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Abstract—Representation learning is popular for its power of
learning latent feature vectors (i.e., embeddings) to represent data
units from a complex type of data (e.g., languages, networks,
behaviors). The embeddings preserve specific structure and thus
improve the performance of predictive models. In this work, we
develop a new representation learning method in the chemistry
domain. Given a large set of compounds of inorganic crystals,
the method learns the embeddings of atoms so that the predictive
models can place them into the periodic table correctly. Our
method preserves not only the compounds’ compositions but
also their structures such as crystal system, point group, and
space group. Experiments demonstrate the effectiveness of the
proposed method, compared to the state-of-the-art method (in
PNAS 2018). One interesting result is that given 20 atoms with
known positions in the periodic table, our method can achieve an
accuracy of 0.70, while the baseline makes only 0.54, on filling
the remaining 14 hidden atoms into the table. This shows that
the atomic embeddings we generated preserve useful information
and can be extended for scientific exploration.

I. INTRODUCTION

Since an unprecedentedly big amount of data in chemistry
and materials science become available, the potential use of
data science in the fields have been brought into attention [1],
[2], [3]. Statistical learning methods are being used for battery
materials discovery [4], solid catalysts [5], and computational
material design [6]. The fundamental idea is that the properties
of atoms/elements could be represented and learned from
materials databases.

A recent work published in the Proceedings of the Na-
tional Academy of Sciences of the United States of Amer-
ica (PNAS) [7] represented the composition information of
chemical compounds as an atom-environment matrix and used
Singular Value Decomposition (SVD) [8] to find the feature
vector of atoms (as the left singular vectors). Results showed
that the feature vectors are useful on predicting the formation
energy of elpasolites [9]. Meanwhile, in the community of
data science and machine learning, representation learning has
been getting more and more attention. Tons of research works
demonstrate the effectiveness of being used as a unsupervised
feature extraction tool. Basically, it learns low-dimensional
vectors of the data units (called embedding) from different
types of data sets, such as text embeddings [10], [11], network
embeddings [12], [13], [14], [15], [16], knowledge graph
embeddings [17], [18], [19], spatiotemporal embeddings [20],

and behavior embeddings [21]. One of the advantages of
the representation learning algorithms is that it can preserve
multiple kinds of information (if specified) from the data in the
embedding vectors, which could be applied to the data-driven
atomic feature learning task.

In this work, we investigate the important role of struc-
ture information in describing the properties of the chemical
compounds. The top part of Figure 1 shows two kinds of
information of chemical compounds, composition (on the left)
and crystal structures (on the right). We find that different
chemical compounds may have the same composition but to-
tally different crystal structures. For example, the Wurtzite and
Sphalerite are of the same composition (“ZnSZnSZnS”) but different
crystal systems: Wurtzite is hexagonal and Sphalerite is cubic.
This is actually common in crystal chemistry. Moreover, there
is a taxonomy of crystal structures which has three levels: crys-
tal systems, point groups, and space groups [9]. The number
of systems/groups of the levels are 7, 32, 230, respectively.
We focus on solving two problems: (1) preserving both the
composition and crystal structure information of chemical
compounds in the embeddings of atoms, (2) investigating
which granularity of the crystal structure generates the most
effective embeddings.

As shown in Figure 1, we employ the network embedding
algorithm [16] to learn atomic embeddings by preserving the
composition and crystal structure information. The idea is to
structure chemical compounds into a bipartite graph between
atom nodes and environment nodes. The environment includes
two components. One is the composites in the compound.
For example, Perovskite is known as CaTiO3CaTiO3CaTiO3: if the atom
is CaCaCa, the composites environment is 1 TiO31 TiO31 TiO3. “111” is for the
count of atom CaCaCa in the compound and “TiO3TiO3TiO3 is for the
other atoms and their counts. Similarly, if the atom is TiT iT i,
the composites environment is 1 CaO31 CaO31 CaO3; if the atom is OOO, the
composites environment is 3 CaTi3 CaTi3 CaTi. The other environment
is the crystal structures, as shown as a hierarchy at the top
right of the figure. Perovskite is located at the leaf node of the
path “orthorhombic” (crystal system) – “mmm” (point group)
– “Pnma” (space group).

