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ABSTRACT

This article presents an implementation of a distributed autotuning
engine developed as part of the Bench-testing OpenN Software
Autotuning Infrastructure project. The system is geared towards
performance optimization of computational kernels for graphics
processing units, and allows for the deployment of vast autotuning
sweeps to massively parallel machines. The software implements
dynamic work scheduling to distributed-memory resources and
takes advantage of multithreading for parallel compilation and
dispatches kernel launches to multiple accelerators. This paper lays
out the main design principles of the system and discusses the basic
mechanics of the initial implementation. Preliminary performance
results are presented, encountered challenges are discussed, and
the future directions are outlined.

CCS CONCEPTS

- Software and its engineering — Massively parallel systems.

KEYWORDS

automated software tuning, graphics processing unit

ACM Reference Format:

Jakub Kurzak, Yaohung M. Tsai, Mark Gates, Ahmad Abdelfattah, and Jack
Dongarra. 2019. Massively Parallel Automated Software Tuning. In 48th
International Conference on Parallel Processing (ICPP 2019), August 5-8, 2019,
Kyoto, Japan. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3337821.3337908

1 INTRODUCTION

The goal of the Bench-testing OpeN Software Autotuning Infras-
tructure (BONSAI) project is to develop a toolset for facilitating
huge autotuning sweeps of computational kernels for graphics pro-
cessing units (GPUs). This article describes BONSAI’s distributed
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bench-testing engine for deploying large tuning sweeps to mas-
sively parallel distributed-memory machines with multiple GPUs
per node. Such machines are becoming ubiquitous in scientific and
engineering computing and right now seem to be the only viable
path toward reaching exascale. At the same time, autotuning is
one of the main performance engineering tools for GPU kernel
development. Also, as we further discuss in Section 2, there is a
clear need for deploying really massive sweeps. Yet, no software
infrastructure exists for utilizing the vast available resources in the
autotuning process.

One important factor is the relation between autotuning and
machine learning. While machine learning is commonly applied to
the problem of performance tuning, BONSAT’s ability to produce
exhaustive sweeps creates a unique opportunity to establish the
ground truth for the ultimate validation of different machine learn-
ing approaches. Not without significance is the growing popularity
of deep learning and its dependence on the availability of large
datasets for training. BONSALI offers vast possibilities for applying
deep neural networks (DNNs) to the problem of automated soft-
ware tuning in new creative ways by allowing us to produce input
datasets of unprecedented sizes for the training phase.

2 MOTIVATION

We argue that the current trends in high-end computing can be
judged by taking a look at the largest systems on the TOP500 list. !
Consider the architecture of the number one system on the list, the
Summit supercomputer at the Oak Ridge Leadership Computing Fa-
cility (OLCF). 2 Summit contains three NVIDIA V100 GPUs per each
POWERY9 CPU. The peak double-precision floating-point perfor-
mance of the CPU is 22 (cores) X 24.56 GFLOPS = 540.32 GFLOPS.
The peak performance of the GPUs is 3 (devices) X 7.8 TFLOPS =
23.4 TFLOPS. Le., 97.7% of performance is on the GPU side, and
only 2.3% of performance is on the CPU side. This means that
maximum offload to GPUs is paramount and aggressive optimiza-
tions are crucial. This also means that vast numbers of GPUs are
readily available for the process of autotuning. Consider that to
place the Summit system on the TOP500 list the High-Performance
Linpack (HPL) benchmark[5] had to run for approximately 9 hours
using 27,648 GPUs. If the resources were used instead for a tuning
sweep, it would be equivalent to over 28 years of serial tuning using
one GPU.

!https://www.top500.0rg
Zhttps://en.wikichip.org/wiki/supercomputers/summit
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The question remains whether such massive sweeps are justified.
Here we try to make the case for such runs. One of the prime
examples is the omnipresent matrix multiplication kernel, also
known as the gemm routine in linear algebra lingo. Consider an
implementation of the gemm kernel using NVIDIA’s CUDA [9, 12]
platform. The kernel can have up to nine blocking factors, can be
implemented with or without the use of single instruction, multiple
data (SIMD) instructions, can be implemented with or without the
use of texture memory, can be invoked with two values for the
cudaFuncCache setting and two values for cudaSharedMemConfig
setting.? In addition, the kernel is needed in single precision and
double precision, and in real arithmetic and complex arithmetic.
On top of that, it needs to support four combination of the transa
and transb input arguments.* Finally, the performance of gemm
is sensitive to the sizes of the input matrices, and ideally would
be tuned for a range of different sizes, which adds three more
dimensions (m, n, k) to the search space.

Another important issue is the potential sensitivity of the kernel
being tuned to the input data, the prime example here being the
sparse matrix-vector product kernel, also known as the SpMV rou-
tine. Performance of SpMV is sensitive to the contents of the input
matrix and the layout used for its representation. Arguably, it is
not without merit to run a performance sweep over all the 2,833
matrices in the SuiteSparse collection® using a number of differ-
ent layouts (CSC/CSR, ELLPACK, SELL-C/SELL-P, Sell-C-Sigma,
BCSR, DIA, COO, etc.) This alone creates tens of thousands of
cases, without even considering tunable parameters of the kernels’
implementations.

It is important to note, though, that we are not dismissing the
merits of intelligent pruning of the search space. Notably, BONSAI
contains a dedicated component for search space generation and
pruning [10]. The argument is that pruning can be limited to the
cases that are guaranteed to fail—either during compilation, launch,
or execution—or are absolutely certain to deliver inferior perfor-
mance. The point is to eliminate the educated guesswork from the
tuning process forced by superficial constraints on the size of the
tuning ensemble.

