Towards Interpretable Graph Modeling
with Vertex Replacement Grammars

Justus Hibshman

Satyaki Sikdar

Tim Weninger

Department of Computer Science & Engineering
University of Notre Dame
Notre Dame, IN, USA
{jhibshma, ssikdar, tweninge}@nd.edu

Abstract—An enormous amount of real-world data exists in
the form of graphs. Oftentimes, interesting patterns that describe
the complex dynamics of these graphs are captured in the form
of frequently reoccurring substructures. Recent work at the
intersection of formal language theory and graph theory has
explored the use of graph grammars for graph modeling and
pattern mining. However, existing formulations do not extract
meaningful and easily interpretable patterns from the data. The
present work addresses this limitation by extracting a special type
of vertex replacement grammar, which we call a KT grammar,
according to the Minimum Description Length (MDL) heuristic.
In experiments on synthetic and real-world datasets, we show
that KT-grammars can be efficiently extracted from a graph and
that these grammars encode meaningful patterns that represent
the dynamics of the real-world system.

Index Terms—Graph mining, graph model, vertex replacement
grammar

I. INTRODUCTION

A common task in big data is to seek and find patterns
hidden in enormous amounts of data. When the data takes the
form of the graph, this goal is expressed as finding meaningful
graphical substructures and other patterns that are hidden in
the graph. Because of the prevalence of graph data and the
importance of this task, dozens of graph models have been
developed towards this goal [1]-[4]. Typically, these graph
models make some assumptions about the shape or structure
of the graph and encode the graph in interesting ways.

Some of the most widely used graph modeling techniques
search for occurrences of specific structures, such as edges, tri-
angles, various 4-node graphlets, and so on. Other techniques
measure specific graph properties such as node centrality,
degree, or measures of network robustness. What almost all of
these methods have in common is the fact that they typically
learn structures that are specified in advance [5].

We currently lack modeling tools that allow the graph
itself to dictate which graph patterns are essential and then
report these newfound properties in a meaningful and human-
readable format.

A few approaches are closer to this ideal than most. Notable
works such as gSpan [6], CloseGraph [7], and SUBDUE [8]
search for arbitrary substructures in a graph that can be used
to create a lossy compression of the graph. However, these
existing tools do little to show how those structures connect to

978-1-7281-0858-2/19/$31.00 ©2019 IEEE

LHS RHS

N/ AR
O — O—>O/

(A) Grammar Rule

Current Graph H’ New Graph H*
0—0 = O0=0-0

(B) Example of Rule Application

O replaced O—> new —> boundary

Fig. 1. (A) Example KT-grammar production rule with a left-hand side
(LHS) and a right-hand side (RHS). The LHS is a single node with zero
or more incoming and outgoing boundary edges (drawn in red). The RHS
is a subgraph fragment, where each vertex has zero or more incoming and
outgoing boundary edges. (B) During generation, a vertex from the graph is
replaced by the RHS; incoming and outgoing boundary edges from the LHS
are rewired to all of the incoming and outgoing boundary edges of the RHS
respectively.

each other and the rest of the graph, and some of them have
trouble scaling to large or even mid-sized graphs. Progress
in graph entropy uses an information-theoretic approach to
identify graph structures and is a promising direction but does
not produce an interpretable model [9].

Renewed interest in graph grammars provides a promising
route towards the goal of building a non-parametric, inter-
pretable graph model. Previous work has investigated the
relationship between graph mining and formal language theory
by extracting Vertex Replacement Grammars (VRGs) [10]
and (Hyper)edge Replacement Grammars (HRGs) [3], [11].
Unfortunately, the composition of grammar rules in HRGs,
and some VRGs are known to produce clunky patterns that
are difficult to interpret.

The present work uses the graph grammar introduced by
Kemp and Tennenbaum (KT), which originally included a
Bayesian graph model that could learn natural relationships
between items in tiny datasets [12]. Generally speaking, KT-
grammars, as we call them, are based on prior work in ver-
tex replacement grammars, which contain graphical rewriting
rules that can match and replace graph fragments similar
to how a context-free string grammar rewrites characters in
a string [13]. These graph fragments represent a succinct

description of the building blocks of the network, and the
rewiring rules of the grammar describe the instructions about
how the graph is pieced together.

KT-grammars, which are a specific type of VRG, are used
to model graph structures and can even generate new graphs.
A KT-grammar rule replaces a single vertex with a subgraph
fragment as shown in Fig 1. KT-grammars are easy to use
and easy to interpret, but their current use requires human
modelers to craft these grammars by hand, which is time
consuming and introduces human biases into the model. The
rule inference system developed by Kemp and Tennenbaum
has shown some promise in determining which rules best
match data, but this system is limited to datasets of only a
few dozen items [12]. We desire an automatic, scalable, and
interpretable rule extraction algorithm that compactly models
the structures found in the graph.

To that end, the present work describes BUGGE: a Bottom-
up Graph Grammar Extractor (pronounced: “buggie”), which
extracts interpretable KT-grammars from large real-world
graphs. We show that the KT-grammar and BUGGE can
correctly capture the known generative process of synthetic
graphs. Upon their success in synthetic graphs, we employ
BUGGE to find hidden structures in real-world graphs and
report the findings.

II. PRELIMINARIES

Before we describe BUGGE in detail, we first give some im-
portant background information. The BUGGE algorithm can
take, as input, any graph H = (V, E), which can be labeled,
weighted, multi-edged, or directed. However, for simplicity,
our implementation and the examples presented in this paper
focus on simple, directed graphs with no edge weights or
labels. Note that we use “vertex” and “node” interchangeably.

A. Vertex Replacement Grammars

A vertex replacement grammar is a context-free graph
grammar consisting of a set of “production rules.” These
production rules (or simply “rules”) prescribe a way to replace
a single vertex in the graph with a subgraph fragment. When
a vertex replacement occurs, the orphaned edges adjacent to
the deleted vertex needs to be rewired to the new subgraph
fragment in some way. Various edge rewiring schemes have
been developed, each with their advantages and disadvantages.

