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Abstract: Keystroke dynamics study the way in which users input text via their keyboards, which is
unique to each individual, and can form a component of a behavioral biometric system to improve
existing account security. Keystroke dynamics systems on free-text data use n-graphs that measure
the timing between consecutive keystrokes to distinguish between users. Many algorithms require
500, 1,000, or more keystrokes to achieve EERs of below 10%. In this paper, we propose an instance-
based graph comparison algorithm to reduce the number of keystrokes required to authenticate users.
Commonly used features such as monographs and digraphs are investigated. Feature importance
is determined and used to construct a fused classifier. Detection error tradeoff (DET) curves are
produced with different numbers of keystrokes. The fused classifier outperforms the state-of-the-art
with EERs of 7.9%, 5.7%, 3.4%, and 2.7% for test samples of 50, 100, 200, and 500 keystrokes.
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1 Introduction

As more and more private data becomes digitized, protecting private user data has never
been more important. Many systems are only protected with some sort of single-sign-
on (SSO) security measure such as a password. When compromised, these systems fail
to protect users leaving their data vulnerable. Additionally, people tend to choose easily
guessable passwords as found in [Bu19] where 60% of passwords in a major data breach
were easily guessable. An additional form of verification is required to continuously mon-
itor the user of a device to ensure they are authorized. Keystroke dynamics is a behav-
ioral biometric that offers strong performance distinguishing users based on how they type
[TTY13, Al17, AW13, BW12, YC04]. Keystroke dynamics can be used to provide an addi-
tional layer of security to supplement an existing system to more robustly detect intruders.
This layer does not require any additional hardware as most computers already have a key-
board. For the truly uncontrolled free-text environment, most of the developed algorithms
rely on comparing distributions of flight times between key-presses from the reference user
and the test user [AW13, Hu17]. Comparing these distributions is shown to be effective;
however, it requires large numbers of keystrokes for both training and testing/evaluation.
A large number of graphs in the testing sample means authentication will occur less often
or after more keystrokes. Currently, many existing algorithms require 500, 1,000, or more
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keystrokes to authenticate users. The average sentence is just under 100 characters which
means an imposter could type more than 10 sentences before these systems can detect an
intruder [Ay19]. To reduce the number of keystrokes needed for authentication, instance-
based algorithms are used. Instance-based algorithms compare graph times individually
from the test sample to the reference profile which could be a probability density function
(pdf) or other similar statistical or instance-based representation [JG90].

Instance-based methods are not foreign to keystroke dynamics, although they are primar-
ily used on fixed-text data [KM09, ZDJ12]. Existing instance-based works for free-text
data include [BM15a, MB16, MB17], where a trust model is used to build a trust score
after each keystroke. If the trust score dips below a threshold, the user is locked out of
the system. Mondal and Bours [BM15b] introduce two new metrics for evaluating perfor-
mance of a biometric system, ANGA and ANIA. The average number of genuine actions
(ANGA) is the average number of genuine keystrokes before the true user is rejected, and
the average number of imposter actions (ANIA) is the average number of keystrokes be-
fore an imposter is detected. The users were classified into four categories depending on
system performance [BM15a]. For 41 out of the 53 users the trust based model never re-
jected the genuine user with ANIA ranging from 304 to 1,317 keystrokes, but 10 of those
users failed to detect 4% of the imposters. The performance for 9 of the users, however,
was worse with ANGA of 1,772 and ANIA of 411. Additionally, 2 of the users had ANGA
of 8,942 and ANIA of 771 (failing to detect 3% of the imposters), and 1 user had ANGA
of 105 with ANIA 187.

In this paper, the instance-based algorithms that are used and compared include the Man-
hattan distance, Mahalanobis distance, and the transformed Mahalanobis distance. Feature
importance is calculated for five total features including the monograph feature and four
different digraph features. Performance of the algorithms with individual features and a
single fused feature are evaluated and compared for different numbers of graphs in the
testing sample. Our algorithm achieves EERs of 7.9%, 5.7%, 3.4% and 2.7% with 50, 100,
200, and 500 graphs in the testing sample, respectively. For comparison with the work of
Bours and Mondal [BM15a], with a block size of 50 graphs and the point on the DET
curve where FRR = 0 and FAR = 0.418, our algorithm will never reject the true user and
has an ANIA of 134 keystrokes.

