being the
sparse matrix-vector product kernel, also known as the SpMV rou-
tine. Performance of SpMV is sensitive to the contents of the input
matrix and the layout used for its representation. Arguably, it is
not without merit to run a performance sweep over all the 2,833
matrices in the SuiteSparse collection5 using a number of differ-
ent layouts (CSC/CSR, ELLPACK, SELL-C/SELL-P, Sell-C-Sigma,
BCSR, DIA, COO, etc.) This alone creates tens of thousands of
cases, without even considering tunable parameters of the kernels’
implementations.

It is important to note, though, that we are not dismissing the
merits of intelligent pruning of the search space. Notably, BONSAI
contains a dedicated component for search space generation and
pruning [10]. The argument is that pruning can be limited to the
cases that are guaranteed to fail—either during compilation, launch,
or execution—or are absolutely certain to deliver inferior perfor-
mance. The point is to eliminate the educated guesswork from the
tuning process forced by superficial constraints on the size of the
tuning ensemble.

Finally, an interesting avenue is the collection of data from the
hardware performance counters. Consider that, for devices with
compute capability 7.x, the nvprof tool from NVIDIA can collect
62 performance events, which can be used to calculate 176 perfor-
mance metrics. 6 These metrics provide a plethora of information,
such as: achieved occupancy, instructions executed per cycle, shared
memory efficiency, etc. Computing all the metrics in the course
of a performance tuning sweep may produce a great dataset for
machine learning algorithms. At the same time, only a handful of
events can be collected in a single kernel launch, and the kernel
has to be “replayed” multiple times to collect all of them, which
leads to excessive execution times.

3https://docs.nvidia.com/cuda/cuda-runtime-api/→ Device Management
4https://docs.nvidia.com/cuda/cublas/index.html#cublas-lt-t-gt-gemm
5https://sparse.tamu.edu/about
6https://docs.nvidia.com/cuda/profiler-users-guide/index.html#
metrics-reference-7x

3 ORIGINAL CONTRIBUTION
We believe that BONSAI’s distributed bench-testing system is a
unique solution, specifically when considering its dynamic sched-
uling capabilities when it comes to:

• dynamic dispatch of work to distributed-memory nodes,
• dynamic dispatch of CPU tasks to multiple CPU cores,
• dynamic dispatch of GPU tasks to multiple GPU devices.

It is the only system that we know of that directly targets massively
parallel machines for parallel compilation as well as launches of a
large number of GPU kernels.

It needs to be pointed out that the system implements parameter
sweeps, which are in principle embarrassingly parallel. Notably, in
the data analytics space, Java-based frameworks such as Hadoop 7

and Spark 8 are mainstream solutions for such workloads. However,
in our opinion, the listed capabilities would not easily be realized
using such software. An additional hurdle would be the fact that
Hadoop and Spark are not trivial do deploy to supercomputer in-
stallations and usually not available at supercomputing sites.

4 RELATEDWORK
The body of work on automated software tuning is vast. The pi-
oneering efforts for tuning dense matrix kernels were the Auto-
matically Tuned Linear Algebra Software (ATLAS) [17], and its
predecessor, the Portable High Performance ANSI C (PHiPAC) [3].
Seminal work on tuning sparse matrix kernels was done in the
Optimized Sparse Kernel Interface (OSKI) project [16]. Autotuning
signal processing kernels was spearheaded by the Fastest Fourier
Transform in the West (FFTW) package [6] and the Signal Pro-
cessing, Imaging, Reasoning, and Learning (SPIRAL) project [13].
The PATUS [4] and Sepya [7] projects championed autotuning
techniques for stencil computations.

While autotuning was pioneered by domain-specific techniques,
more general solutions also emerged to target a wider range of ap-
plications. Seminal work in this area was done almost two decades
ago in the Active Harmony project [15] and the FIBER project [8].
More recently, the same objective was targeted by the OpenTuner
system [1] and the ppOpen-HPC framework [11].

There is a vast body of work on autotuning kernels for GPU
accelerators, ranging from dense linear algebra to sparse linear
algebra, to signal processing, stencil codes, etc. It is impossible to
do justice to all the different activities. Instead, we would like to
single out the recent work by David Tanner as a rare example of a
conference paper documenting autotuning efforts by the hardware
industry [14].

7https://hadoop.apache.org
8https://spark.apache.org

https://docs.nvidia.com/cuda/cuda-runtime-api/
https://docs.nvidia.com/cuda/cublas/index.html#cublas-lt-t-gt-gemm
https://sparse.tamu.edu/about
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference-7x
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference-7x
https://hadoop.apache.org
https://spark.apache.org

Massively Parallel Automated Software Tuning ICPP 2019, August 5–8, 2019, Kyoto, Japan

5 IMPLEMENTATION
BONSAI is implemented as a header-only C++ library and relies
on MPI for message passing and OpenMP for multithreading. Cur-
rently, it only supports NVIDIA devices using the CUDA program-
ming model. We use CUDA terminology throughout the text and
make frequent references to CUDA documentation. We plan to
extend the coverage to devices from AMD and Intel in the future.

5.1 Principles of Operation
Figure 1 illustrates BONSAI’s principles of operation. The user is
responsible for creating three files:

(1) the kernel file, implementing the GPU kernel to be tuned,
(2) the driver file, for setting up the tuning sweep using the

BONSAI distributed bench-testing engine, and
(3) the comma-separated values (CSV) input file containing the

definition of the search space to traverse.
The BONSAI engine deploys the tuning sweep to a distributed-
memory system with GPU accelerators and produces the output
CSV file with the results.