The KT-grammar. The vertex replacement grammar intro-
duced by Kemp and Tennenbaum is a natural formalism for our
purposes [12]. This formalism, which we call a KT-grammar,
is succinct and easy to interpret, but it is also rigid and
sometimes requires algorithmic tradeoffs.

Formally, a KT-Grammar G is defined as a set of rules R €
G. Let R = (F,i,o0, f) such that F = (Vg,ER) is a directed
graph fragment with vertices v € Vg and edges e € Eg,
i:Vg+{0,1} and 0 : Vg + {0,1} are indicator functions
that state whether a vertex has incoming (i) or outgoing (0)
boundary edges. f € Z™ is the rule’s “frequency,” a count of
how many times that rule occurs.

NN N
O—>O—>O/

Grammar Rule

Current Graph H’ New Graph H*

O0—0—0 = \ /
o3
/\

O—>0—30

OO
\ =\
eavel g

O replaced O—> new —> boundary

Fig. 2. A grammar rule repeatedly applied to grow a graph. At the top is the
grammar rule; boundary edges, illustrated in red, indicate how the new RHS
is rewired to the overall graph H. A red edge in a rule stands for connections
to all a vertex’s neighbors (0 or more). The next two rows show this rule
applied to grey vertices in a H'. The expanded graph H* is illustrated on the
right where the rule’s RHS is highlighted in blue.

Let H = (V,E) be a directed graph upon which G is
applied. Vertex replacement is defined as a transformation of
H from a previous state H' to a new state H* via R € G.
Let v € V be the vertex in H replaced by grammar rule
R = (F = (Vg,ER),i,0,f). Then H* = (V*,E*), where the
new vertices are:

Vi=(V'\ {v}) U W= (1)
and the new edges are:
E*={(s,t)| s, t#£vN((s,t)€EE)V
(s,t) € ER V
(t€ VR ANi(t) A (s,0) € E') v
(s€ VrRAo(s)A (v, t) € EN)} ()

Simply put, whenever a rule replaces a node x, every node in
R either gets all of x’s boundary edges or none of them.

The example in Fig. 2 shows two additional applications
of the rule from Fig. 1A. This single KT-grammar rule can
be represented formally as (F = ({x,y}, {(x,¥)}), i, 0, f)
where i(x) = 1,0(x) = 0,i(y) = 1, o(y) = 1, and f is
some positive integer.

Note that if a grammar rule has i(v) = 0 for all v € V,
then it cannot be used to replace a node with incoming edges.
Likewise for outgoing boundary edges. Thus, the grammar
rule’s i and o functions implicitly define the left-hand side
(LHS) of the rule. KT Grammar rules can have any number
of nodes on the right-hand side (RHS).

B. Minimum Description Length Principle

The Minimum Description Length (MDL) principle asserts
that the best representation of some data is the representation
that uses the fewest bits. While this may be a questionable
assertion philosophically, practically it is often a useful prin-
ciple for big data mining and modeling. For example, gap-
encodings can represent sparse matrices much more efficiently

than a direct “matrix” encoding because gap encodings better
“match” the data [14].

The MDL principle may also be used in the following way:
Given some data D, a set of models M, and a particular
encoding scheme E, the best model to encode D is the model
M € M that minimizes the combined cost of encoding D
given M and the cost of encoding M (i.e. E(D|M) + E(M)).

In the present work, our data will be a graph, and our set
of models will be a set of different grammar rules which
our algorithm discovers. We will repeatedly, greedily select
a grammar rule to compress the graph according to the MDL
principle.

III. EXTRACTING KT-GRAMMARS

In this section, we describe BUGGE, and show that it
can extract a succinct, meaningful KT-grammar that faithfully
represents the graphical structures and properties of large
graph data. We introduce BUGGE formally and then describe
how it works using a running example.

A. BUGGE: the Bottom-Up Graph Grammar Extractor

Let H = (V,E) be a directed graph with V' C V, and
let H(V') denote the subgraph in H induced by V’. We also
introduce two size parameters k,;, and kpax that bound the
size of rule fragments. Let our grammar G start as an empty
set.

At a high-level BUGGE extracts a vertex replacement
grammar in the following way:

Step 1 Find all connected sets of nodes meeting the size
constraints ki, < size < kmax.
Step 2 For each connected set of nodes V', find the rules G’
that could be used in reverse to contract V' into a
single node. If no rules match exactly, find the rules
which most closely match.
Pick the single grammar rule R which is predicted to
compress H the most.
Step 4 Extract an occurrence of R € G’ from H by applying
it in reverse. If R does not exactly match the nodes it
collapses together, adjust the graph to make it fit (i.e.,
add or delete edges). If R is not in our grammar G,
add it to G. Increment the frequency of R in G.
Update the sets of connected nodes and the associa-
tions of vertex sets to rules according to the new graph.
Repeat Step 3 and Step 4 if there are still rules which
can be extracted.

Step 3

Step 5

This principled approach extracts a vertex replacement gram-
mar and can be applied to any kind of graph or grammar
formalism. However, our goal of extracting a small, easily
interpretable model is best satisfied by the KT-grammar for-
malism given earlier. So in the remainder of this section,
we provide further details on how to extract a KT-grammar
specifically.

Step 1: Enumerating Occurrences of Rules. When BUGGE
first starts, it must enumerate rule occurrences for any con-
nected set meeting the size constraints. Later, BUGGE only

@—»@Cc@\—/»;@—»cf)

®©

Fig. 3. Example directed graph. This graph will be used as a running example
to show how BUGGE extracts KT-grammar rules.

needs to perform updates to sets which might have been
affected by the latest rule extraction (i.e., sets connected to
nodes used in the latest extraction).

Enumerating all connected sets of nodes up to a fixed size
(kmax in our case) corresponds exactly to enumerating all
connected, induced subgraphs up to some fixed size, which
is solved using a technique called Reverse Search [15].