2 Dataset

An uncontrolled free-text dataset from Clarkson University was used in this study [Mu17].
There are 103 users that participated in the study and they contributed a combined 12.9
million keystrokes. For all the keystrokes the times of the corresponding up and down
events were recorded (see Fig. 1). To the best of our knowledge, this dataset is the largest
available, where an average user has 125,000 keystrokes. The keystrokes of participants
were recorded along with their mouse movements regardless of application or context.
Users had the option of temporarily disabling the keylogger to protect their private in-
formation. Due to the uncontrolled aspect of this dataset, researchers typically achieve
lower performance on this dataset compared to others [Hu17]. State-of-the-art algorithms
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range in performance from 4% to 15% EERs with 1,000 digraphs in the testing sample

[Hu17, Ay19]. Huang et al. found that by filtering out “gibberish” keystrokes before au-

thentication, overall results could be improved [Hu16]. They used “gibberish” to define

any non-contextual typing behavior such as when playing video games, using keyboard

shortcuts, or during other forms of random typing. In this paper no “gibberish” filtering is

done to ensure the data is truly representative of a real-world setting with normal interac-

tions between a user and their keyboard.

3 Feature Selection

We treat the timing information from the keystroke dataset (see Section 2) as a time series.

In its raw form, it is non-stationary because the time interval between keystrokes can occur

at any interval and is not sampled at a continuous rate [GSG18]. Non-stationary time series

data can be very challenging to work with and one of the common approaches to extract

stationary data is differencing [Ha94, MJK15]. The concept of differencing in keystroke

dynamics goes as far back as the 1980s, when researchers used digraphs defined as the time

taken to type two consecutive characters [Ga80]. Features commonly used today are the

result of differencing, and consist primarily of monographs and digraphs. A monograph,

also referred to as latency or dwell time, is defined as the time a particular key is pressed

down to when it is released. There are four different definitions of digraph, referred to as

DD, UD, DU, and UU, that we use in our work. D corresponds to a key-down event and U

corresponds to a key-up event. The four features are the time from the first key either being

pressed or released to the second key being pressed or released. The monograph feature

and the four digraphs features can be seen in Fig. 1.

Fig. 1: This schematic shows how monographs and the four different digraphs features can be ex-

tracted from two consecutive keystrokes. These digraphs can also be referred to as press-press, press-

release, release-press, and release-release (see [Ha17]).

When extracting monographs and digraphs from the raw timing data, only those graphs

that fall within a user-defined duration are used so that the typing is representative of

normal typing behavior. In this work, the durations are selected based on empirical ob-

servations and references in the literature [HHS17] and are as follows: monograph: 0ms

to 200ms, DD digraph: 0ms to 500ms, UD digraph: 0ms to 400ms, DU digraph: 0ms to

800ms, and UU digraph: 0ms to 500ms. Note that with some other researcher’s definitions

of digraph it is possible for some of the digraph times to be negative, for example the UU
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digraph when a user presses the “t” key but before releasing it presses and releases the “h”
key. This “t+h” graph time is negative because “t” is released after “h”. For this work, how-
ever, the previous scenario would result in a positive UU digraph with the reverse order,
“h+t”. Tab. 1 shows the rates of occurrences of keystrokes and the corresponding mono-
graph and digraph features. To allow us to compare our results to literature [Hu17, Ay19],
we normalize the DD digraph feature to 1 and present the other feature frequencies relative
to this. There are almost 50% more keystrokes than there are DD digraphs largely due to
“gibberish” typing and breaks between typing sessions [Hu16].

Keystrokes M DD UD DU UU
1.48 1.36 1.00 0.95 1.08 0.98

Tab. 1: Frequency of occurrence of different features relative to the DD digraph. There are more
keystrokes than monographs and digraphs, likely due to the uncontrolled nature of the dataset.

To determine which features are relevant for distinguishing between users, the mean de-
crease in impurity (MDI), or Gini importance, is used. MDI is calculated from the random
forest classifier where it is defined as the total decrease in node impurity (weighted by the
probability of reaching that node) averaged over all the trees in the ensemble [Br01]. The
probability of reaching the node is approximated by the proportion of samples reaching
that node. The scikit-learn implementation of random forests and MDI are used in this pa-
per [Pe11]. The feature analysis will provide information about which features are worth
extracting from the data and which are most informative of user behavior. The feature
importance is used to construct the fused classifier.

4 Algorithms

To achieve fast authentication, the algorithms used will be instance-based to leverage as
much information from every keystroke as possible. These instance-based algorithms com-
pare the individual test graph times against the corresponding training graphs pdf. The al-
gorithms investigated in this paper are the Mahalanobis distance, Manhattan distance, and
the transformed Mahalanobis distance [Ma36, Bl19]. The Manhattan and Mahalanobis
distances find the mean and variances from the distributions of graphs and use them to
compute distance scores. However, some of the graph distributions are non-Gaussian, and
therefore, cannot be described with only a mean and variance, causing the algorithms to
perform poorly (see Fig. 2).