Figure 1: Main principle of BONSAI operation.

The kernel file contains the __global__ function, implementing
the GPU kernel, and the host function, which launches the kernel us-
ing the <<<...>>> semantics. The kernel can be parametrized using
a combination of compile-time parameters and runtime parameters.
Compile-time parameters are symbols defined by passing the -D flag
to the compiler. Consider the canonical matrix multiplication exam-
ple from the CUDA Programming Guide9 (the MatMul kernel). The
code contains the preprocessor directive #define BLOCK_SIZE 16.
We can remove it from the source code and pass it as a compila-
tion option, -DBLOCK_SIZE=16. A different mechanism is used for
passing runtime parameters, as explained further later in the text.

Figure 2 shows an example of a CSV input file describing the
search space. The first line contains the names of the parameters.
9https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#
shared-memory

The second line contains the data types of the parameters. The
supported parameters’ types are:

Integer - integral values represented internally as int64_t,
Real - real values represented internally as double,
String - strings represented internally as char[8].

The third line specifies whether the parameter is a compile-time
parameter (Compile) or a runtime parameter (Runtime). The re-
maining lines contain different sets of values to be tried in the
tuning sweep. In the file in Figure 2, BLOCK_SIZE is an integer,
compile-time parameter, taking values 16, 32, 64, and 128, and
SharedMemConfig is a string, runtime parameter, taking values
Four and Eight.

1 BLOCK_SIZE , SharedMemConfig
2 Integer , String
3 Compile , Runtime
4 16, Four
5 16, Eight
6 32, Four
7 32, Eight
8 64, Four
9 64, Eight
10 128, Four
11 128, Eight

Figure 2: Example of a CSV input file (indentation and
whitespaces added for clarity).

The output CSV file (example shown in Figure 3) is created by
adding output parameters to the contents of the input CSV file. By
default, the parameters Status, Error, and Time are added. Status
is a string parameter, indicating a Success or a Failure. Error is
a string parameter, indicating the reason for the failure if a failure
occured, and can take the following values:

None - no failures occurred,
Compile - compilation failed,
Launch - launch failed,
Test - user-defined test failed.

Time is a real-valued parameter representing the execution time in
seconds. Figure 3 also contains a real-valued, user-defined parame-
ter Gflops. The mechanism for adding user-defined parameters is
explained further later in the text.

1 BLOCK_SIZE , SharedMemConfig , Status , Error , Time , Gflops
2 Integer , String , String , String , Real , Real
3 Compile , Runtime , Output , Output , Output , Output
4 16, Four , Success , None , 0.00417039 , 491.174
5 16, Eight , Success , None , 0.00417222 , 490.959
6 32, Four , Success , None , 0.00407581 , 526.885
7 32, Eight , Success , None , 0.00408248 , 526.025
8 64, Four , Failure , Launch , 0 , 0
9 64, Eight , Failure , Launch , 0 , 0
10 128, Four , Failure , Compile , 0 , 0
11 128, Eight , Failure , Compile , 0 , 0

Figure 3: Example of a CSV output file (indentation and
whitespaces added for clarity).

Figure 3 shows the output from an actual BONSAI execution
of the MatMul example from the CUDA Programming Guide. The
two cases where BLOCK_SIZE=64 fail at launch due to exceeding

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

ICPP 2019, August 5–8, 2019, Kyoto, Japan Jakub Kurzak et al.

the maximum number of threads per block, while the two cases
where BLOCK_SIZE=128 fail in compilation due to exceeding the
size of the shared memory.

5.2 Processing Pipeline
The purpose of the driver file is to set up the tuning sweep by
connecting the other components—the kernel file and the input
CSV file—and by establishing the processing pipeline that each
record in the input file will go through. Figure 4 shows a driver for
tuning the MatMul kernel. First, an object of class Sweep is created
with a fairly long list of parameters passed to the constructor to
describe the setup. The role of each parameter is explained in the
comments. Then the Sweep::addParameter() method is used to
add the extra parameter Gflops to the list of output parameters.
What follows is a sequence of calls to the Sweep::addCallback()
method, which creates the pipeline for processing the input records.
Finally, the Sweep::run() method launches the sweep to the avail-
able resources.

1 try {
2 using namespace bonsai;
3 using Target = Callback :: Target;
4 using Type = Callback ::Type;
5
6 bonsai ::Sweep sweep(
7 std:: string("input.csv"), // input CSV filename
8 std:: string("output.csv"), // output CSV filename
9 std:: string("kernel.cu"), // kernel source filename
10 std:: string("MatMul"), // kernel function name
11 sizeof(CallbackData), // size of callback data
12 num_reps , // number of repetitions
13 chunk_size , // dispatch chunk size
14 std:: string("-arch=sm_60")); // extra compilation flags
15
16 sweep.addParameter(std:: string("Gflops"), Value::Type::Real);
17
18 sweep.addCallback(init_input , Target ::Host);
19 sweep.addCallback(copy_input , Target :: Device);
20 sweep.addCallback(call_kernel , Target ::Device , Type:: Kernel);
21 sweep.addCallback(copy_output , Target :: Device);
22 sweep.addCallback(free_mem , Target ::Device , Type:: Cleanup);
23 sweep.addCallback(test_result , Target ::Host , Type::Test);
24
25 sweep.run();
26 }
27 catch (bonsai :: Exception& e) {
28 std::cerr << e.what() << std::endl;
29 }

Figure 4: Example of a driver file showing setup and launch
of a BONSAI sweep.