To show this process we introduce a running example using
the graph shown in Fig. 3. With kpin = kmax = 2, there
exists one connected subgraph per edge, 6 in total: {ab},
{b,c}, {b,d}, {c,d}, {d,f}, and {e,d}. With kpmax = 3, we
find 8 additional subgraphs: {a,b,c}, {a,b,d}, {b,c.d}, {b,d,e},
{b.d,f}, {c.d,e}, {c,d,f}, and {e,d,f}. The total number of sets
for a graph tends to be exponential in kp,x.

Fortunately, the KT-grammar permits heuristics that allow
the connected subgraph enumeration to be stopped early in
many cases. If the enumerator just evaluated some set of nodes
X of size |X| < kmax and we can infer that it is unlikely for
any KT-Grammar rule including the nodes in X to be a “good”
rule (more on this in Step 3), then the search can ignore more
massive sets of nodes containing X. We use this “Enumeration
Heuristic” in our experiments to speed up computation while
retaining results of similar quality.

Step 2: Enumerating Rules that Apply to Subgraphs. Given
the collection of connected sets, BUGGE finds the grammar
rule(s) which best match each connected set.

For any given connected set, we consider every possible
arrangement of boundary edges. In other words, for a given
connected set V’, we consider R = (F,i,o0,f) for every
possible i and o, where F is the induced subgraph H(V"). For
each rule (each possible i, 0 pair), we consider the minimum
number of edge additions or deletions to H necessary to
make V' correspond to an occurrence of R. This number of
modifications is the “cost” of a rule occurrence. For a given
V', we only store the rules with the lowest cost. Note that
there are 2!Vl possible 7 functions (and the same for 0). Thus,
this process is exponential in Kkpay.

Figure 4 contains an example of finding matching rules for
a connected subgraph induced by c¢ and d. It illustrates two
different rules that the subgraph could be edited to. Figure 4A
shows that the boundary edge (b—>c) does not match Rule 1,
resulting in a cost of 1 for Rule 1. Figure 4B shows that the
boundary edge (e—d) does not match Rule 2 resulting in a
cost of 1 for Rule 2.

To make a decision in Step 3, BUGGE needs to aggregate
information on all the occurrences of an individual rule. To do
this, it assigns an id number to every rule. We begin with an

A Rule 1
J— fbe} {f}
@ - OTOZDO® _, N
@/

O
B Rule 2

{b.e} {f}
N/
- O—>0

{b} {f} {b} {b} {f}
A X
@ @*@—;@%(D — L oay

©)

Fig. 4. Two options for extracting a KT-grammar rule from vertices {c, d}
highlighted in orange. Red dotted edges indicate edge deletions necessary to
make the graph match the rule on the right; edges deleted (or added) incur a
cost to the model. Solid red edges are the preserved boundary edges. Labeled
edges in the rules are for illustrative purposes only.

empty sequence of discovered rules, a “rule library”, L = ().
Every time an occurrence of a rule R is found in H, we check
to see if R is isomorphic to a rule already in L. If not, we
append it to L and give R a new id number. Otherwise, we
give R the id of its match in L. To make this process more
efficient, we maintain a count of how many times each rule
has been discovered and adjust the order of rules in L to be in
the order of discovery count, thereby increasing the likelihood
that a newly discovered rule will match one of the first few
rules in L.

Step 3: Finding the Rule with the Best Compression. At
this point, each connected subgraph is matched with one or
more possible rules, and each matching may have a non-
zero cost associated. The next step is to decide which rule
should be extracted from the graph. For this, we revisit the
MDL principle introduced in the previous section. Simply
put, we select the rule that we predict will minimize the
overall description length of the graph given the grammar. See
Appendix A for details on how we encode graphs via grammar
rules and measure them in bits.

We predict the number of bits it will cost to use a rule n
number of times as follows. Let R be a rule with multiple
occurrences in graph H at various costs (number of edges
to be added or deleted) cq1,c¢p,...,cm, and let x; denote the
number of time rules R occurs in H at cost c;.

We extract the cheapest occurrences of the rule first (i.e.,
occurrences at cost c1, followed by those at ¢p, and so on.).
Let j(n) denote the highest cost index we would reach while
extracting 7 rule occurrences and X]»(n) =n- Zﬁ;é X; be the
number of rules at cost ¢; that we would select.

Let Cg denote the cost to encode the rule itself and give it
an identification number. Cg will be zero if R has already been
extracted and encoded. Let Cip denote the cost to reference
R’s ID number. Due to our encoding scheme, we only need to
reference this id once to perform a series of extractions using
the rule. Let Cpo4e be the cost to identify a single node in H
(the node that the rule would be applied to). Lastly, let Cegjt
be the cost in bits to denote adding or deleting a node in H.

The predicted cost to encode n occurrences of R then
becomes:

COST(H) = Cr + Cip + nCyode + Xj(n)cj(n)cedit
j(n)-1

+ Y xiciCeait
i=1

3)

Recall that our MDL-based heuristic for selecting the most
representative rule is to select the rule that lets us describe as
much as possible with the fewest bits. Thus, what we really
want to consider is not just the cost to encode some number 71
of grammar rule extractions but rather the cost in bits per the
number of nodes extracted. We try to maximize the number of
nodes per bit, which we refer to as the “Predicted Cost Ratio”
(PCR). PCR for a rule is defined relative to the number of
extractions that would yield the greatest ratio of nodes to bits.