To compute the transformed Mahalanobis distance, the first step is to transform the non-
Gaussian graph distribution to a normal distribution through the use of the cumulative
distribution functions (cdfs) [BEA09]. In our implementation, the graph distributions are
transformed into the normal distribution using a scipy implementation [Jo01]. Following
this, the Mahalanobis distances are calculated on these transformed distributions. This
method improves distance score representations for non-Gaussian data.

To ensure adequate data, only users with at least 30,000 DD digraphs are kept. This leaves
52 users in the dataset meeting the criteria. The training pdfs are only constructed when
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Fig. 2: (Left) A non-Gaussian pdf for the DD digraph feature (digraph t+h for user 798031). (Right)
The DET curves for Manhattan, Mahalanobis, and transformed Mahalanobis distances for 100 test
digraphs. Some graphs exhibit non-Gaussian behavior and as result, the transformed Mahalanobis
distance outperforms the other distance metrics.

there are 30 or more occurrences of that graph in the training sample. The training sam-
ple consists of 29,500 graphs and the testing sample is varied from 50, 100, 200, and 500
graphs. The monograph and digraph features are calculated from the raw timing data for
each of the users, only keeping the features if they fall within the specified time ranges
as discussed in Section 3. To generalize our results across the entire dataset, Monte Carlo
cross-validation is used with 30 random subsets of the data. Each subset contains a dif-
ferent random sampling of training and testing graphs from the set of all the available
graphs. Our results are then averaged across Monte Carlo iterations to ensure the results
are representative of the entire dataset.

5 Results

To determine which features are useful for distinguishing between users, we use the MDI
taken from a random forest classifier. MDI is calculated for the five features with 50 ran-
dom subsets of each user’s data and averaged together. The feature importance is deter-
mined using different numbers of testing graphs: 50, 100, 200, and 500. The number of
graphs used is the same for each feature. It is important to note that not all features occur
with the same frequency (see Tab. 1).

Tab. 2 shows the feature importance for four different test sample sizes. The variance of
the importances never increases much above 0.01, suggesting feature selection does not
vary too much by user. The most important feature is the UU digraph followed by the DD
and DU digraphs. The importance of the UU digraph is surprising, although the high im-
portance of the DD digraph is supported by previous works. The feature importance does
not change noticeably depending on the number of testing graphs, except for the mono-
graph feature. As the number of test graphs increases, the importance of the monograph
feature decreases. While this implies that with more information available the monograph
feature becomes less informative, it is important to keep in mind that the monograph fea-
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Testing Graphs
Feature Importance

M DD UD DU UU
50 0.144 ± 0.014 0.244 ± 0.010 0.113 ± 0.007 0.210 ± 0.011 0.289 ± 0.010
100 0.113 ± 0.008 0.257 ± 0.010 0.109 ± 0.008 0.216 ± 0.010 0.304 ± 0.007
200 0.109 ± 0.011 0.270 ± 0.011 0.100 ± 0.007 0.200 ± 0.009 0.320 ± 0.010
500 0.083 ± 0.008 0.253 ± 0.011 0.117 ± 0.011 0.229 ± 0.013 0.319 ± 0.011

Tab. 2: Feature importance at 50, 100, 200, and 500 testing graphs. The importances are averaged
across all users and are reported along with the variance. For each testing graph size, the cells high-
lighted in blue and red denote the feature with the highest and lowest importance respectively.

ture occurs at a higher rate than the digraph features. For fast authentication with fewer
keystrokes, monographs are a very useful feature.

There is no feature that provides no information and no feature that dominates all others.
This indicates that a fused classifier with all five features is likely to perform best overall.
A fused classifier was constructed using the feature importance as weights, which are
selected based on the size of the testing pool as indicated in Tab. 2. The detection error
tradeoff (DET) curves of classifiers using the individual features and the fused features
are shown in Fig. 3. In all cases, the fused classifier performs the best, followed by UU,
DD, and the DU digraphs, consistent with our findings from the feature importance (see
Tab. 2). The fused classifier sees the most improvement over the next best feature (UU
digraph) when the number of graphs used is smaller. As the number of graphs increase,
the fused classifier still outperforms the other features but by a smaller margin. Previous
work on this dataset with pdf-based algorithms achieved EERs of 3.6%, 7.6%, 10.3%, and
15.7% respectively with 1,000 digraphs [Ay19, Hu17, GP05, ÇU16]. The previous KDE
state-of-the-art algorithm [Hu17] is overlayed on the DET curves for all test sample sizes
except for 50 graphs as their was not enough data to match pdfs. Previous state-of-the-art
achieves EERs of 3.6% with 1,000 graphs in the testing sample [Ay19] while our algorithm
achieves an EER of 3.4% with 200 digraphs in the testing sample (see Tab. 3). With 100
graphs we are able to achieve an EER of 5.7% which is better than the recent state-of-
the-art requiring 1,000 graphs [Hu17]. At 500 graphs our algorithm achieve an even better
EER of 2.7%. Our fused classifier can authenticate users with 5-10 times less data and still
achieve the same accuracy, a significant improvement over existing methods.