Finally, an interesting avenue is the collection of data from the
hardware performance counters. Consider that, for devices with
compute capability 7.x, the nvprof tool from NVIDIA can collect
62 performance events, which can be used to calculate 176 perfor-
mance metrics. ® These metrics provide a plethora of information,
such as: achieved occupancy, instructions executed per cycle, shared
memory efficiency, etc. Computing all the metrics in the course
of a performance tuning sweep may produce a great dataset for
machine learning algorithms. At the same time, only a handful of
events can be collected in a single kernel launch, and the kernel
has to be “replayed” multiple times to collect all of them, which
leads to excessive execution times.

3https://docs.nvidia.com/cuda/cuda-runtime-api/ — Device Management
4https://docs.nvidia.com/cuda/cublas/index. html#cublas-1t-t-gt- gemm
Shttps://sparse.tamu.edu/about
®https://docs.nvidia.com/cuda/profiler-users- guide/index html#
metrics-reference-7x
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3 ORIGINAL CONTRIBUTION

We believe that BONSAT’s distributed bench-testing system is a
unique solution, specifically when considering its dynamic sched-
uling capabilities when it comes to:

e dynamic dispatch of work to distributed-memory nodes,

o dynamic dispatch of CPU tasks to multiple CPU cores,

e dynamic dispatch of GPU tasks to multiple GPU devices.

It is the only system that we know of that directly targets massively
parallel machines for parallel compilation as well as launches of a
large number of GPU kernels.

It needs to be pointed out that the system implements parameter
sweeps, which are in principle embarrassingly parallel. Notably, in
the data analytics space, Java-based frameworks such as Hadoop ’
and Spark  are mainstream solutions for such workloads. However,
in our opinion, the listed capabilities would not easily be realized
using such software. An additional hurdle would be the fact that
Hadoop and Spark are not trivial do deploy to supercomputer in-
stallations and usually not available at supercomputing sites.

4 RELATED WORK

The body of work on automated software tuning is vast. The pi-
oneering efforts for tuning dense matrix kernels were the Auto-
matically Tuned Linear Algebra Software (ATLAS) [17], and its
predecessor, the Portable High Performance ANSI C (PHIiPAC) [3].
Seminal work on tuning sparse matrix kernels was done in the
Optimized Sparse Kernel Interface (OSKI) project [16]. Autotuning
signal processing kernels was spearheaded by the Fastest Fourier
Transform in the West (FFTW) package [6] and the Signal Pro-
cessing, Imaging, Reasoning, and Learning (SPIRAL) project [13].
The PATUS [4] and Sepya [7] projects championed autotuning
techniques for stencil computations.

While autotuning was pioneered by domain-specific techniques,
more general solutions also emerged to target a wider range of ap-
plications. Seminal work in this area was done almost two decades
ago in the Active Harmony project [15] and the FIBER project [8].
More recently, the same objective was targeted by the OpenTuner
system [1] and the ppOpen-HPC framework [11].

There is a vast body of work on autotuning kernels for GPU
accelerators, ranging from dense linear algebra to sparse linear
algebra, to signal processing, stencil codes, etc. It is impossible to
do justice to all the different activities. Instead, we would like to
single out the recent work by David Tanner as a rare example of a
conference paper documenting autotuning efforts by the hardware
industry [14].

https://hadoop.apache.org
8https://spark.apache.org
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5 IMPLEMENTATION

BONSALI is implemented as a header-only C++ library and relies
on MPI for message passing and OpenMP for multithreading. Cur-
rently, it only supports NVIDIA devices using the CUDA program-
ming model. We use CUDA terminology throughout the text and
make frequent references to CUDA documentation. We plan to
extend the coverage to devices from AMD and Intel in the future.

5.1 Principles of Operation

Figure 1 illustrates BONSAT’s principles of operation. The user is
responsible for creating three files:
(1) the kernel file, implementing the GPU kernel to be tuned,
(2) the driver file, for setting up the tuning sweep using the
BONSAI distributed bench-testing engine, and
(3) the comma-separated values (CSV) input file containing the
definition of the search space to traverse.
The BONSALI engine deploys the tuning sweep to a distributed-

memory system with GPU accelerators and produces the output
CSV file with the results.

SEARCH SPACE

Csv
N\
ool
[=1rn]
=g

o BONSALI
PARAMETRIZED DRI
KERNEL
A
[—--]
[— -]
=g
RESULTS
csv

Figure 1: Main principle of BONSAI operation.

The kernel file contains the __global__ function, implementing
the GPU kernel, and the host function, which launches the kernel us-
ing the <<<...>>>semantics. The kernel can be parametrized using
a combination of compile-time parameters and runtime parameters.
Compile-time parameters are symbols defined by passing the -D flag
to the compiler. Consider the canonical matrix multiplication exam-
ple from the CUDA Programming Guide® (the MatMul kernel). The
code contains the preprocessor directive #define BLOCK_SIZE 16.
We can remove it from the source code and pass it as a compila-
tion option, ~-DBLOCK_SIZE=16. A different mechanism is used for
passing runtime parameters, as explained further later in the text.

Figure 2 shows an example of a CSV input file describing the
search space. The first line contains the names of the parameters.