Let n; represent the number of nodes in H that would be
extracted by a rule at a cost ¢;. Thus, for a given n extractions
with a rule, the predicted number of nodes to be extracted
would be:

j(m)—1

i) + n;
Xjmy " ;

The ideal predicted cost ratio (PCR) of nodes to bits for a
rule R then becomes:

Xj(n)
NODES(n) = L2 4)

NODES (1)
COST(n)

If BUGGE were to compute this directly, it would require
checking every possible n for each rule. Fortunately, it turns
out that due to the “overhead” of the cost to encode and iden-
tify a rule, PCR will be maximized when all the occurrences
at a given cost are extracted. Thus, the calculation of PCR can
be simplified to:

PCRR = max 5)
n

i
PCRR = max Lioy M (6)

I Cr+Cmp+ 2511 xi(cnode + Cicedit)

We choose the rule with the highest PCR as the best rule to
extract. Although we compute the best number of occurrences
to extract when determining the PCR of a rule, this value may
change as soon as a single extraction is performed because
the changes in the graph may remove other occurrences of R,
causing R to have a worse PCR, or it causes some other rule
R’ to become cheaper or both. Hence, it should be stressed
that this is a Predicted Cost Ratio.

Also, note that BUGGE assumes that the sets of nodes
covered by a rule at different cost levels are disjoint. This is an
idealized assumption and could lead to inaccuracies, although
the PCR ratio appears to performs well in practice.

Returning to our running example, we find that the rule with
the best PCR is Rule 1 from Fig. 4(A). Although it has an
occurrence at cost 1 in Fig. 4(A), this rule occurs three other
times: twice with a cost of 0 and once more with a cost of 2.
The extra occurrences at cost 0 are what give Rule 1 the best
PCR. Thus BUGGE selects one of the cheapest occurrences
of Rule 1 to extract (either {a,b} or {e,d}).

Step 4: Extracting a Rule Occurrence. The rule extraction
process “collapses” the induced subgraph by applying the rule
in reverse. That is, instead of growing the graph by replacing
a single vertex with a graph fragment as in Fig. 1 and 2, we
reverse this process and extract a rule.

This processes is fairly straightforward. All the necessary
edge additions or deletions were found when the rule oc-
currence was enumerated. Thus, BUGGE simply replaces the
occurrence with a single node and rewires it according to the
selected rule.

Returning to the running example, Fig. 5 illustrates an
extraction of Rule 1 where it is calculated to have the lowest
cost.

Step 5: Update and Repeat. An extraction changes the graph.
So before we can iterate it is important that we update our
record of rule occurrences.

To do this, we first determine which nodes have rule
associations that may have changed due to the extraction in
the previous step. Next, we delete registered rule occurrences
involving any of the affected nodes. After the enumerations
are updated, we repeat this process from Step 3.

The set of nodes which might be affected is upper-bounded
by the set of nodes connected to the subgraph that was
extracted. More specifically, it is the union of the following
sets:

o The set containing the new ‘“collapsed” node itself.

e Nodes in H for which an edge was deleted or added in

the process matching the rule.

o Nodes in H which were connected by multiple in-edges
or multiple out-edges to the collapsed subgraph, i.e.,
boundary edges.

Again we return to the running example in Fig 5. After Rule

1 is extracted from the pair {e,d}, updates to rule occurrence
enumeration occur for any set involving the newly created
node g. Of particular interest, after extracting Rule 1, {c, g}
(formerly {c,d}) ceases to have Rule 1 as one of its cheapest
rules, but {b, g} then has an occurrence of Rule 1 at cost 1, and
it is eventually selected. During its run on the example graph,
BUGGE extracts the entire graph using Rule 1 multiple times,
albeit with a non-zero cost (Fig. 5 C). Recall that a boundary
edge in a KT grammar rule indicates that “all” (0 or more)
edges get wired to that node. Some of the extractions in our
running example have no (in or out) boundary edges.

Enumeration Heuristic. We found during testing that in
practice, the rules with the cheapest edit costs are usually
the rules with the best Predicted Compression Ratio (PCR).
Thus, during the process of enumerating rules, it would only
be important to enumerate the rules which have the lowest or
near-lowest edit costs.

Consider a connected set X of k < kmax nodes with an edit
cost of c. This means that there are ¢ edges which must be
added and/or deleted in order to extract X into a rule. The only
way that adding another node to X could reduce the cost is if
that node is one of the nodes that are connected to X via one
of the edges which must be added or deleted. Furthermore,

>
®
®
®
Q
e

(=)
|
O

0400 06

C
0 @D~
c 00

F ®

Fig. 5. BUGGE will repeatedly extract Rule 1 from Fig 4(A) thereby collaps-
ing the entire example graph. Green areas highlight the nodes corresponding
to a rule occurrence. Red arrows are boundary edges. The dotted red arrow
in extraction (C) is an edge deletion. New vertices formed by the extraction
of a rule (and the collapse of the relevant subgraph) in the previous step are
labeled in bold. Note that the green highlighted nodes might lack in or out
boundary edges. For example in (B), Rule 1 is extracted without cost from
the subgraph a—b despite no incoming edges to b. This is compatible with
the grammar rule because KT-grammars require boundary edges that exist to
be rewired according to the rule.

this new node must not add any more edit cost. Thus, the
chances of the cost decreasing as nodes are added are usually
quite low.

BUGGE takes advantage of this observation. BUGGE stores
the cost of the cheapest rule occurrence cpeg; then, during
rule occurrence enumeration, it updates this cost. If during
enumeration, it finds that a set of nodes X has a cost which
is “too far” from cpey then it doesn’t bother to enumerate
any connected sets of which X is a subset. We find that this
provides a dramatic speedup.