In the present work we describe a composition-structure
convolution to represent the environment nodes. Basically, an
environment is recognized as a pair of the composition envi-
ronment and crystal structure environment such as “[1 TiO31 TiO31 TiO3,
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Fig. 1. Representation learning in Chemistry: We proposed a new representation learning method that can learn embedding vectors of atoms from both (1)
composition of chemical compounds and (2) hierarchical crystal structures and deployed the method for periodic table prediction (given the correct positions
of 20 atoms, place the rest 14 atoms in the slots).

“Pnma”] and “[SSS, “P6 3mc”] (when we choose the level of
space group). This significantly increases the number of unique
environments from 83,743 to 132,517 (as given in Figure 3
later) and the atomic embeddings are more effective than those
learned from the composition information only.

We evaluate the atomic embeddings on two tasks. The first
task is to predict the atom’s position in the periodic table [22],
[23]. It can also be considered as a table filling task. As shown
at the bottom of Figure 1, suppose we have the information
of 20 atoms’ positions in the table. The task is to fill the 14
remaining atoms to correct positions. This is a non-trivial task.
It requires the numerical representations of the atoms to embed
their nature properties from chemical compound data because
the ground-truth table actually placed the atoms based on their
natures (i.e., atomic particle structures) [24], [25]. The second
task is standard and has been adopted by the PNAS work [7].
It is to predict the formation energy of elpasolite crystals by
feeding the embeddings into a two-layer neural network. This
is an important task in material discovery.

Experimental results show that on both tasks, the atomic em-
beddings that preserves both composition and crystal structure
information performs better than those that preserve one kind
only. Given 20 atoms in the periodic table, our embeddings

can achieve an accuracy of 0.70 on average, while the baseline
makes 0.54, on filling the 14 hidden atoms into the table. As
the example given in Figure 1, our embeddings hit 10 among
14, while the baseline makes only 5. We found that the space
group (bottom level) performs the best in the first task, while
the crystal system (top level) performs the best in the second
task.

Our contributions can be summarized as follows:

• We introduce a taxonomy of crystal structures for the
representation of chemical compounds. The taxonomy
has three levels: crystal systems, point groups, and space
groups. They play essential roles: different chemical
compounds may have the same composition but different
structures.

• We propose composition-structure convolution to repre-
sent the associations between atoms and environments
in the chemical compounds as a bipartite network. We
employ state-of-the-art network embedding algorithms to
learn effective atomic embeddings.

• Experimental results demonstrate the effectiveness of the
atomic embedding. We evaluate it on a new task and a
standard task. The new task is to fill the periodic table
given partial placement of the atoms.



The remainder of this paper is organized as follows. Section II
reviews the related works. Section III defines the problem.
The proposed approach is given in Section IV. Section V
shows and discusses the experimental results, and Section VI
concludes the study.

II. RELATED WORK

In this section, we review three related topics: representation
Learning, atomic embedding and periodic table.

A. Representation Learning

Representation learning methods have been widely used for
unsupervised feature extraction. It is to learn low-dimensional
embedding vectors from complicated types of data. The em-
beddings preserve specific structures inside the data to improve
the performance of predictive models. The WORD2VEC [10]
and GLOVE [11] methods learn word embeddings (and later
extended to phrase, sentence, paragraph embeddings, and doc-
ument embeddings) from natural language texts in an unsuper-
vised way: one is to train the vectors for predicting the missing
word in a certain context; the other is to recover the co-
occurrences of words in a large amount of text data. Network
embedding methods such as DEEPWALK [12], LINE [13],
HEBE [14], and many others [16], [26], [27], [28], [29], [30],
[15], [31] are able to extract effective features for multiple
network-oriented tasks such as node classification, cluster-
ing, or outlier detection. To facilitate question-answering and
recommender systems, representation learning for knowledge
graphs is gaining more and more attention [17]. Effective
answers and recommendations were generated through em-
bedding learning of entities and relations [18], [19]. Some
other kinds of embeddings are also popular. For example,
learning spatiotemporal factors in dynamic data can improve
the applications of smart city [20]. Learning representations
of resources, plans, and goals in human behaviors can provide
reliable support to the decision-making process [21].