Figure 5 shows the execution produced by the driver in Figure 4.
First, BONSAI compiles the kernel using the system() call to in-
voke the nvcc compiler. The values of the compile-time parameters
are passed as preprocessing options, e.g., -DBLOCK_SIZE=16. The
kernel is compiled to a dynamic library, which is then opened using
dlopen(), and the appropriate symbol is loaded using dlsym().

Then control is passed to the user-defined callbacks. The call-
backs have two attributes: Target and Type. Target can be either
Host or Device.

Host designates a function to be executed by a CPU thread.
Device designates a function to be executed by a GPU.
One important difference between the two classes is that CPU

callbacks are executed using OpenMP multithreading (tasking to be

exact), with disregard for resource contention, while GPU callbacks
are granted exclusive access to one of the GPUs in the system for
the duration of their execution, in order to avoid any potential
interference.

Figure 5: Example of a BONSAI kernel processing pipeline.

The optional Type attribute can take the following values:
Kernel designates the callback invoking the GPU kernel.
Test designates the user-supplied correctness check.
Cleanup designates the cleanup callback.

In the initial pass, each callback is called once, with the exception
of Cleanup, which is skipped. Kernel is invoked once, but its exe-
cution time is ignored. If present, Test is called and its result (bool)
is noted. If Test returns false, then, in the output file, Status is
set to Failure and Error is set to Test. When the initial pass is
finished, Kernel is invoked num_reps times and the best time is
taken. Only then Cleanup is called—at the very end.

Figures 6 and 7 show excerpts of the callback functions for the
MatMul example. Currently, for simplicity, all callbacks have the
same signatures and take the following parameters:

Callback data is a block of memory for sharing data among
callbacks. It is allocated by BONSAI according to the size
specified in the Sweep() constructor, and is private to one
pass of the pipeline, i.e., one set of input parameters—one
line from the input CSV file. Typical usage of the callback
data is for passing pointers to input/output arrays that are
allocated in one callback, used in another callback, and freed
in the cleanup callback.

Massively Parallel Automated Software Tuning ICPP 2019, August 5–8, 2019, Kyoto, Japan

Kernel parameters is a map providing access to the values of
the parameters in a given record. The key is a string with the
name of the parameter, e.g., BLOCK_SIZE, SharedMemConfig.
The value is a union of:
double real;

int64_t integer;

char string [8];

Kernel function is the function invoking the GPU kernel.
CUDA stream is the stream, created by BONSAI, that is ded-

icated to this particular pass. All CUDA calls in all Device
callbacks have to be issued to that stream to guarantee ex-
clusive access to one particular GPU.

Figure 6 shows an excerpt of the kernel callback. The value of the
SharedMemConfig parameter is accessed and passed to the function
invoking the kernel, along with the CUDA stream. That function
will call cudaFuncSetSharedMemConfig() to set the configuration
and launch the kernel using the <<<...>>> notation.

1 // Launches the GPU kernel (Target ::Device , Type:: Kernel)
2 bool call_kernel(void* callback_data ,
3 bonsai :: KernelParams& kernel_params ,
4 bonsai :: Kernel ::Func kernel_func ,
5 cudaStream_t stream)
6 {
7 cudaSharedMemConfig shm_config;
8 char* shm_param =
9 kernel_params[std:: string("SharedMemConfig")]. string;
10
11 if (strcmp(shm_param , "Four") == 0)
12 shm_config = cudaSharedMemBankSizeFourByte;
13 else
14 shm_config = cudaSharedMemBankSizeEightByte;
15 ...
16 cudaError_t status = kernel_func(shm_config , ..., stream);
17 return status == cudaSuccess;
18 }

Figure 6: Excerpt of the kernel callback function.

Figure 7 shows an excerpt of the cleanup callback. This callback
frees all the previously allocated memory and sets the value of the
user-defined Gflops parameter. By the time cleanup is called, the
kernel’s best execution time is available through the Time parameter.
The GFLOPS value is computed by dividing the number of floating-
point operations by the execution time and dividing by 109, and it is
then stored in the map of parameters. When the sweep completes,
it will be used to populate the Gflops column in the output CSV file.

1 // Performs cleanup tasks (Target ::Device , Type:: Cleanup)
2 bool free_mem(void* callback_data ,
3 bonsai :: KernelParams& kernel_params ,
4 bonsai :: Kernel ::Func kernel_func ,
5 cudaStream_t stream)
6 {
7 cudaFree (...);
8 ...
9 free (...);
10 ...
11 double time = kernel_params.at(std:: string("Time")). real;
12 double gflops = ... / time / 1000000000.0;
13 kernel_params[std:: string("Gflops")]. real = gflops;
14 return cudaGetLastError () == cudaSuccess;
15 }

Figure 7: Excerpt of the cleanup callback function.

5.3 File IO
BONSAI performs file system operations when:

• reading the input CSV file,
• writing the output CSV file,
• compiling the kernel to a dynamic library, for each record
in the input CSV file.

The input CSV file is read by one MPI rank and sent to all the other
ranks using a sequence of calls to MPI_Bcast(). The input is repli-
cated on all ranks, which massively simplifies dynamic scheduling
of work to ranks, as further explained in Section 5.4. At the same
time, replication of the entire input is not a problem from the stand-
point of memory overhead. Take, for example, an input file with
100 parameters and one million records. Parameters’ values are
represented as a union of int64_t, double, and char[8]. I.e., each
parameter occupies 8 bytes. One million records, 800 bytes each,
requires ∼0.75 GB. Consider that, e.g., the Summit supercomputer
has 512 GB of memory per node. Also, a broadcast of less than one
GB of data is not a challenge from the standpoint of MPI communi-
cation. The same approach in reverse is followed for writing the
output CSV file. The outputs from all the nodes are combined, using
a sequence of calls to MPI_Reduce(), and one rank takes care of
writing the output CSV file.