Features
EER at # of test digraphs

50 100 200 500
M 26.3% 23.7% 21.1% 19.1%

DD 16.7% 12.7% 10.6% 7.4%
UD 27.6% 23.7% 20.5% 16.7%
DU 19.0% 15.2% 12.9% 9.7%
UU 14.8% 10.5% 7.6% 5.9%

Fused 7.9% 5.7% 3.4% 2.7%

Tab. 3: EERs for different number of testing graphs for the five features individually and fused.
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Fig. 3: DET curves for the five features individually and the fused case with 50, 100, 200, and 500
graphs in the testing sample. The “previous” curve denotes previous state-of-the-art work done by
Ayotte et al. [Ay19].

It is important to recognize that the EER is a single number that represents algorithm
performance at a particular operating point. To get a more complete picture of the per-
formance of the algorithm, DET curves are presented in Fig. 3 for 50, 100, 200, and 500
testing graphs. DET curves plot FRR versus FAR and allow operators of the system to bal-
ance tradeoffs between security and convenience [Ma97]. An example of specific points
on the DET curve is shown in Fig. 4. Point ‘a’ favors security over convenience with an
FAR = 0.029 and FRR = 0.490, point ‘b’ is the equal error rate with FAR = FRR = 0.079,
and point ‘c’ favors convenience over security with an FAR = 0.418 and an FRR = 0. From
[BM15b], the ANGA and ANIA, in terms of graphs, for points ‘a’, ‘b’, and ‘c’ are shown
in Tab. 4. To convert graphs to keystrokes see Tab. 1. Point ‘a’ clearly favors security as
it has the lowest ANIA which detects intruders faster on average, however, it also has the
lowest ANGA and will often reject the true user. Point ‘c’ on the other hand favors conve-
nience never rejecting the true user, while taking the longest to detect an imposter. Point
‘b’ weights security and convenience equally and falls in between points ‘a’ and ‘c’. The
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DET curve allows our system to be highly flexible and lets users decide where to operate
depending on application and the desired convenience and security.

Fig. 4: DET curve for our fused classifier with 50 graphs in the testing sample. Points ‘a’, ‘b’, and
‘c’ provide specific examples of where our system could be operated depending on the desired
convenience or security. The ANGA and ANIA for the three points are found in Tab. 4.

DET Curve Point from Fig. 4 ANGA ANIA
‘a’ 102 51
‘b’ 633 54
‘c’ - 86

Tab. 4: Average number of Genuine Actions (ANGA) and Average Number of Imposter Actions
(ANIA) in terms of graphs for three different points ‘a’, ‘b’, and ‘c’ on the DET curve in Fig.
4. Where to operate on the DET curve can be chosen depending on the desired convenience and
security.

6 Conclusions and Future Work

In this paper, we present an instance-based algorithm for free-text keystroke dynamics to
increase the speed of authentication. Previous free-text research used pdf-matching, which
requires a significant number of keystrokes in order to be effective, during which time
significant damage could be done. The instance-based method is very effective with fewer
numbers of testing graphs, enabling faster and more frequent authentication. The most
common features used in keystroke dynamics were investigated and their relative impor-
tances determined. These importances were used to construct a fused classifier, which
achieved EERs of 7.9%, 5.7%, 3.4% and 2.7% with 50, 100, 200, and 500 graphs in
the testing sample, respectively. Existing state-of-the-art algorithms only achieve EERs of
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3.6%, 7.6%, 10.3%, and 15.7% with 1,000 digraphs in the testing sample [Hu17, Ay19].
Our algorithm was able to achieve comparable performance with only 100-200 graphs, a
significant improvement over the state-of-the-art. Operating at point ‘c’, in Fig. 4, with a
test sample size of 50 graphs or 78 keystrokes, our algorithm achieves the same ANGA as
[BM15a] but with a lower ANIA of 86 graphs or 134 keystrokes (converted using Tab. 1).

Future work will include exploring other instance-based metrics and methods of fusing
monograph and digraph features. The number of graphs used in the profile and the test-
ing sample will be further investigated to reduce them as much as possible. Using our
algorithm on multiple datasets will more robustly validate our results. Other possible re-
search includes classification using principal component analysis (PCA) or support vector
machines (SVM) and determining if the order of the typed characters impacts graph au-
thentication performance.
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