B. Atomic Embedding

A general idea of predicting chemicals’ properties is to
decompose them into atoms’ inherent property (descriptor) and
interactions between them. However, some inherent properties
of atoms are hard or even impossible to gain. Atomic em-
bedding, which can either be modified directly from atomic
properties or generated from other observed data, is poten-
tially a convenient and powerful atomic descriptor [32]. Re-
searchers have applied atomic embedding in potential energy
surface [33], classification in superheavy elements [34], and
drug discovery [35].

C. Periodic Table

In 1869, the well-known Russian chemist Dmitri Mendeleev
published a periodic table arranging the elements in order of
relative atomic mass. Mendeleev came up the physical and
chemical properties of elements are related to their atomic
mass in a “periodic” way known as periodic trends by modern
chemistry. Another contribution was to predict the undiscov-
ered elements in the correct location in his periodic table.

The modern periodic table arranges elements by the number
of electrons [22], [23]. In this paper, we focus on the 34
main group elements. Electron arrangement of each element is
represented by the position in the table: the row number (1-6)
represent the total layers of electrons while the column (I-VII)
represent the number of electrons in the outermost layer.

III. PROBLEM DEFINITION

In this section, we formally define the composition and
crystal structure information of chemical compounds in a
mathematical way. Then, we define the problem of atomic
embedding learning with the requirement of preserving the
two kinds of information. Finally, we define the periodic table
filling task.

Suppose XXX is the set of elements/atoms. We denote the
chemical compound by CCC. For example, an atom could be CaCaCa,
TiT iT i, or OOO ∈ XXX . The chemical compound CCC could be CaTiO3CaTiO3CaTiO3.
We define a function as the count of an atom XXX ∈ XXX in the
chemical compound CCC:

nCCC(XXX) : XXX → N = {0, 1, 2, . . . }. (1)

For example, we have

nCaTiO3CaTiO3CaTiO3
(CaCaCa) = 1, (2)

nCaTiO3CaTiO3CaTiO3
(TiT iT i) = 1, (3)

nCaTiO3CaTiO3CaTiO3
(OOO) = 3. (4)

We denote the set of atoms in the chemical compound CCC as

A(CCC) = {XXX ∈ XXX | nCCC(XXX) > 0}. (5)

The composition information of an atom XXX in the context
of chemical compound CCC is:

Compo(XXX,CCC) = [nCCC(XXX), {XXX ′ : nCCC(XXX ′)}XXX
′ 6=XXX

XXX′∈A(CCC)]. (6)

For example, when CCC is CaTiO3CaTiO3CaTiO3 and XXX is Ti, we have the
composition information of atom Ti in CaTiO3CaTiO3CaTiO3 below:

[1, {CaCaCa : 1,OOO : 3}],

which can be written as

“1CaO31CaO31CaO3.”

Note that the other atoms (denoted by XXX ′) were in alphabetical
order. We denote the set of all possible composites as:

C = {Compo(XXX,CCC), ∀XXX, ∀CCC}. (7)

The crystal structure information of chemical compound CCC
at level l is denoted by

Struct(l,CCC) ∈ Sl, (8)

where the level of crystal structures l ∈ {“crystal systems”,
“point group”, “space group”}. For example, we have the
values for each level as below:

S“crystal systems” = {“hexagonal”, “cubic”, . . . }, (9)
S“point group” = {“mmm”, “6mm”, “− 43m”, . . . },
S“space group” = {“Pnma”, “P6 3mc”, “P6mm”, . . . }.
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Fig. 2. We propose “composite-structure” convolutions to represent the environments of an atom in the crystal. The composite part includes (1) the count of
the atom and (2) other composites (other atoms and their counts).

The size of the levels is

|S“crystal systems”| = 7, (10)
|S“point group”| = 32, (11)
|S“space group”| = 230. (12)

Given a database of chemical compounds, we transform the
composition and crystal structure information into an atom-
environment association network G = (XXX ,V, EXXX×V), where
V is the set of all possible environments. Now we can formally
define the problem.

Problem 1 (Atomic Embedding Learning): Given the com-
position information Compo(XXX,CCC) and the crystal structure
information Struct(l,CCC), for a chemical compound CCC, a
specific atom XXX , and a structure level l, (1) construct the
atom-environment association network G = (XXX ,V, EXXX×V),
and (2) learn a mapping function:

x = f(XXX) : XXX → Rd (13)

where d is the number of dimensions. The function f gen-
erates the low-dimensional feature vectors (i.e., embeddings)
of atoms x preserving the composition and crystal structure
information.