The operations regarding the CSV files only happen at the be-
ginning and at the end of the execution and are not performance
critical. On the other hand, large numbers of compilations per-
formed on each node are performance critical and some caution
needs to be taken to avoid file system contention for large runs.
Ideally, all compilations happen in the local disk of each node. Usu-
ally, a “scratch” folder is created in the file system for access to the
local disk in each node, and is sometimes purged when the process
completes. The user has a few options to provide its location to
BONSAI:

(1) The path can be provided as an optional parameter to the
Sweep() constructor.

(2) If not passed to the constructor, then the value of the envi-
ronment variable $TMPDIR is used.

(3) If not set in $TMPDIR, then the folder /tmp/ is used.
The kernel source file is copied to the scratch folder at the begin-

ning of the sweep and removed at the end. All the dynamic libraries
created over the course of the sweep—one for each record in the
input file—are stored in the scratch folder with the row numbers
attached to the names to avoid name collisions.

5.4 Parallel Dispatch
Processing of records is scheduled to distributed-memory nodes
dynamically at runtime, in chunks, basically the same way that
#pragma omp parallel for schedule(dynamic , chunk)

would schedule a loop to multiple threads in shared memory. Dy-
namic scheduling is necessary because of wildly fluctuating compi-
lation and execution times. The time it takes to compile the kernel—
with a given set of compile-time parameters—may be anywhere
between a fraction of a second and tens of seconds. We have even
encountered cases when the compilation exceeded a minute. This
usually happens when the compiler is bogged down by excessive
unrolling.

ICPP 2019, August 5–8, 2019, Kyoto, Japan Jakub Kurzak et al.

Similarly, the kernel’s execution times are highly unpredictable
due to the very nature of autotuning. We are trying a large number
of cases, precisely because we do not knowwhich ones will perform
well. An order of magnitude performance fluctuations are to be
expected.

Chunking serves a dual purpose. It allows for minimizing the
overheads of dispatching work to multiple distributed-memory
nodes, while at the same time maximizing the benefits of dynamic
scheduling within each node. Ideally, the number of records in the
chunk should be much larger than the number of CPU cores and
GPU devices in each node. At the same time, the overall number
of chunks should be much larger than the number of distributed-
memory nodes.

The distributed-memory scheduling in BONSAI follows the tradi-
tional client-server architecture. Figure 8 shows the basic structure.
Rank 0 dedicates one thread to serving requests for work from
other ranks, and dedicates all the other threads to local processing
of chunks. The omp master section at line 7 contains the server
code. The omp single section at line 12 contains the local process-
ing code. Each record in the chunk is scheduled as an independent
OpenMP task using the omp task directive. The omp master sec-
tion at line 21 contains the client code that requests chunks from
the server and processes them, in a similar fashion, by executing
each record as an independent task.

1 void Sweep::run()
2 {
3 if (mpi_rank_ == mpi_root_) {
4 #pragma omp parallel
5 {
6 if (mpi_size_ > 1) {
7 #pragma omp master
8 {
9 // server code
10 }
11 }
12 #pragma omp single
13 {
14 // local processing
15 }
16 }
17 }
18 else {
19 #pragma omp parallel
20 {
21 #pragma omp master
22 {
23 // client code
24 }
25 }
26 }
27 }

Figure 8: Top level structure of the scheduling code.

Figure 9 illustrates the code executed by rank 0. The right side
shows the server code; the left side shows the local processing
code. The server follows the cycle of receiving a request, sending a
response, and advancing the chunk counter until the records are
exhausted. When that happens, the server sends a termination flag
to all the other ranks. The local processing code simply processes
chunks and advances the chunk counter until the records are ex-
hausted. Atomic access to the chunk counter is protected by the
omp critical directive.

Figure 9: Flowcharts of operation of rank 0.

Figure 10 illustrates the code executed by all ranks, other than
0. They follow the cycle of sending a request, receiving the re-
sponse, and processing the chunk indicated in the response until
the termination flag is received.

Figure 10: Flowcharts of operation for ranks other than 0.

A chunk is requested by sending an empty message to the server.
The server receives the message using MPI_ANY_SOURCE and finds
out the requester from the MPI_SOURCE field in the message’s status.
It then responds by sending the index of the first record in the next
available chunk.

The last aspect of scheduling is the necessity to guarantee ex-
clusive access to devices. While one kernel is executed, timed,
and possibly profiled, the GPU should not be executing any other
operations—other kernels, memory copies, etc.—which would in-
troduce performance interference. In the course of processing a
record, a device is requested after compilation and released after
cleanup. Each record has access to one GPU at a time. This mech-
anism is implemented by using a boolean flag and accessing it

Massively Parallel Automated Software Tuning ICPP 2019, August 5–8, 2019, Kyoto, Japan

using atomic operations __sync_bool_compare_and_swap() and
__sync_lock_test_and_set(). Processing is blocked until a free
device is found. Also, as has already been mentioned, each record
executes using a unique CUDA stream.

5.5 Code Structure
BONSAI’s distributed engine is implemented by a few C++ classes.
The current implementation is header-only. Figure 11 shows the
relationships among the main classes. The code also includes a
handful of classes for representing simple structures, such as pa-
rameters and their values, as well as classes for handling auxiliary
tasks, such as exception handling and tracing (printing Gantt charts
of the execution).

Figure 11: Basic structure of BONSAI classes.