More formally, we define a “shortcut parameter” s which
tells BUGGE whether or not to enumerate larger sets. Specif-
ically, we continue enumerating supersets of a set X with edit
cost ¢ (X =k < kmax) if the following inequality holds:

€ < Chest + Min {1+ kmax — k, s + [In(kmax —k)])} (7)

In practice, we find that setting the shortcut parameter s
to 1 tends to produce very similar results to running without
a shortcut at all yet with a drastically reduced runtime (par-
ticularly noticeable when kp,x is large). Larger values may
increase runtime but produce better results. Sometimes we find
that s = 2 will find interesting results that s = 1 will not;
thus, s should be treated as a parameter that allows a potential
tradeoff between results quality and runtime. Even with larger
values of s however, the runtime is usually significantly
reduced.

o)) - - _
2 PP N N 99
£ = ¢ . PR Sl y 8.
S 05 D/ . B
2 b ™
5 o y
100
= - s e 8o te
2 1ot o9 . .
£w e o 28
S P | e - / b
£ p| & & b -6 —* &
£ 10 : g o ©
i | =
10°
1,000 2,000 3,000 4,000 5,000 2 3 4 5 6 7 8 0 0.01 0.1 1
\V\ Rule Max Size Rewiring Probability (log)
—e— Binary Tree g Tree of Rings Ring Lattice

Fig. 6. BUGGE’s Compression and Runtime results for synthetic graphs. We see how BUGGE responds as we vary different parameters: the size of the
graph, the maximum allowed grammar rule size, and the amount of noise in the input (i.e. rewiring probability).

B. Related Work

MDL Approaches Of other well-known graph mining sys-
tems, our approach is most akin to SUBDUE [8], followed
by VoG (Vocabulary of Graphs) [5]. Like our system, both
SUBDUE and VoG use the MDL heuristic to select structures
to extract.

SUBDUE uses a beam search to find structures. VoG
searches for 6 preset structure types (cliques, stars, etc.) and
maybe extended if the user wishes to implement support for
other specific structures. Our system finds whatever structures
are present in the graph up to a user-specified number of
nodes. Thus, our approach lets the data “speak for itself” up
to whatever computational costs the user is willing to allow.

Graph Grammar Approaches Other approaches extract
a vertex replacement grammar using either a hierarchical
clustering [10] or a tree decomposition of a graph [4] to
select which nodes to collapse into a grammar rule. These
approaches effectively try to form grammar rules from nodes
that “go together.” The Clustering-based Node Replacement
Grammar (CNRG) provides a computational advantage over
our approach. However, the choice of clustering algorithm
adds a layer of indirection between the graph and the grammar
which detracts from compressibility and interpretability.

The original work of Kemp and Tennenbaum did not extract
grammars from a graph but instead tested if a dataset matched
a particular grammar rule. This was particularly insightful
because KT-grammars have two particular advantages.

First KT-grammars tend to be naturally interpretable when
the intelligible structure can be found. Of particular notewor-
thiness, these rules can easily capture many of the structures
which are most intuitive to the human mind: trees, rings,
hierarchies, etc. For example, Table 7 shows some graphs
along with grammar rules which generate them.

Second, KT-grammars are robust to error. For a given
subgraph, there might not exist a rule that can create that
particular subgraph. Usually, this happens when two nodes
with external outgoing (or incoming) edges do not all point
to the same nodes. At first glance, this might seem to be

a weakness, but it enables an intuitive notion of the ‘“cost”
of applying a rule to a subgraph. This cost, defined as the
number of edges in the graph that need to be added and/or
deleted before the rule could apply, allows our algorithm to
focus on the parts of the graph that most clearly correspond to
interpretable structure, compressing those parts of the graph
first.

Other Approaches Exponential Random Graph Models
(ERGMs) are another type of graph model that learns a
robust graph model from user-defined features of a graph [16].
Unfortunately, this model does not scale well and is prone to
model degeneracy. Neural network graph models are of recent
interest, but as is common with neural networks, these models
do not provide the interpretability we desire. Additionally,
some, such as GraphVAE [17] and GraphRNN [18] have
limited scalability while others such as NetGAN [19] produce
models many times larger than the original graph. Node em-
bedding models like LINE [20], node2vec [21], VGAE [22],
and others [23] represent individual nodes in the context of
their local substructures for classification or prediction tasks
and are also poorly suited to our objective.

IV. METHODOLOGY

In this section we present results of extensive experiments
on real and synthetic datasets that compare compression,
runtime, and model interpretability. We compare our results
to several state-of-the-art graph summarization and grammar
extraction methods including VoG [5], SUBDUE [8], and
CNRG [10]. The source code for BUGGE, including experi-
mental data and evaluation scripts, is available on GitHub!.

Datasets. It is important that we consider both synthetic and
real-world graphs in our evaluation. Synthetic graphs enable us
to determine whether or not the grammar rules that we extract
are interpretable, i.e., since we know how we generate some
synthetic graph, it’s relatively easy to determine the goodness
of the found graph substructures.

Uhttps://github.com/SteveWillowby/ThreePartsTree

https://github.com/SteveWillowby/ThreePartsTree

I: Balanced Binary Tree

NN

Syntheti
AR |
O’/*OO’/\OO*\OO*\O ‘
e e e e e e e e e e e e e - - -
\O
“Rues o 3q 0
A AY,
O O O O
A 5 '(; """" A
Q P2
Suggtlrglﬁ:ltjlfres / \ KO\ ,‘O B
© O OO O c
e e e e e e e e e e e e e - - S
Po o)
Strlygtﬁres \o\\\o< f \o/
I~
B
A - A
O. |
© 00 0 (Y4 \O

II: Tree of Directed C5 Rings

/CH \
Cis e Cis
Cs Cs Cis

Cis 5 5 5 Cis
BARNAARA VAT TAATAANA SV A0

1 1 1
- O0—O0—0—O0

1 1
- O0—O0——0—0

1li: Regular Ring Lattice

J 1,&\

Cis Cis G

b

2 o
0>0>0>0>0>0 W
O‘\
%, 9
0>0 i £ i
o
o—1 h o
oO—>»0—>0 A o0—>0
0—>0—>0<—0 B o“>0—0

-
X -
AN
[
&7

Fig. 7. Rules or substructures extracted by graph mining for three types of synthetic graphs. The rules extracted by BUGGE capture the known dynamics of

the synthetic graph.

To that end, we generate three types of synthetic graphs:
(1) a Binary Tree, (2) a Tree of Rings, which is an N-ary tree
where each node is replaced with a ring of size k, and (3)
a Ring Lattice, based on the Watts-Strogatz model of social
networks. An ideal grammar extractor would describe these
simple structures clearly.