Problem 2 (Periodic table filling task): For a selected
number n(2− 32), n randomly selected main group elements
are removed from the original table, the task is to utilize
the data set(described in Data Description of the Experiment
section) to fill the removed elements into the table correctly.

IV. THE PROPOSED APPROACH

In this section, we first present a novel formulation of
the atom’s environments (including both composition and
crystal structure information) in the chemical compounds and
construct an atom-environment network from the data. Then,
we briefly introduce the atomic embedding learning method.
Finally, we present the table filling method.
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Fig. 3. With structure information being represented via Composite-Structure
Convolutions, the number of environments becomes bigger (58% more); and
the lower-level crystal structure has more environment.

A. Composite-Structure Convolutions for Atom-Environment
Network Construction

Figure 2 presents the idea: Given the composite space C
and the l-level crystal structure space Sl, the environment is
defined as the convolution of the composite and the structure,
or say, it is a combination of both environment factors. For
a specific chemical compound CCC, a specific atom XXX , and a
specific structure level l, the environment is written as

v(XXX,CCC, l) = [Compo(XXX,CCC), Struct(l,CCC)]. (14)

The set of possible environments only includes the environ-
ment nodes that are associated with at least one compound:

V = {v(XXX,CCC, l)}(XXX,CCC,l) ⊂ C ⊗ Sl. (15)

As the given example in Figure 2, suppose we have three
chemical compounds: MnSMnSMnS, ZnSZnSZnS (Wurtzite), and ZnSZnSZnS (Spha-
lerite). The atoms are MnMnMn, ZnZnZn, and SSS. Based on Eq.(6), we
have three composites:

1Zn11Zn11Zn1, 1S11S11S1, 1Mn11Mn11Mn1.
MnSMnSMnS and ZnSZnSZnS (Wurtzite) belong to the same space group
“P6 3mc”. ZnSZnSZnS (Sphalerite) belongs to another space group
“F-43m”. So we have the space group-level structures below:



“P6 3mc” and “F-43m”.
The composite-structure convolutions generate 6 = 3 × 2
environment candidates as shown as the column names in
Figure 2.

We build the network G for each structure level l. The
weight of the edge from an atom XXX ∈ XXX to an environment
v ∈ V is:

a(XXX, v) = |{CCC|v(XXX,CCC, l) = v}|. (16)

If a(XXX, v) = 0 for any atom XXX , then we exclude the
environment node v from the network. We use the adjacency
matrix A to represent the network. For example, if all the value
s on the column (1Mn11Mn11Mn1,“F-43m”) in the matrix are zero, we
delete this column.

Figure 3 shows that if we use the composition only, we have
83,743 unique environment nodes, or say, valid columns; and if
we use composition-crystal structure convolutions, for the lev-
els, “crystal systems”, “point groups”, and “space groups”, we
have 110,446 (+31.9%), 120,652 (+44.1%), 132,517 (+58.2%)
unique environments, respectively. The increase brings a more
concrete description of the contexts of atoms in the chemical
compounds.

Now the network (as well as the adjacency matrix) has been
constructed. The next step is to learn the atomic embedding.

B. Network Representation Learning for Atomic Embeddings

We employ NETMF, a general framework to explicitly
factorize the closed-form matrices that the skip-gram powered
network embedding algorithms such as DEEPWALK [12],
LINE [13], and NODE2VEC [36] aim to implicitly approx-
imate and factorize [16]. In the work of Qiu et al., the
authors provided theoretical results concerning these network
embedding algorithms. Their experiments demonstrate that
NETMF improves the performance relatively by up to 50%
over DEEPWALK and LINE. Here are the details of our
implementation and deployment of the NETMF algorithm. It
has three steps.

Step 1: Given the matrix A, calculate the normalized graph:

Â = Drow
−1/2ADcol

−1/2, (17)

where Dcol = diag(ATe) is the diagonal matrix with column
sum of A; Drow = diag(Ae) is the diagonal matrix with row
sum of A.