The main classes and their functions are as follows:
Kernel provides the main functionality related to the GPU

kernel, such as compilation to a dynamic library and opening,
loading, and closing of the dynamic library. It also stores
the file system information, such as the path to the kernel
source file, the location of the scratch folder, etc. One object
of the Kernel class represents the kernel with one set of
parameters (one record of the input CSV file).

Callback stores the main information about user-defined call-
backs, such as their types (Kernel, Test, Cleanup, Other)
and targets (Host, Device). One object of the Callback class
represent one stage in the processing pipeline, like the one
in Figure 5.

Device implements handling of devices and stores information
such as the device number and a unique stream. It also pro-
vides the functionality of reserving a device for the duration
of processing one record. One object of the Device class
represents one GPU.

Sweep is the main class and contains the bulk of the implemen-
tation. The public methods allow the user to add callbacks
and user-defined output parameters. It contains a lengthy

constructor allowing the user to pass all the necessary setup
options (Figure 4). Its private methods implement the file IO
described in Section 5.3, and the parallel scheduling system
described in Section 5.4.

Considerable attention has been paid to the software engineer-
ing, resulting in a fairly compact implementation. The code relies
on C++ facilities for its file IO operations (<fstream>, <iostream>,
<sstream>) and on standard library containers for its data struc-
tures (<list>, <map>, <set>, <string>, <vector>). It also uses C++
regular expression capabilities (<regex>). The code falls back on C
facilities where appropriate, e.g., when interacting with the oper-
ating system (OS) through calls to the Portable Operating System
Interface (POSIX). The implementation is fairly portable due to the
use of MPI for messaging and OpenMP for multithreading. The
only non-portable aspect of the code is the use of NVIDIA CUDA.
Comments and Doxygen10 sections were used extensively to make
the code readable.

6 EXPERIMENTAL RESULTS
6.1 Kernel
While in the previous sections we used the simplistic gemm kernel
from the CUDA Programming Guide, here we are using a highly
parametrized gemm kernel developed in the course of our past auto-
tuning efforts [2, 9, 10]. It is based on a fairly standard approach,
where values of C are accumulated in registers, while values of A
and B are streamed through shared memory in thin stripes. Fig-
ure 12 shows all the blocking factors of the implementation.

Figure 12: Blocking factors of the gemm implementation.

Each thread block is of size dim_m × dim_n and computes a block
of C of size blk_m × blk_n. A is streamed through shared memory
in stripes of size blk_m × blk_k and B is streamed in stripes of size
blk_k × blk_n. For the lack of space, we refer the readers to the
literature for more details [2, 9, 10].
10http://www.doxygen.nl

ICPP 2019, August 5–8, 2019, Kyoto, Japan Jakub Kurzak et al.

6.2 Environment
The hardware is a cluster of four nodes, each containing two 10-core
Intel Xeon E5-2650 v3 (Haswell) CPUs, 4 NVIDIA GeForce GTX
1060 6GB (Pascal) GPUs, and a 56G InfiniBand (IB) FDR adapter. The
nodes are connected using an SB7700 InfiniBand EDR 100G switch.
The code was built using GCC 8.3.0, CUDA 10.1, and OpenMPI 4.0.0.

6.3 Search Space
The search space was generated using the LANguage for Autotun-
ing Infrastructure (LANAI) [10]. Figures 13 and 14 show the com-
plete LANAI input file used in the experiments. The file is slightly
simplified compared to the file for an exhaustive gemm sweep. Here
we are only tuning gemm in single precision and only for the case
where A and B are not transposed. We also made the assumptions
that dim_m_a = dim_m_b = dim_m and dim_n_a = dim_n_b = dim_n,

1 from lanai import *
2 from device_constants.cuda_constants import *
3 from device_constants.GeForce_GTX_1060_6GB import *
4
5 max_threads_dim_x = maxThreadsDim [0] # 1024
6 max_threads_dim_y = maxThreadsDim [1] # 1024
7 max_regs_per_thread = MaxRegistersPerThread[major][minor] # 255
8 #---
9 # iterators
10 dim_m = range(1, max_threads_dim_x +1)
11 dim_n = range(1, max_threads_dim_y +1)
12
13 @iterator
14 def blk_m(dim_m):
15 return range(dim_m , max_threads_dim_x +1, dim_m)
16
17 @iterator
18 def blk_n(dim_n):
19 return range(dim_n , max_threads_dim_y +1, dim_n)
20
21 blk_k = range(1, min(max_threads_dim_x , max_threads_dim_y)+1)
22 dim_vec = range(1, 5, 3) # returns 1 for float and 4 for float4
23
24 @iterator # indicates if vector types are used
25 def vec_mul(dim_vec): # in the main multiplication loop
26 if dim_vec == 1:
27 return range(0, 1) # returns 0 if the type is float
28 else:
29 return range(0, 2) # returns 0 and 1 if the type is float4
30
31 tex_a = range(0, 2) # indicates if texture reads are used for A
32 tex_b = range(0, 2) # indicates if texture reads are used for B
33 #---
34 # derived variables
35 threads_per_block = dim_m * dim_n
36
37 thr_m = blk_m / dim_m # each thread computes thr_m x thr_n
38 thr_n = blk_n / dim_n # part of C
39
40 float_size = 4 # sizeof(float)
41 regs_per_thread = thr_m * thr_n # registers required to store C
42
43 regs_per_block = regs_per_thread * threads_per_block
44 max_blocks_by_regs = regsPerMultiprocessor / regs_per_block
45 max_threads_by_regs = max_blocks_by_regs * threads_per_block
46
47 shmem_per_block = blk_k * (blk_m + blk_n) * float_size
48 max_blocks_by_shmem = sharedMemPerMultiprocessor / shmem_per_block
49 max_threads_by_shmem = max_blocks_by_shmem * threads_per_block
50
51 # number of active blocks per streaming multiprocessor (SM)
52 blocks_per_sm = min(max_blocks_by_regs , max_blocks_by_shmem)
53 # number of active threads per streaming multiprocessor (SM)
54 threads_per_sm = blocks_per_sm * threads_per_block
55
56 loads_per_block = (blk_m + blk_n) * blk_k / dim_vec
57 fmas_per_thread = thr_m * thr_n * blk_k
58 fmas_per_block = fmas_per_thread * threads_per_block