“https://docs.nvidia.com/cuda/cuda- c-programming-guide/index.html#
shared-memory
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The second line contains the data types of the parameters. The
supported parameters’ types are:

Integer - integral values represented internally as int64_t,
Real - real values represented internally as double,
String - strings represented internally as char[8].

The third line specifies whether the parameter is a compile-time
parameter (Compile) or a runtime parameter (Runtime). The re-
maining lines contain different sets of values to be tried in the
tuning sweep. In the file in Figure 2, BLOCK_SIZE is an integer,
compile-time parameter, taking values 16, 32, 64, and 128, and
SharedMemConfig is a string, runtime parameter, taking values
Four and Eight.

BLOCK_SIZE, SharedMemConfig
Integer , String
Compile , Runtime
16, Four
16, Eight
32, Four
32, Eight
64, Four
64, Eight
128, Four
128, Eight
Figure 2: Example of a CSV input file (indentation and

whitespaces added for clarity).

The output CSV file (example shown in Figure 3) is created by
adding output parameters to the contents of the input CSV file. By
default, the parameters Status, Error, and Time are added. Status
is a string parameter, indicating a Success or a Failure. Error is
a string parameter, indicating the reason for the failure if a failure
occured, and can take the following values:

None - no failures occurred,
Compile - compilation failed,
Launch - launch failed,

Test - user-defined test failed.

Time is a real-valued parameter representing the execution time in
seconds. Figure 3 also contains a real-valued, user-defined parame-
ter Gflops. The mechanism for adding user-defined parameters is
explained further later in the text.

BLOCK_SIZE, SharedMemConfig, Status , Error , Time , Gflops
Integer , String , String , String , Real , Real
Compile , Runtime , Output , Output , Output , Output
16, Four , Success, None , 0.00417039, 491.174
16, Eight , Success, None , 0.00417222, 490.959
32, Four , Success, None , 0.00407581, 526.885
32, Eight , Success, None , 0.00408248, 526.025
64, Four , Failure, Launch , @ , 0
64, Eight , Failure, Launch , @ , 0
128, Four , Failure, Compile, @ , @
128, Eight , Failure, Compile, 0 ]

Figure 3: Example of a CSV output file (indentation and
whitespaces added for clarity).

Figure 3 shows the output from an actual BONSAI execution
of the MatMul example from the CUDA Programming Guide. The
two cases where BLOCK_SIZE=64 fail at launch due to exceeding
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the maximum number of threads per block, while the two cases
where BLOCK_SIZE=128 fail in compilation due to exceeding the
size of the shared memory.

5.2 Processing Pipeline

The purpose of the driver file is to set up the tuning sweep by
connecting the other components—the kernel file and the input
CSV file—and by establishing the processing pipeline that each
record in the input file will go through. Figure 4 shows a driver for
tuning the MatMul kernel. First, an object of class Sweep is created
with a fairly long list of parameters passed to the constructor to
describe the setup. The role of each parameter is explained in the
comments. Then the Sweep: : addParameter () method is used to
add the extra parameter Gflops to the list of output parameters.
What follows is a sequence of calls to the Sweep: :addCallback()
method, which creates the pipeline for processing the input records.
Finally, the Sweep: : run() method launches the sweep to the avail-
able resources.

try {

using namespace bonsaij;

using Target = Callback::Target;
using Type = Callback::Type;

bonsai::Sweep sweep(

std::string("input.csv"), // input CSV filename
std::string("output.csv"), // output CSV filename
std::string("kernel.cu"), // kernel source filename
std::string("MatMul"), // kernel function name
sizeof(CallbackData), // size of callback data
num_reps, // number of repetitions
chunk_size, // dispatch chunk size

std::string("-arch=sm_60")); // extra compilation flags

sweep.addParameter (std::string("Gflops"), Value::Type::Real);

sweep.addCallback(init_input, Target::Host);
sweep.addCallback (copy_input, Target::Device);
sweep.addCallback(call_kernel, Target::Device, Type::Kernel);
sweep.addCallback (copy_output, Target::Device);
sweep.addCallback(free_mem, Target::Device, Type::Cleanup);

sweep.addCallback(test_result, Target::Host, Type::Test)
sweep.run();

}

catch (bonsai::Exception& e) {
std::cerr << e.what() << std::endl;

}

Figure 4: Example of a driver file showing setup and launch
of a BONSAI sweep.

Figure 5 shows the execution produced by the driver in Figure 4.
First, BONSAI compiles the kernel using the system() call to in-
voke the nvce compiler. The values of the compile-time parameters
are passed as preprocessing options, e.g., -DBLOCK_SIZE=16. The
kernel is compiled to a dynamic library, which is then opened using
dlopen(), and the appropriate symbol is loaded using d1sym().

Then control is passed to the user-defined callbacks. The call-
backs have two attributes: Target and Type. Target can be either
Host or Device.

Host designates a function to be executed by a CPU thread.
Device designates a function to be executed by a GPU.

One important difference between the two classes is that CPU
callbacks are executed using OpenMP multithreading (tasking to be
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exact), with disregard for resource contention, while GPU callbacks
are granted exclusive access to one of the GPUs in the system for
the duration of their execution, in order to avoid any potential
interference.

compile the kernel

iTarget: :Host initinput

(Target::Device copy input to device

( Target: :Device call the kernel Type: :Kernel I- .

( Target: :Device

copy output to host

| Target: :Host test results Type: :Test \

\ X num_reps

;Target: :Device call the kernel Type: :Kernel ;' -

/Target: :Device free memory Type: :Cleanup J

Figure 5: Example of a BONSAI kernel processing pipeline.