Then we use eigen-decomposition to find the eigenvectors
(Uh) and eigenvalues (Λh):

Â ≈ UhΛhUh
T. (18)

Step 2: We would like to generate a DEEPWALK matrix:

M =
vol(G)

bT

(
T∑

r=1

(D−1A)
r

)
D−1, (19)

where vol(G) =
∑

i

∑
j Aij is the volumn of the weighted

graph G, b is the number of negative samples, T is the context
window size in the skip-gram model.

We approximate M with

M̂ =
vol(G)

b
D−1/2Uh

(
1

T

T∑
r=1

Λr
h

)
Uh

TD−1/2. (20)

Then make all the entries in M̂ at least one: M̂ = max(M̂, 1).
Step 3: We use rank-d approximation by SVD:

logM̂ ≈ UdΣdVd
T. (21)

Use Ud

√
Σd as the embedding vectors of atoms.

C. Similarity Ranking in Table Filling

We apply the ranking method in the table filling task based
on the atomic embedding. For a candidate element and a
candidate position in the table, we calculate the summation
of the similarities between the embedding of the candidate
element and embeddings of all the known neighbor elements
of the candidate position. We use Pearson correlation in the
calculation and fill the table with the highest summation (see
Figure 4 and Task 1-3).

V. EXPERIMENTS

In this section, we introduce the data set and competitive
methods. Then we do multiple tasks. For each task, we present
task description, evaluation method, and result analysis.

A. Experimental Settings

1) Data Description: We obtain the inorganic crystal data
from the Materials Project, a materials genome approach to
accelerating materials innovation [37]. The data set has 83,990
chemical compounds, including information of formula, en-
ergy, and crystal structures. The number of unique atoms is 87.
We find 2.8 unique atoms per chemical compound on average.

In the evaluation phase, we focus on the main-group
elements. They are the 34 nonradioactive elements of the
following groups:
• Hydrogen (HHH),
• Alkali metals (LiLiLi, NaNaNa, KKK, RbRbRb, CsCsCs),
• Alkaline earth metals (BeBeBe, MgMgMg, CaCaCa, SrSrSr, BaBaBa),
• Boron group (BBB, AlAlAl, GaGaGa, InInIn, T lT lT l),
• Carbon group (CCC, SiSiSi, GeGeGe, SnSnSn, PbPbPb),
• Pnictogens (NNN , PPP , AsAsAs, SbSbSb, BiBiBi),
• Oxygen group (OOO, SSS, SeSeSe, TeTeTe),
• and Halogens (FFF , ClClCl, BrBrBr, III).
We obtain the elapsolites with their formation energy from

a previous work [38]. It includes 10,556 elpasoltes. Because
we only evaluate the embeddings of main-group elements, we
have 5,628 elpasoltes for experiments and analysis.

2) Competitive Methods: The major baseline of atomic
embedding is produced by the PNAS work [7]. It uses only
the composition information and thus named as “Composition
only” in performance comparisons.

When we reproduced The major baseline of atomic em-
bedding is produced by the PNAS work [7]. It uses only
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the composition information and thus named as “Composition
only” in performance comparisons.

When we reproduced the results in [7], surprisingly we
found out that random embedding (named as “Random”) that
was generated from a uniform distribution performs not much
worse than “Composition only”. Therefore, we also use it
as one of the baselines to see how much “chemical seman-
tics/properties” are successfully preserved in the embeddings.

Our proposed learning method generates atomic embed-
ding for each level of crystal structures. We name them
as “ Compo.+Crystal System”, “Compo.+Point Group”, and
“Compo.+Space Group”.We set the number of dimensions d
as 40 for all the embeddings.

B. Results on Filling the Periodic Table

In this section, we apply the atomic embedding to three
tasks and compare their performances. We apply the same
ranking method for all the evaluated embeddings. we rank and
select the proper atom or position of the highest summation
of similarities between the atom candidate’s embedding and
its known neighbors’ embeddings.

We use Pearson correlation between the atom candidate’s
embedding and neighbor atoms’ embeddings to assess the
atom being filled into this position.Figure 4 illustrates the idea
of table filling on all the three tasks. Specifically for Task 1
& 2, we assume that all the neighbors are available, while for
Task 3, the assumption may not hold because one or more
neighbors may be unknown.