Figure 13: LANAI search space definition - part 1.

i.e., the same shape of the thread block is used for access toA, B, and
C . We are also using the default settings for the cudaFuncCache
and cudaSharedMemConfig settings.

The LANAI file starts with a set of iterators, mostly correspond-
ing to the blocking factors in Figure 12. The search space also
includes two variants of the implementation: a simpler one based
on the scalar type float, and a more complex one based on the
vector type float4. Also, each of the input matrices, A and B, can
be read using standard memory reads or using texture reads.

The LANAI file contains three user-defined heuristic thresholds,
two of which—min_threads_per_sm and min_fmas_per_load—
we use to control the size of the tuning sweep:

• min_threads_per_sm sets the lower limit on the number of
threads per multiprocessor; e.g., forces minimum occupancy.
We use the values of 512, and 256 for our sweeps. For the
Pascal architecture, which has 2048 cores per multiprocessor,
this translates to 25% and 12.5% occupancy.

62 #---
63 # user -defined heuristic thresholds
64
65 # use at least 512 threads per streaming multiprocessor (SM)
66 min_threads_per_sm = 512
67
68 # use at least 2 blocks per streaming multiprocessor (SM)
69 min_blocks_per_sm = 2
70
71 # have at least 64 FMA instructions per one load instruction
72 min_fmas_per_load = 64
73 #---
74 # hard constraints
75 @condition # too many threads per block
76 def over_max_threads(threads_per_block):
77 return threads_per_block > maxThreadsPerBlock
78
79 @condition # too many registers per thread
80 def over_max_regs_per_thread(regs_per_thread):
81 return regs_per_thread > max_regs_per_thread
82
83 @condition # too many registers per block
84 def over_max_regs_per_block(regs_per_block):
85 return regs_per_block > regsPerBlock
86
87 @condition # exceeding the size of shared memory
88 def over_max_shmem(shmem_per_block):
89 return shmem_per_block > sharedMemPerBlock
90 #--
91 # implementation correctness violations
92 @condition
93 def cant_reshape_a(blk_m , blk_k , dim_m , dim_n):
94 return ((blk_m % (dim_m*dim_vec) != 0) or (blk_k % dim_n != 0))
95
96 @condition
97 def cant_reshape_b(blk_k , blk_n , dim_m , dim_n):
98 return ((blk_k % (dim_m*dim_vec) != 0) or (blk_n % dim_n != 0))
99 #---

100 # soft heuristics
101 @condition # blocks not divisible by warp size
102 def partial_warps(threads_per_block):
103 return threads_per_block % warpSize != 0
104
105 @condition # not enough blocks per multiprocessor
106 def min_block(blocks_per_sm):
107 return blocks_per_sm < min_blocks_per_sm
108
109 @condition # too low occupancy
110 def low_occupancy(threads_per_sm):
111 return threads_per_sm < min_threads_per_sm
112
113 @condition # too few FMAs per load
114 def low_fmas(loads_per_block , fmas_per_block):
115 return fmas_per_block < min_fmas_per_load * loads_per_block

Figure 14: LANAI search space definition - part 2.

Massively Parallel Automated Software Tuning ICPP 2019, August 5–8, 2019, Kyoto, Japan

Table 1: Results of gemm performance tuning sweeps.

sweep min threads min FMAs sweep run time approx. serial time approx. approx.
size per SM per load [dd:hh:mm:ss] [dd:hh:mm:ss] speedup efficiency

5,980 512 64 1:17:20 18:11:03 14.1 88%
20,428 512 32 3:11:09 43:26:19 13.6 85%
38,924 512 16 6:29:29 90:00:42 13.9 87%
63,532 256 32 1:09:07:38 20:09:14:45 14.8 92%

• min_blocks_per_sm sets the lower limit on the number of
thread blocks per multiprocessor. We use the value of 2. This
is because the multiprocessor has 96K of shared memory,
while one thread block can only use 48K. So, at least two
blocks are required to fully utilize the shared memory.

• min_fmas_per_load sets the minimum number of fused
multiply–add (FMA) instructions per one load instruction,
forcing a certain level of computing intensity. We use the
values of 64, 32, and 16 for our sweeps.

The LANAI file ends with pruning conditions for eliminating
undesirable cases. Hard constraints eliminate violations of hard-
ware limits. Implementation correctness checks protect against
unimplemented corner cases. Soft heuristics enforce performance
guidelines, and take into account user-defined thresholds.

6.4 Results
We set up four performance tuning sweeps of different sizes by
changing the values of the parameters min_threads_per_sm and
min_fmas_per_load (lines 66 and 72 in Figure 14 respectively).
Table 1 shows the results. All runs were done withm = n = k =
10, 000, i.e., all matrices were of size 10, 000 × 10, 000. Each kernel
was run five times. Work was dispatched in chunks of size 100.