In addition, we consider three real-world directed graphs
from SNAP: Blogs (1,224 nodes, 19,025 edges), Protein-to-
protein interaction network (1,706 nodes, 6,207 edges), and
the DBLP citation graph (12,591 nodes, 49,743 edges).

Because runtime drastically increases with the maximum
rule size, we use the enumeration heuristic in all of our tests.
We find that it preserves the quality of results while improving
runtime dramatically.

Synthetic Graph Results

First we test the runtime and compression ratio of BUGGE
in various scenarios. Unless otherwise specified, graphs are
generated with 3000 nodes; the N-ary tree has n = 3 with
ring size k = 15; and the directed ring lattice graph has the
degree set to 4.

Graph Size. Holding the rule size steady and the rewiring
probability at 0%, we vary the number of nodes in the synthetic
graph from 1000 to 5000. The results shown in Fig. 6(left)

illustrates that runtime increases linearly in the number of
nodes. This is what we expect given that the larger synthetic
graphs just have more repetition of the same structure, so for
a fixed kmax BUGGE just enumerates the same grammar rules
more times.

The compression rate improves slightly on larger graphs.
This matches our expectation because the overhead of defining
more rules (bits increase) in larger graphs is dwarfed by the
number of extractions with that rule (bits savings).

Rule Size. Holding the graph size and rewiring probability
steady at 3000 and 0.0% respectively, we vary the maximum
rule size from 2 to 8. Size-2 rules correspond to edges;
size-3 rules can be one of the 5 directed 3-node graphlets.
There are 34 different size-4 directed graphlets, and this
number increases dramatically as the maximum allowed rule
size increases [24], [25]. This increase in expressibility is
certain to cause an increase in runtime. The results shown
in Fig. 6(center) illustrates that the compression rate increases
dramatically as the rule size increases (higher is better).
Model interpretability is explored in Fig. 7, which illus-
trates the most frequent rules extracted by BUGGE and the
comparison methods where parameters are set empirically
for each dataset. For example, in the synthetic binary tree
graph Fig. 7(left), BUGGE extracts only two grammar rules,

one of which is (re-)used in 499 of the 501 total iterations.
Thus, almost the entire graph can be represented with a single
rule, which corresponds to replacing a node with a subtree.
SUBDUE and CNRG extract reasonable rules from the binary
tree, but VoG surprisingly extracts a nearly bipartite core.

For the tree of rings Fig. 7(center) illustrates two rules
extracted by BUGGE that account for almost the entire graph
(599 of the 601 extractions). First, a rule for a chain is used
twice per ring to shrink the rings. Then a second rule takes
one of the shrunken child-rings and wraps it entirely into
its parent-ring. SUBDUE, VoG, and CNRG extract rules and
substructures which are difficult to interpret.

For the ring lattice graph in Fig. 7(right), BUGGE extracts
an intuitive rule that comprises 427 of the 430 total extractions.
SUBDUE and CNRG produce reasonable results; however
dozens of other CNRG rules are not illustrated here, and
SUBDUE only associates its best rule with at most 68% of
the graph. Again VoG produces a bipartite core.

These examples demonstrate how BUGGE can discern the
nature of the original graph and common patterns within.

Random Rewriting Probability. To test the robustness of
BUGGE to noise, we define a rewiring probability . Holding
the graph size at 3000, we vary r from O to 1. Before
extraction, every edge is randomly re-assigned to a new pair
of nodes with probability . We design this process to ensure
that the number of edges is preserved. This means that when
r is O the synthetic graph remains the same and when 7 is 1
it becomes an Erdos Renyi graph.

Returning to Fig. 6(right), we observe that runtime increases
significantly as the level of noise increases and compressibility
drops. Interestingly, BUGGE manages to compress the graph
with increasing levels of noise, thereby showing robustness;
even when the rewiring probability is 1 (i.e., entirely noise)
BUGGE still manages to compress the two sparser random
graphs, indicating that BUGGE can compress sparse noise.

Real-World Graph Results

The synthetic graph results show that BUGGE does indeed
extract grammar rules that are meaningful. By inspecting the
rules, we can discern certain aspects about how the graph
is structured. Real-world graphs are less straightforward, but
the goal remains the same: to extract meaningful rules that
describe the underlying structure of the graph. Ideally, these
rules will hint at the dynamics of the graph and shed light on
the processes that govern these large, complex systems. We
extracted grammars from 3 real-world graphs and inspected
them to see what they tell us about the original graphs’s
structure.

Maayan Stelzl Protein-Protein Interaction (PPI) Graph.
For the PPI network, almost all of the rules BUGGE finds
have bidirected edges, suggesting that if protein A interacts
with protein B, then the reverse is true. This is indeed the case;
95% of the connections in the original graph are bidirected.
The most frequently extracted rules are visualized in
Fig. 8(top). By far the most frequent is a two-node rule

PPI
3
5 06 1,000 2
] 5
g 04 2
g 500 &
r 02 (&)
%
Y EEY, o
X X X
{5 T ARk
o o
0 o<>0 g 0o % 0O o oo
DBLP
6000 o
0.6 2
3 4000 %
g 04 =3
8 2,000 8
L 02 3
%
0 0 u
W 1 \)')‘ \f f \O \)‘
N
N 3 Ao Moo b 1
o o] o (¢] o
PoIBIogs
2,000 8
o
5 06 1,500 Z
g g
z 04 1,000
() o
co02 500 2
kel
0 0 w
\f
Jt ¢ i l ¢
\O (o] (o] Of O’
Rule
—1— Frequency —0— Edit Cost per Node

Fig. 8. Most frequently extracted rules from real-world graphs. The red line
indicates the total edit cost (number of edges added or deleted) per node over
the course of the extractions with that rule.

where one node has boundary edges, and the other does not.
However, we find that in the course of 866 total extractions,
2561 edges were deleted (denoted by the red line). Thus,
the node lacking edges in the rule typically had a few edges
which were not held in common with its neighbor in the real
graph. This suggests that the general structure of the graph is
to have proteins with very few interactions (spokes) connect to
proteins with very many (hubs). We especially see this “hub”
trait in some of the other top rules illustrated in Fig. 8.