The optional Type attribute can take the following values:
Kernel designates the callback invoking the GPU kernel.
Test designates the user-supplied correctness check.
Cleanup designates the cleanup callback.

In the initial pass, each callback is called once, with the exception
of Cleanup, which is skipped. Kernel is invoked once, but its exe-
cution time is ignored. If present, Test is called and its result (bool)
is noted. If Test returns false, then, in the output file, Status is
set to Failure and Error is set to Test. When the initial pass is
finished, Kernel is invoked num_reps times and the best time is
taken. Only then Cleanup is called—at the very end.

Figures 6 and 7 show excerpts of the callback functions for the
MatMul example. Currently, for simplicity, all callbacks have the
same signatures and take the following parameters:

Callback data is a block of memory for sharing data among
callbacks. It is allocated by BONSAI according to the size
specified in the Sweep() constructor, and is private to one
pass of the pipeline, i.e., one set of input parameters—one
line from the input CSV file. Typical usage of the callback
data is for passing pointers to input/output arrays that are
allocated in one callback, used in another callback, and freed
in the cleanup callback.
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Kernel parameters is a map providing access to the values of
the parameters in a given record. The key is a string with the
name of the parameter, e.g., BLOCK_SIZE, SharedMemConfig.
The value is a union of:
double real;
int64_t integer;
char string[8];

Kernel function is the function invoking the GPU kernel.

CUDA stream is the stream, created by BONSAI, that is ded-
icated to this particular pass. All CUDA calls in all Device
callbacks have to be issued to that stream to guarantee ex-
clusive access to one particular GPU.

Figure 6 shows an excerpt of the kernel callback. The value of the
SharedMemConfig parameter is accessed and passed to the function
invoking the kernel, along with the CUDA stream. That function
will call cudaFuncSetSharedMemConfig() to set the configuration
and launch the kernel using the <<<...>>> notation.

// Launches the GPU kernel (Target::Device,

bool call_kernel(void* callback_data,
bonsai::KernelParams& kernel_params,
bonsai::Kernel::Func kernel_func,
cudaStream_t stream)

Type::Kernel)

cudaSharedMemConfig shm_config;
charx shm_param =
kernel_params[std::string("SharedMemConfig")].string;

if (strcmp(shm_param, "Four") == 0)

shm_config = cudaSharedMemBankSizeFourByte;
else

shm_config = cudaSharedMemBankSizeEightByte;

cudaError_t status = kernel_func(shm_config, ..., stream);
return status == cudaSuccess;

Figure 6: Excerpt of the kernel callback function.

Figure 7 shows an excerpt of the cleanup callback. This callback
frees all the previously allocated memory and sets the value of the
user-defined Gflops parameter. By the time cleanup is called, the
kernel’s best execution time is available through the Time parameter.
The GFLOPS value is computed by dividing the number of floating-
point operations by the execution time and dividing by 10°, and it is
then stored in the map of parameters. When the sweep completes,
it will be used to populate the Gflops column in the output CSV file.

// Performs cleanup tasks (Target::Device, Type::Cleanup)
bool free_mem(void* callback_data,
bonsai::KernelParams& kernel_params,
bonsai::Kernel::Func kernel_func,

cudaStream_t stream)

{
cudafFree(...);
free(...);
double time = kernel_params.at(std::string("Time")).real;
double gflops = ... / time / 1000000000.0;
kernel_params[std::string("Gflops")].real = gflops;
return cudaGetlLastError () == cudaSuccess;

}

Figure 7: Excerpt of the cleanup callback function.
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5.3 FileIO

BONSALI performs file system operations when:

o reading the input CSV file,

o writing the output CSV file,

e compiling the kernel to a dynamic library, for each record
in the input CSV file.

The input CSV file is read by one MPI rank and sent to all the other
ranks using a sequence of calls to MPI_Bcast (). The input is repli-
cated on all ranks, which massively simplifies dynamic scheduling
of work to ranks, as further explained in Section 5.4. At the same
time, replication of the entire input is not a problem from the stand-
point of memory overhead. Take, for example, an input file with
100 parameters and one million records. Parameters’ values are
represented as a union of int64_t, double, and char[8]. Le., each
parameter occupies 8 bytes. One million records, 800 bytes each,
requires ~0.75 GB. Consider that, e.g., the Summit supercomputer
has 512 GB of memory per node. Also, a broadcast of less than one
GB of data is not a challenge from the standpoint of MPI communi-
cation. The same approach in reverse is followed for writing the
output CSV file. The outputs from all the nodes are combined, using
a sequence of calls to MPI_Reduce(), and one rank takes care of
writing the output CSV file.

The operations regarding the CSV files only happen at the be-
ginning and at the end of the execution and are not performance
critical. On the other hand, large numbers of compilations per-
formed on each node are performance critical and some caution
needs to be taken to avoid file system contention for large runs.
Ideally, all compilations happen in the local disk of each node. Usu-
ally, a “scratch” folder is created in the file system for access to the
local disk in each node, and is sometimes purged when the process
completes. The user has a few options to provide its location to
BONSALIL:

(1) The path can be provided as an optional parameter to the
Sweep() constructor.

(2) If not passed to the constructor, then the value of the envi-
ronment variable $TMPDIR is used.

(3) If not set in $TMPDIR, then the folder /tmp/ is used.