We approximated the time of serial execution by summing up
the Time column in the output CSV files and multiplying by the
number of iterations, which was five in this particular case. This
really is a lower bound of the serial execution time. First, the fastest
run of each kernel is used as an approximation for the slower
four. Second, the time of all CPU tasks is completely ignored This
includes the time to compile the kernel, initialize the data, and
check the results for errors. Nevertheless, the approximate parallel
efficiency is between 85% and 92%.

Although actually finding the fastest gemm kernel was not the
true objective of the exercise, there is no harm in reporting it. The
top performer achieved 3,180GFLOPS compared to the 3,875GFLOPS
for cuBLAS. I.e., our kernel achieved 82% of cuBLAS performance,
which is fairly good for a kernel compiled from C++ source code,
as opposed to cuBLAS gemm, which is implemented in assembly.
The values of tuning parameters were: dim_m = dim_n = 16,
blk_m = blk_n = 128, blk_k = 32, no vectorization, no texture
reads.

The real goal here was to show the impact of using parallel
resources for autotuning runs. Table 1 shows how using a very
modest number of GPUs (16) can dramatically reduce the run time
of a tuning sweep. Basically, days are reduced to hours. The largest
run of size 63,532 took 1 day and 9 hours to execute in parallel,
while the estimated serial time is 20 days and 9 hours. This opens

up all kinds of new opportunities when targeting systems with
thousands of GPUs like Summit and Sierra.

7 FUTURE PLANS
We believe that the initial implementation, presented in this article,
provides fairly powerful and unique capabilities. At the same time,
there is great potential for both improving the performance of the
system and extending its functionality.

Here are some of the main ideas for performance improvements:
• Right now, the kernel is recompiled for each record in the
input CSV file. Clearly, recompilation is not necessary if
only runtime parameters change from record to record. The
records can easily be sorted to group records with identical
values of compile-time parameters, and skip recompilation.
This would be very beneficial for kernels sensitive to the
input data, which need to be bench-tested with the same set
of compile-time parameters and different datasets.

• Currently, scheduling of local tasks is somewhat suboptimal
due to the fact that a GPU is requested right after compilation
and held for the rest of the pass. This way the device may be
reserved before any work is sent to the GPU. Alternatively,
the device could be requested before the first Device task
and released after the last Device task. This would allow for
more Host tasks to execute on the CPU without holding the
GPU.

• Normally, one kernel, corresponding to one input record,
is run many times, in order to produce a statistically mean-
ingful measure of the execution time. At the same time, if a
kernel shows inferior performance in one or two runs, say,
10× slower than the best discovered so far, then the remain-
ing iterations can be skipped. Because the system relies on
a centralized server for work dispatch, we can easily keep
track of the top performance (minimum execution time). The
clients can report it in their work requests. The server can
send updates in the replies.

• There could also be a user-defined timeout to protect against
very long compilation times, although this is questionable,
as excessive compilation time can still produce a fast kernel.

• NVIDIA provides the NVRTC tool for runtime compilation.11
NVRTC accepts source code in character string form and
creates handles that can be used to obtain the parallel thread
execution (PTX) code. The PTX string generated by NVRTC
can then be loaded and linked. The use of NVRTC could
lead to shorter compilation times, relieve the stress from the

11https://docs.nvidia.com/cuda/nvrtc/

https://docs.nvidia.com/cuda/nvrtc/

ICPP 2019, August 5–8, 2019, Kyoto, Japan Jakub Kurzak et al.

file system, and solve the potential problem of the NVCC
compiler not being accessible from the production nodes of
a supercomputer (only the head nodes). It is still important
to have the option to go through the file system in situations
where compilation is more complex than just a simple NVCC
invocation. One good example is the use of a more powerful
preprocessor, like the pyexpander.12

Here are some of the main ideas for functionality extensions:
• Currently, the system detects three types of failures: the
failure to compile, the failure to launch, and the failure of the
user-defined test. It is also possible that the kernel compiles
and launches, but then crashes during execution. We would
like to detect execution failures and report them like the
other failures.

• Right now, the system only measures the execution time.
We argue that collecting information from hardware perfor-
mance counters could provide a treasure trove of informa-
tion for data analysis and machine learning. Ideally, the user
could specify which events or metrics to collect and BONSAI
would collect them automatically and return in the output
CSV file.

• Currently, we do not have a good measure of the utiliza-
tion/speedup, i.e., a comparison to a serial run (one CPU
thread, one GPU device). It makes little sense to set up a run
like that just to get that number. On the other hand, BONSAI
can produce a good approximation by collecting the times of
all CPU tasks and all GPU tasks launched in a parallel run.

• Right now, we are only returning the best performance for
each record (minimum time). We could also return other
measures, such as: maximum, average, median, standard
deviation. This could easily be configurable by the user.

• We could also make the number of iterations a function of,
e.g., the standard deviation. I.e., iterate until the standard
deviation drops below a certain threshold (or some hard limit
on the number of iterations is reached).

Finally, from the standpoint of working with a supercomputer
or a large cluster, it would be helpful to have the ability to execute
a range of records from the input file. Such environments rely on
job schedulers, like the Portable Batch System (PBS) or Slurm, and
jobs are submitted through batch queues which impose time limits.
A truly large sweep may have to be cut into smaller batches.

8 CONCLUSIONS
In this article we built the case for massively parallel automatic
software tuning by arguing that there is both the need and the op-
portunity. We described an implementation of a specialized system
for deploying large tuning sweeps of GPU kernels to large super-
computer/cluster installations. We tried to cover all the avenues
of the system: support for different types of parameters, detection
of different types of failures, distributed-memory dispatch, and
node-level dynamic scheduling. We believe that the system offers
powerful and unique capabilities and can make a profound impact
on the field of automatic performance tuning. We also outlined the
most important direction for future developments.