DBLP Article Citation Network. For the DBLP citation
network, BUGGE extracts 9 rules which are used the most
frequently. They are illustrated in Fig. 8(middle); many of
which are similar to each other. As expected for a citation
network, which should be a DAG, the most popular rules do
not have bidirected edges.

We observed that in all of these rules, at most one node has
outgoing boundary edges and at most one node has incoming.
This means that for most pairs of connected nodes, it was
cheapest for BUGGE to delete all but one node’s in edges
and delete all but one node’s out edges. This, in turn, means
that for most pairs of connected nodes, they had more distinct
edges than edges in common. In terms of citations, this means
a pair of articles connected by a citation are more likely to cite
and be cited by different articles than by the same ones. This

Blogs :
. BR %L
Yy d : v
1 i 0.23 \l 049 ! i 213
(e} O . (@]

i; \t; ! }?ﬂ
2. 0.06 0.45 1 0.29

\O’ (¢) : O0<>0
\Of (l) : }O§
3 (¢)’ 0.04 \o’ 0.29 : Iy 0.19

: DBLP
S N ER __ __
/7 : W, /
(f 362 ! (l) 0.07 /1)\ 0.69
o) : R ©50
\O)' : \o \Of
0'2:_,0029 ! g 5 005 (l) 0.37
Y/ ! 3/ b
(o] 1 (@) (o]
020 0.03 A\ 0.33
of\‘o : <l>’ OchO

Fig. 9. Comparison of top 3 most “interesting” results when compared to Chung-Lu (CL) and Erdos-Renyi (ER) null models. BUGGE extracts KT-grammars
that highlight certain dynamics of each dataset. Some patterns are well known, such as the bidirectional edges of PPI networks; others may require careful

inspection and further study by domain experts.

level of expressibility is exactly what we seek; we, therefore,
encourage domain experts in library sciences (or proteomics
or the social Web) to investigate these findings further.

Moreno Blogs-Blogs Network. The Blogs network is another
form of a citation network, but because multiple articles on
the same blog count as the same node and two blogs can
frequently cite one another, the Blogs network will not be
nearly as DAG-like. Cycles and mutual citations should be
much more common. We expected the blogs-to-blogs graph
to have much less regular structure due to their complex
social dynamics. However, we did obtain some of the same
observations as in the DBLP citation network. In particular,
that the shared citations between two blogs are fewer than the
distinct citations.

Finding Interesting Rules

These rule probabilities give a good indication of the
structure of the graph. However, it could be that some rules
are just more likely than others, especially within graphs of
the same degree distribution. So, it is important that we find
the rules that are most interesting - not just most frequent.
Defining what is “interesting” can be difficult; fortunately, null
graph models are well suited for precisely this task.

For each real-world graph we create two null graph models:
(1) an Erdos Renyi Random graph (ER) containing the same
number of nodes and edges as the original graph, and (2) a ran-
dom graph that matches the original graph’s degree distribution
using a directed version of Chung-Lu’s Configuration model
(CL) [26], [27]. We use BUGGE to extract a KT-grammar
from the two null models for each real-world graph.

The extracted KT-grammars are a distribution of rules. So
we can compare the graph models using KL-Divergence to
determine how similar they are:

q(R)
p(R) log »(R)

X

Re{GUG?}

KL(p,q) = —

where G is the KT-grammar extracted from the original graph,
and G2 is the KT-grammar extracted from the null model,
either ER or CL; p(R) and g(R) are the probabilities that
R appears in the grammar extracted from the original graph
and the null model respectively. In some cases a rule may not
appear in both graphs, so we perform Laplacian smoothing on
these distributions to avoid errors caused by dividing by zero.

The KL divergence result itself is not particularly meaning-
ful, however, the contribution of each rule R to the overall
result represents the relative difference in their occurrence.
Therefore, we rank each rule’s contribution to the overall
KL divergence and illustrate the top 3 rules in Fig. 9 for
comparisons of real-world datasets against the null models.

Many aspects of our results could be commented on. We
will highlight a few: The frequency of rules with bidirected
edges in Figure 9 shows that neither the degree distribution
nor the ER model capture these relationships. In the Blogs
vs. CL comparison, we see that even though (as discussed
earlier) most of the extracted rules do not have multiple out
edges, they are more common in the original graph than the
degree distribution alone would dictate. In the DBLP citation
graph vs. ER, we see that BUGGE finds the original graph
has much more tree-like/DAG-like rules.

Performance Comparisons

Finally, a direct comparison of the compression rates of
BUGGE, SUBDUE, CNRG, and VoG is problematic. CNRG
and SUBDUE are lossy models, while BUGGE and VoG are
lossless models.

Likewise, direct runtime comparisons are also problematic.
For example, the default settings for SUBDUE search for
grammars of arbitrary size, which does not scale to even
medium-sized graphs; so we set its max structure size to 8.
Each algorithm is written in different programming languages
using different graph libraries, etc. Runtimes in comparisons
ranged from less than a minute on the smallest graphs to
around 18 hours for BUGGE on the largest real-world graph.

V. CONCLUSIONS

The present work describes BUGGE: the Bottom-Up Graph
Grammar Extractor, which extracts grammar rules that rep-
resent interpretable substructures from large graph data sets.
Using synthetic data sets we explored the expressivity of these
grammars and showed that they clearly articulated the specific
dynamics that generated the synthetic data. On real-world
data sets, we further explored the more frequent and most
interesting (from an information-theoretic point of view) rules
and found that they clearly represent meaningful substructures
that may be useful to domain experts. This level of expressivity
and interpretability is needed in many fields with large and
complex graph data.