The kernel source file is copied to the scratch folder at the begin-
ning of the sweep and removed at the end. All the dynamic libraries
created over the course of the sweep—one for each record in the
input file—are stored in the scratch folder with the row numbers
attached to the names to avoid name collisions.

5.4 Parallel Dispatch

Processing of records is scheduled to distributed-memory nodes
dynamically at runtime, in chunks, basically the same way that

#pragma omp parallel for schedule(dynamic, chunk)

would schedule a loop to multiple threads in shared memory. Dy-
namic scheduling is necessary because of wildly fluctuating compi-
lation and execution times. The time it takes to compile the kernel—
with a given set of compile-time parameters—may be anywhere
between a fraction of a second and tens of seconds. We have even
encountered cases when the compilation exceeded a minute. This
usually happens when the compiler is bogged down by excessive
unrolling.
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Similarly, the kernel’s execution times are highly unpredictable
due to the very nature of autotuning. We are trying a large number
of cases, precisely because we do not know which ones will perform
well. An order of magnitude performance fluctuations are to be
expected.

Chunking serves a dual purpose. It allows for minimizing the
overheads of dispatching work to multiple distributed-memory
nodes, while at the same time maximizing the benefits of dynamic
scheduling within each node. Ideally, the number of records in the
chunk should be much larger than the number of CPU cores and
GPU devices in each node. At the same time, the overall number
of chunks should be much larger than the number of distributed-
memory nodes.

The distributed-memory scheduling in BONSAI follows the tradi-
tional client-server architecture. Figure 8 shows the basic structure.
Rank 0 dedicates one thread to serving requests for work from
other ranks, and dedicates all the other threads to local processing
of chunks. The omp master section at line 7 contains the server
code. The omp single section at line 12 contains the local process-
ing code. Each record in the chunk is scheduled as an independent
OpenMP task using the omp task directive. The omp master sec-
tion at line 21 contains the client code that requests chunks from
the server and processes them, in a similar fashion, by executing
each record as an independent task.

void Sweep::run()

if (mpi_rank_ == mpi_root_) {
#pragma omp parallel
{
if (mpi_size_ > 1) {
#pragma omp master
{
// server code
}
}

#pragma omp single
// local processing

}

}

else {
#pragma omp parallel
{

#pragma omp master

// client code

Figure 8: Top level structure of the scheduling code.

Figure 9 illustrates the code executed by rank 0. The right side
shows the server code; the left side shows the local processing
code. The server follows the cycle of receiving a request, sending a
response, and advancing the chunk counter until the records are
exhausted. When that happens, the server sends a termination flag
to all the other ranks. The local processing code simply processes
chunks and advances the chunk counter until the records are ex-
hausted. Atomic access to the chunk counter is protected by the
omp critical directive.
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MPI root: local processing MPIroot: server code

start start

| l

process chunk —> receivechunkrequest <—— A

i atomic l

advance chunk send chunkresponse ——> B

\L \l/ atomic

NO advance chunk
end reached? \L

YES
\L NO

— end reached?

YES l/

send termination flag

!

end

end

Figure 9: Flowcharts of operation of rank 0.

Figure 10 illustrates the code executed by all ranks, other than
0. They follow the cycle of sending a request, receiving the re-
sponse, and processing the chunk indicated in the response until
the termination flag is received.

client code

start

!

send chunkrequest <—

!

B ——> receive chunkresponse

!

process chunk
NO

termination? E—

VES\L

end

A <——

Figure 10: Flowcharts of operation for ranks other than 0.

A chunk is requested by sending an empty message to the server.
The server receives the message using MPI_ANY_SOURCE and finds
out the requester from the MPI_SOURCE field in the message’s status.
It then responds by sending the index of the first record in the next
available chunk.

The last aspect of scheduling is the necessity to guarantee ex-
clusive access to devices. While one kernel is executed, timed,
and possibly profiled, the GPU should not be executing any other
operations—other kernels, memory copies, etc.—which would in-
troduce performance interference. In the course of processing a
record, a device is requested after compilation and released after
cleanup. Each record has access to one GPU at a time. This mech-
anism is implemented by using a boolean flag and accessing it
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using atomic operations __sync_bool_compare_and_swap() and
__sync_lock_test_and_set (). Processing is blocked until a free
device is found. Also, as has already been mentioned, each record
executes using a unique CUDA stream.

5.5 Code Structure

BONSAT’s distributed engine is implemented by a few C++ classes.
The current implementation is header-only. Figure 11 shows the
relationships among the main classes. The code also includes a
handful of classes for representing simple structures, such as pa-
rameters and their values, as well as classes for handling auxiliary
tasks, such as exception handling and tracing (printing Gantt charts
of the execution).

Sweep Callback
std::list - target_: Target
-type_: Type
+Swee
X -SWEQ;)() +Callback(...)
+addCallback() +call(...)
+addParameter()
+run()
std::vector
- readinput()
- beastinput() Device
- runRow()
-‘g"atherOutput()
- writeOutput( +~Device()
+init

! +set()

! +reserve()

! +release()

V

Kernel

+Kernel()
+compile()
+open()
+load()
+close()
+remove()

Figure 11: Basic structure of BONSAI classes.

The main classes and their functions are as follows:

Kernel provides the main functionality related to the GPU
kernel, such as compilation to a dynamic library and opening,
loading, and closing of the dynamic library. It also stores
the file system information, such as the path to the kernel
source file, the location of the scratch folder, etc. One object
of the Kernel class represents the kernel with one set of
parameters (one record of the input CSV file).