12http://pyexpander.sourceforge.net

SOFTWARE
The BONSAI software is freely available at https://bitbucket.org/
icl/bonsai. It is distributed under the modified BSD license, impos-
ing only minimal restrictions on its use and redistribution. For
assistance with BONSAI, email <bonsai-user@icl.utk.edu>.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation under
Grant No. 1642441 (SI2-SSE: BONSAI: An Open Software Infras-
tructure for Parallel Autotuning of Computational Kernels).

REFERENCES
[1] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,

Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. 2014. Opentuner:
An extensible framework for program autotuning. In Proceedings of the 23rd
international conference on Parallel architectures and compilation. ACM, 303–316.

[2] Hartwig Anzt, Blake Haugen, Jakub Kurzak, Piotr Luszczek, and Jack Dongarra.
2015. Experiences in autotuning matrix multiplication for energy minimization
on GPUs. Concurrency and Computation: Practice and Experience 27, 17 (2015),
5096–5113.

[3] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. 1997. Optimizing
matrix multiply using PHiPAC: a portable, high-performance, ANSI C coding
methodology. In Proceedings of the 11th international conference on Supercomput-
ing. ACM, 340–347.

[4] Matthias Christen, Olaf Schenk, and Helmar Burkhart. 2011. Patus: A code
generation and autotuning framework for parallel iterative stencil computations
on modern microarchitectures. In 2011 IEEE International Parallel & Distributed
Processing Symposium. IEEE, 676–687.

[5] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. 2003. The LINPACK bench-
mark: past, present and future. Concurrency and Computation: practice and
experience 15, 9 (2003), 803–820.

[6] Matteo Frigo and Steven G Johnson. 1998. FFTW: An adaptive software architec-
ture for the FFT. In Acoustics, Speech and Signal Processing, 1998. Proceedings of
the 1998 IEEE International Conference on, Vol. 3. IEEE, 1381–1384.

[7] Shoaib A Kamil. 2013. Productive high performance parallel programming with
auto-tuned domain-specific embedded languages. Ph.D. Dissertation. Electrical
Engineering and Computer Sciences, University of California at Berkeley.

[8] Takahiro Katagiri, Kenji Kise, Hiroaki Honda, and Toshitsugu Yuba. 2003. Fiber:
A generalized framework for auto-tuning software. In International Symposium
on High Performance Computing. Springer, 146–159.

[9] Jakub Kurzak, Stanimire Tomov, and Jack Dongarra. 2012. Autotuning GEMM
kernels for the Fermi GPU. IEEE Transactions on Parallel and Distributed Systems
23, 11 (2012), 2045–2057.

[10] Piotr Luszczek, Mark Gates, Jakub Kurzak, Anthony Danalis, and Jack Dongarra.
2016. Search space generation and pruning system for autotuners. In Parallel
and Distributed Processing Symposium Workshops, 2016 IEEE International. IEEE,
1545–1554.

[11] Kengo Nakajima, Masaki Satoh, Takashi Furumura, Hiroshi Okuda, Takeshi
Iwashita, Hide Sakaguchi, Takahiro Katagiri, Masaharu Matsumoto, Satoshi
Ohshima, Hideyuki Jitsumoto, et al. 2016. ppOpen-HPC: open source infras-
tructure for development and execution of large-scale scientific applications on
post-peta-scale supercomputers with automatic tuning (AT). In Optimization in
the Real World. Springer, 15–35.

[12] Rajib Nath, Stanimire Tomov, and Jack Dongarra. 2010. An improved MAGMA
GEMM for Fermi graphics processing units. The International Journal of High
Performance Computing Applications 24, 4 (2010), 511–515.

[13] Markus Püschel, José MF Moura, Bryan Singer, Jianxin Xiong, Jeremy Johnson,
David Padua, Manuela Veloso, and Robert W Johnson. 2004. Spiral: A generator
for platform-adapted libraries of signal processing alogorithms. The International
Journal of High Performance Computing Applications 18, 1 (2004), 21–45.

[14] David E Tanner. 2018. Tensile: Auto-Tuning GEMM GPU Assembly for All
Problem Sizes. In 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 1066–1075.

[15] Cristian Ţăpuş, I-Hsin Chung, Jeffrey K Hollingsworth, et al. 2002. Active
harmony: Towards automated performance tuning. In Proceedings of the 2002
ACM/IEEE conference on Supercomputing. IEEE Computer Society Press, 1–11.

[16] Richard Vuduc, James W Demmel, and Katherine A Yelick. 2005. OSKI: A library
of automatically tuned sparse matrix kernels. In Journal of Physics: Conference
Series, Vol. 16. IOP Publishing, 521.

[17] R Clint Whaley, Antoine Petitet, and Jack J Dongarra. 2001. Automated empirical
optimizations of software and the ATLAS project. Parallel Comput. 27, 1-2 (2001),
3–35.

http://pyexpander.sourceforge.net
https://bitbucket.org/icl/bonsai
https://bitbucket.org/icl/bonsai

	Abstract
	1 Introduction
	2 Motivation
	3 Original Contribution
	4 Related Work
	5 Implementation
	5.1 Principles of Operation
	5.2 Processing Pipeline
	5.3 File IO
	5.4 Parallel Dispatch
	5.5 Code Structure

	6 Experimental Results
	6.1 Kernel
	6.2 Environment
	6.3 Search Space
	6.4 Results

	7 Future Plans
	8 Conclusions
	Acknowledgments
	References