In future work, we intend to focus on extending these
formalisms to cover temporal/evolving graphs, like the work
done in synchronous HRGs [28] and temporal motifs [29]. It
is also likely that the KT-grammars extracted here can be used
to generate faithful null models of a graph.

Acknowledgements. This research is supported by a grant
from the US National Science Foundation (#1652492). Thanks
to the reviewers for their useful feedback. Lastly, thanks to
Trenton Ford for his editing help.

REFERENCES

[1] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield, “Efficient graphlet

counting for large networks,” in ICDM. 1EEE, 2015, pp. 1-10.

C. Seshadhri, T. G. Kolda, and A. Pinar, “Community structure and

scale-free collections of erdGs-rényi graphs,” Physical Review E, vol. 85,

no. 5, p. 056109, 2012.

S. Aguinaga, R. Palacios, D. Chiang, and T. Weninger, “Growing graphs

from hyperedge replacement graph grammars,” in CIKM. ACM, 2016,

pp. 469-478.

[4] S. Aguinaga, D. Chiang, and T. Weninger, “Learning hyperedge replace-
ment grammars for graph generation,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 41, pp. 625-638, 2019.

[5] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos, “Vog: Summarizing
and understanding large graphs,” in SDM. SIAM, 2014, pp. 91-99.

[6] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,”
in ICDM. 1EEE, 2002, pp. 721-724.

, “Closegraph: mining closed frequent graph patterns,” in Proceed-
ings of the ninth ACM SIGKDD international conference on Knowledge
Discovery and Data Mining. ACM, 2003, pp. 286-295.

[8] L. B. Holder, D. J. Cook, S. Djoko et al., “Substucture discovery in the
subdue system.” in SIGKDD, 1994, pp. 169-180.

[91 V. Gudkov, “Generalized entropies of complex and random networks,”
Mathematical Foundations and Applications of Graph Entropy, vol. 6,
pp. 41-61, 2016.

[10] S. Sikdar, J. Hibshman, and T. Weninger, “Modeling graphs with vertex
replacement grammars,” in /CDM. IEEE, 2019.

[11] R. Reddy, S. Chandar, and B. Ravindran, “Edge replacement grammars:
A formal language approach for generating graphs,” in SDM. SIAM,
2019, pp. 351-359.

[12] C. Kemp and J. B. Tenenbaum, “The discovery of structural form,”
PNAS, vol. 105, no. 31, pp. 10687-10692, 2008.

[13] H. Ehrig, G. Rozenberg, and H.-J. rg Kreowski, Handbook of graph
grammars and computing by graph transformation. World Scientific,
1999, vol. 3.

[14] P. Elias, “Universal codeword sets and representations of the integers,”
IEEE Trans. on Information Theory, vol. 21, no. 2, pp. 194-203, 1975.

[15] D. Avis and K. Fukuda, “Reverse search for enumeration,” Discrete
Applied Mathematics, vol. 65, no. 1-3, pp. 21-46, 1996.

[16] G. Robins, P. Pattison, Y. Kalish, and D. Lusher, “An introduction
to exponential random graph (p*) models for social networks,” Social
Networks, vol. 29, no. 2, pp. 173-191, 2007.

[2

[3

=

[17] M. Simonovsky and N. Komodakis, “Graphvae: Towards generation of
small graphs using variational autoencoders,” in International Confer-
ence on Artificial Neural Networks. Springer, 2018, pp. 412-422.

[18] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, “Graphrnn:
Generating realistic graphs with deep auto-regressive models,” arXiv
preprint arXiv:1802.08773, 2018.

[19] A. Bojchevski, O. Shchur, D. Ziigner, and S. Giinnemann, “Netgan:
Generating graphs via random walks,” arXiv preprint arXiv:1803.00816,
2018.

[20] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in WWW, 2015, pp. 1067-1077.

[21] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in SIGKDD. ACM, 2016, pp. 855-864.

[22] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv
preprint arXiv:1611.07308, 2016.

[23] P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” Knowledge-Based Systems, vol. 151, pp.
78-94, 2018.

[24] A. Sarajlic, N. Malod-Dognin, O. N. Yaveroglu, and N. Przulj,
“Graphlet-based characterization of directed networks,” Scientific re-
ports, vol. 6, p. 35098, 2016.

[25] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: simple building blocks of complex networks,”
Science, vol. 298, no. 5594, pp. 824-827, 2002.

[26] W. Aiello, F. Chung, and L. Lu, “A random graph model for massive
graphs,” in STOC. Acm, 2000, pp. 171-180.

[27] M. E. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs with
arbitrary degree distributions and their applications,” Physical review E,
vol. 64, no. 2, p. 026118, 2001.

[28] C. Pennycuff, S. Sikdar, C. Vajiac, D. Chiang, and T. Weninger,
“Synchronous hyperedge replacement graph grammars,” in International
Conference on Graph Transformation. Springer, 2018, pp. 20-36.

[29] A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal
networks,” in WSDM. ACM, 2017, pp. 601-610.

APPENDIX

When compressing a graph, we use three encodings: A
graph encoding (stores a minimalist adjacency list), a gram-
mar rule encoding, and an application encoding (stores a
sequence of applications of the grammar rules to a graph).

Graph Encoding. Given a directed graph H = (V,E), the
number of bits By it takes to encode G is:

By = (2[log, [V[] = 1) + V| + |E|([log, [V[T +1)

Grammar Encoding. A grammar rule is basically a graph
with additional boundary information. The total number of
bits Bg, to encode a grammar rule with k nodes is:

Bgr, = [log, |V|] 4+ k([logy k] +2) +k(k—1)+1

Application Encoding. An application encoding consists of
a sequence of instructions for applying grammar rules. These
instructions include an id number of the rule to apply, the id
of the node to apply the rule to, and information concerning
any edges which were added or deleted during the extraction
process. The bits B, to record the application of a k-node
rule with m edge approximations takes:

By, =2+ [log, [V|] + m([log, k] + [log, [V|] +1)
[log, |V|] different rule used before
0 same rule used before