Callback stores the main information about user-defined call-
backs, such as their types (Kernel, Test, Cleanup, Other)
and targets (Host, Device). One object of the Callback class
represent one stage in the processing pipeline, like the one
in Figure 5.

Device implements handling of devices and stores information
such as the device number and a unique stream. It also pro-
vides the functionality of reserving a device for the duration
of processing one record. One object of the Device class
represents one GPU.

Sweep is the main class and contains the bulk of the implemen-
tation. The public methods allow the user to add callbacks
and user-defined output parameters. It contains a lengthy
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constructor allowing the user to pass all the necessary setup
options (Figure 4). Its private methods implement the file IO
described in Section 5.3, and the parallel scheduling system
described in Section 5.4.

Considerable attention has been paid to the software engineer-
ing, resulting in a fairly compact implementation. The code relies
on C++ facilities for its file IO operations (<fstream>, <iostream>,
<sstream>) and on standard library containers for its data struc-
tures (<list>, <map>,<set>, <string>, <vector>).It also uses C++
regular expression capabilities (<regex>). The code falls back on C
facilities where appropriate, e.g., when interacting with the oper-
ating system (OS) through calls to the Portable Operating System
Interface (POSIX). The implementation is fairly portable due to the
use of MPI for messaging and OpenMP for multithreading. The
only non-portable aspect of the code is the use of NVIDIA CUDA.
Comments and Doxygen!? sections were used extensively to make
the code readable.

6 EXPERIMENTAL RESULTS
6.1 Kernel

While in the previous sections we used the simplistic gemm kernel
from the CUDA Programming Guide, here we are using a highly
parametrized gemm kernel developed in the course of our past auto-
tuning efforts [2, 9, 10]. It is based on a fairly standard approach,
where values of C are accumulated in registers, while values of A
and B are streamed through shared memory in thin stripes. Fig-
ure 12 shows all the blocking factors of the implementation.

blk_n

dim_n_b

dim_m_b
blk_k

dim_n_a dim_n

dim_m_
dim_m

blk_m

blk_k

Figure 12: Blocking factors of the gemm implementation.

Each thread block is of size dim_m X dim_n and computes a block
of C of size blk_m X blk_n. A is streamed through shared memory
in stripes of size b1k_m X blk_k and B is streamed in stripes of size
blk_k x blk_n. For the lack of space, we refer the readers to the
literature for more details [2, 9, 10].

WOhttp://www.doxygen.nl
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6.2 Environment

The hardware is a cluster of four nodes, each containing two 10-core
Intel Xeon E5-2650 v3 (Haswell) CPUs, 4 NVIDIA GeForce GTX
1060 6GB (Pascal) GPUs, and a 56G InfiniBand (IB) FDR adapter. The
nodes are connected using an SB7700 InfiniBand EDR 100G switch.
The code was built using GCC 8.3.0, CUDA 10.1, and OpenMPI 4.0.0.

6.3 Search Space

The search space was generated using the LANguage for Autotun-
ing Infrastructure (LANAI) [10]. Figures 13 and 14 show the com-
plete LANAI input file used in the experiments. The file is slightly
simplified compared to the file for an exhaustive gemm sweep. Here
we are only tuning gemm in single precision and only for the case
where A and B are not transposed. We also made the assumptions
thatdim_m_a = dim_m_b = dim_manddim_n_a = dim_n_b = dim_n,

from lanai import =
from device_constants.cuda_constants import x
from device_constants.GeForce_GTX_1060_6GB import x
max_threads_dim_x = maxThreadsDim[@] # 1024 62
max_threads_dim_y = maxThreadsDim[1] # 1024 63
max_regs_per_thread = MaxRegistersPerThread[majorJ][minor] # 255 64
e i 65
# iterators 66
dim_m = range(1, max_threads_dim_x+1) 67
dim_n = range(1, max_threads_dim_y+1) 68
69
Qiterator 70
def blk_m(dim_m): Al
return range(dim_m, max_threads_dim_x+1, dim_m) 72
73
Q@iterator 74
def blk_n(dim_n): 75
return range(dim_n, max_threads_dim_y+1, dim_n) 76
77
blk_k = range(1, min(max_threads_dim_x, max_threads_dim_y)+1) 78
dim_vec = range(1, 5, 3) # returns 1 for float and 4 for float4 79
80
Qiterator # indicates if vector types are used 81
def vec_mul(dim_vec): # in the main multiplication loop 82
if dim_vec == 1: 83
return range(@, 1) # returns 0 if the type is float 84
else: 85
return range(@, 2) # returns 0 and 1 if the type is float4 86
87
tex_a = range(0, 2) # indicates if texture reads are used for A 88
tex_b = range(0, 2) # indicates if texture reads are used for B 89
et 90
# derived variables 91
threads_per_block = dim_m * dim_n 92
93
thr_m = blk_m / dim_m # each thread computes thr_m x thr_n 94
thr_n = blk_n / dim_n # part of C 95
96
float_size = 4 # sizeof(float) 97
regs_per_thread = thr_m x thr_n # registers required to store C 98
99
regs_per_block = regs_per_thread x threads_per_block 100
max_blocks_by_regs = regsPerMultiprocessor / regs_per_block 101
max_threads_by_regs = max_blocks_by_regs * threads_per_block 102
103
shmem_per_block = blk_k * (blk_m + blk_n) * float_size 104
max_blocks_by_shmem = sharedMemPerMultiprocessor / shmem_per_block [105
max_threads_by_shmem = max_blocks_by_shmem * threads_per_block 106
107
# number of active blocks per streaming multiprocessor (SM) 108
blocks_per_sm = min(max_blocks_by_regs, max_blocks_by_shmem) 109
# number of active threads per streaming multiprocessor (SM) 110
threads_per_sm = blocks_per_sm * threads_per_block 111
112
loads_per_block = (blk_m + blk_n) * blk_k / dim_vec 113
fmas_per_thread = thr_m * thr_n x blk_k 114
fmas_per_block = fmas_per_thread * threads_per_block 115
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i.e., the same shape of the thread block is used for access to A, B, and
C. We are also using the default settings for the cudaFuncCache
and cudaSharedMemConfig settings.

The LANAI file starts with a set of iterators, mostly correspond-
ing to the blocking factors in Figure 12. The search space also
includes two variants of the implementation: a simpler one based
on the scalar type float, and a more complex one based on the
vector type float4. Also, each of the input matrices, A and B, can
be read using standard memory reads or using texture reads.

The LANAI file contains three user-defined heuristic thresholds,
two of which—min_threads_per_sm and min_fmas_per_load—
we use to control the size of the tuning sweep:

e min_threads_per_sm sets the lower limit on the number of
threads per multiprocessor; e.g., forces minimum occupancy.
We use the values of 512, and 256 for our sweeps. For the
Pascal architecture, which has 2048 cores per multiprocessor,
this translates to 25% and 12.5% occupancy.

# user-defined heuristic thresholds

# use at least 512 threads per streaming multiprocessor (SM)
min_threads_per_sm = 512
# use at least 2 blocks per streaming multiprocessor (SM)

min_blocks_per_sm = 2

# have at least 64 FMA
min_fmas_per_load = 64

instructions per one load instruction

# hard constraints

@condition # too many

def over_max_threads(threads_per_block):
return threads_per_block > maxThreadsPerBlock

threads per block

@condition # too many registers
def over_max_regs_per_thread(regs_per_thread):
return regs_per_thread > max_regs_per_thread

per thread

@condition # too many registers
def over_max_regs_per_block(regs_per_block):
return regs_per_block > regsPerBlock

per block

@condition # exceeding the size
def over_max_shmem(shmem_per_block)
return shmem_per_block > sharedMemPerBlock

of shared memory

# implementation correctness violations

@condition

def cant_reshape_a(blk_m, blk_k, dim_m, dim_n):

return ((blk_m % (dim_mxdim_vec) != @) or (blk_k % dim_n != 0))
@condition
def cant_reshape_b(blk_k, blk_n, dim_m, dim_n):

return ((blk_k % (dim_mxdim_vec) != @) or (blk_n % dim_n != 0))

# soft heuristics
@Qcondition # blocks not divisible by warp size
def partial_warps(threads_per_block)

return threads_per_block % warpSize != @

@condition #
def min_block(blocks_per_sm):
return blocks_per_sm < min_blocks_per_sm

not enough blocks per multiprocessor

@condition # too low occupancy
def low_occupancy(threads_per_sm):
return threads_per_sm < min_threads_per_sm

@condition # too few FMAs per load
def low_fmas(loads_per_block, fmas_per_block):
return fmas_per_block < min_fmas_per_load * loads_per_block

Figure 13: LANAI search space definition - part 1.
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Figure 14: LANAI search space definition - part 2.
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Table 1: Results of gemm performance tuning sweeps.

sweep min threads minFMAs sweep runtime approx. serial time approx.  approx.
size per SM per load [dd:hh:mm:ss] [dd:hh:mm:ss] speedup efficiency
5,980 512 64 1:17:20 18:11:03 14.1 88%
20,428 512 32 3:11:09 43:26:19 13.6 85%
38,924 512 16 6:29:29 90:00:42 13.9 87%
63,532 256 32 1:09:07:38 20:09:14:45 14.8 92%

e min_blocks_per_sm sets the lower limit on the number of
thread blocks per multiprocessor. We use the value of 2. This
is because the multiprocessor has 96K of shared memory,
while one thread block can only use 48K. So, at least two
blocks are required to fully utilize the shared memory.

e min_fmas_per_load sets the minimum number of fused
multiply-add (FMA) instructions per one load instruction,
forcing a certain level of computing intensity. We use the
values of 64, 32, and 16 for our sweeps.

The LANAI file ends with pruning conditions for eliminating
undesirable cases. Hard constraints eliminate violations of hard-
ware limits. Implementation correctness checks protect against
unimplemented corner cases. Soft heuristics enforce performance
guidelines, and take into account user-defined thresholds.

6.4 Results

We set up four performance tuning sweeps of different sizes by
changing the values of the parameters min_threads_per_sm and
min_fmas_per_load (lines 66 and 72 in Figure 14 respectively).
Table 1 shows the results. All runs were done withm =n =k =
10, 000, i.e., all matrices were of size 10, 000 X 10, 000. Each kernel
was run five times. Work was dispatched in chunks of size 100.

We approximated the time of serial execution by summing up
the Time column in the output CSV files and multiplying by the
number of iterations, which was five in this particular case. This
really is a lower bound of the serial execution time. First, the fastest
run of each kernel is used as an approximation for the slower
four. Second, the time of all CPU tasks is completely ignored This
includes the time to compile the kernel, initialize the data, and
check the results for errors. Nevertheless, the approximate parallel
efficiency is between 85% and 92%.

Although actually finding the fastest gemm kernel was not the
true objective of the exercise, there is no harm in reporting it. The
top performer achieved 3,180 GFLOPS compared to the 3,875 GFLOPS
for cuBLAS. Le., our kernel achieved 82% of cuBLAS performance,
which is fairly good for a kernel compiled from C++ source code,
as opposed to cuBLAS gemm, which is implemented in assembly.
The values of tuning parameters were: dim_m = dim_n = 16,
blk_m = blk_n = 128, blk_k = 32, no vectorization, no texture
reads.

The real goal here was to show the impact of using parallel
resources for autotuning runs. Table 1 shows how using a very
modest number of GPUs (16) can dramatically reduce the run time
of a tuning sweep. Basically, days are reduced to hours. The largest
run of size 63,532 took 1 day and 9 hours to execute in parallel,
while the estimated serial time is 20 days and 9 hours. This opens
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up all kinds of new opportunities when targeting systems with
thousands of GPUs like Summit and Sierra.

7 FUTURE PLANS

We believe that the initial implementation, presented in this article,
provides fairly powerful and unique capabilities. At the same time,
there is great potential for both improving the performance of the
system and extending its functionality.

Here are some of the main ideas for performance improvements:

e Right now, the kernel is recompiled for each record in the
input CSV file. Clearly, recompilation is not necessary if
only runtime parameters change from record to record. The
records can easily be sorted to group records with identical
values of compile-time parameters, and skip recompilation.
This would be very beneficial for kernels sensitive to the
input data, which need to be bench-tested with the same set
of compile-time parameters and different datasets.

o Currently, scheduling of local tasks is somewhat suboptimal
due to the fact that a GPU is requested right after compilation
and held for the rest of the pass. This way the device may be
reserved before any work is sent to the GPU. Alternatively,
the device could be requested before the first Device task
and released after the last Device task. This would allow for
more Host tasks to execute on the CPU without holding the
GPU.

e Normally, one kernel, corresponding to one input record,

is run many times, in order to produce a statistically mean-

ingful measure of the execution time. At the same time, if a

kernel shows inferior performance in one or two runs, say,

10x slower than the best discovered so far, then the remain-
ing iterations can be skipped. Because the system relies on

a centralized server for work dispatch, we can easily keep

track of the top performance (minimum execution time). The

clients can report it in their work requests. The server can
send updates in the replies.

There could also be a user-defined timeout to protect against

very long compilation times, although this is questionable,

as excessive compilation time can still produce a fast kernel.

e NVIDIA provides the NVRTC tool for runtime compilation.!!
NVRTC accepts source code in character string form and
creates handles that can be used to obtain the parallel thread
execution (PTX) code. The PTX string generated by NVRTC
can then be loaded and linked. The use of NVRTC could
lead to shorter compilation times, relieve the stress from the

https://docs.nvidia.com/cuda/nvrte/
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file system, and solve the potential problem of the NVCC
compiler not being accessible from the production nodes of
a supercomputer (only the head nodes). It is still important
to have the option to go through the file system in situations
where compilation is more complex than just a simple NVCC
invocation. One good example is the use of a more powerful
preprocessor, like the pyexpander.!?

Here are some of the main ideas for functionality extensions:

o Currently, the system detects three types of failures: the
failure to compile, the failure to launch, and the failure of the
user-defined test. It is also possible that the kernel compiles
and launches, but then crashes during execution. We would
like to detect execution failures and report them like the
other failures.

e Right now, the system only measures the execution time.
We argue that collecting information from hardware perfor-
mance counters could provide a treasure trove of informa-
tion for data analysis and machine learning. Ideally, the user
could specify which events or metrics to collect and BONSAI
would collect them automatically and return in the output
CSV file.
Currently, we do not have a good measure of the utiliza-
tion/speedup, i.e., a comparison to a serial run (one CPU
thread, one GPU device). It makes little sense to set up a run
like that just to get that number. On the other hand, BONSAI
can produce a good approximation by collecting the times of
all CPU tasks and all GPU tasks launched in a parallel run.

o Right now, we are only returning the best performance for

each record (minimum time). We could also return other

measures, such as: maximum, average, median, standard
deviation. This could easily be configurable by the user.

We could also make the number of iterations a function of,

e.g., the standard deviation. Le., iterate until the standard

deviation drops below a certain threshold (or some hard limit

on the number of iterations is reached).

Finally, from the standpoint of working with a supercomputer
or a large cluster, it would be helpful to have the ability to execute
a range of records from the input file. Such environments rely on
job schedulers, like the Portable Batch System (PBS) or Slurm, and
jobs are submitted through batch queues which impose time limits.
A truly large sweep may have to be cut into smaller batches.

8 CONCLUSIONS

In this article we built the case for massively parallel automatic
software tuning by arguing that there is both the need and the op-
portunity. We described an implementation of a specialized system
for deploying large tuning sweeps of GPU kernels to large super-
computer/cluster installations. We tried to cover all the avenues
of the system: support for different types of parameters, detection
of different types of failures, distributed-memory dispatch, and
node-level dynamic scheduling. We believe that the system offers
powerful and unique capabilities and can make a profound impact
on the field of automatic performance tuning. We also outlined the
most important direction for future developments.

2http://pyexpander.sourceforge.net
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SOFTWARE

The BONSALI software is freely available at https://bitbucket.org/
icl/bonsai. It is distributed under the modified BSD license, impos-
ing only minimal restrictions on its use and redistribution. For
assistance with BONSAI, email <bonsai-user@icl.utk.edu>.
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