1) Task 1: Neighbor-based Atom Prediction:

TABLE I
RESULTS ON TASK 1 (NEIGHBOR-BASED ATOM PREDICTION): THE ATOM

EMBEDDINGS WITH COMPOSITION AND SPACE GROUP INFORMATION
PERFORMS THE BEST ON TOP-k PRECISION.

Prec@1 Prec@3 Prec@5
Random 0.0000 0.0294 0.0882
Composition only [7] 0.4118 0.5294 0.7941
Compo.+Crystal System 0.4412 0.7647 0.8529
Compo.+Point Group 0.4706 0.7647 0.8824
Compo.+Space Group 0.5588 0.8235 0.8824

a) Task description: For each of the main-group element
XXX , we assume that we are only given the neighbors of its
position on the periodic table and asked to find this element
out from 34 − n element candidates, where n is the number
of neighbors:
• n = 1: XXX includes HHH (1);
• n = 2: XXX includes FFF , III , CsCsCs, and BiBiBi (4);
• n = 3: XXX includes LiLiLi, BeBeBe, BBB, CCC, NNN , OOO, NaNaNa, ClClCl, KKK,
BrBrBr, RbRbRb, TeTeTe, BaBaBa, T lT lT l, and PbPbPb (15);

• n = 4: XXX includes MgMgMg, AlAlAl, SiSiSi, PPP , SSS, CaCaCa, GaGaGa, GeGeGe, AsAsAs,
SeSeSe, SrSrSr, InInIn, SnSnSn, and SbSbSb (14).

b) Evaluation methods: We use Precision@1, Preci-
sion@3, and Precision@5 to evaluate the performance. As the
smallest number of atom candidates is 34− 4 = 30, it is not
easy to correctly predict every element with the neighborhood
information only.

c) Experimental results: Table I shows the performance
of the atomic embeddings on Task 1. We have the following
observations. First, all the embeddings that combines compo-
sition and crystal structure information perform better than the
baseline (Composition only). Compo.+Space Group performs
the best, achieving a Prec@1 of 0.5588, a Prec@3 of 0.8235,
and a Prec@5 of 0.8824. It improves relatively by +35.7%,
+55.6%, and +11.1% over the baseline, respectively. Second,
the Random embedding performs rather poorly, showing that
the atomic embeddings preserve atomic information and be-
come effective in filling the periodic table. Third, the highest
Prec@1 of 0.5588 means that the best embedding put the
correct answer at the top of list for only 19 positions among
34. The number of hits becomes as big as 28 when we use
Prec@3. This means that the atomic embeddings can find
the small set of best candidates. Some atoms have similar
properties thus making it difficult to pick the correct answer.

2) Task 2: Neighbor-based Position Prediction:
a) Task description: For each main group element XXX ,

we want to predict the correct position in the periodic table.
For each candidate position, all the neighbor elements are
given. Again, we use Pearson correlation and summation of
similarities.

b) Evaluation methods: As the same as Task 1, we use
Precision@1, Precision@3, and Precision@5 to evaluate the
performance.



TABLE II
RESULTS ON TASK 2 (NEIGHBOR-BASED POSITION PREDICTION): THE

ATOM EMBEDDINGS WITH CRYSTAL STRUCTURE INFORMATION PERFORMS
BETTER THAN THE EMBEDDINGS W/O IT.

Prec@1 Prec@3 Prec@5
Random 0.0000 0.0588 0.0882
Composition only [7] 0.3529 0.5588 0.7647
Compo.+Crystal System 0.5000 0.7059 0.7941
Compo.+Point Group 0.5294 0.7059 0.7941
Compo.+Space Group 0.5000 0.7059 0.8235

c) Experimental results: Table II shows the performance
of the atomic embeddings on Task 2. We have the following
observations. First, all the embeddings that combines com-
position and crystal structure information perform better than
the baseline (Composition only). It is hard to tell which level
of the crystal structure performs the best because their perfor-
mances are close. Generally, the proposed embeddings achieve
a Prec@1 of 0.5294, a Prec@3 of 0.7059, and a Prec@5
of 0.8235. It improves relatively by +50.0%, +26.3%, and
+7.7% over the baseline, respectively. Second, the Random
embedding performs rather poorly, showing again that the
atomic embeddings do preserve the atoms’ properties.

3) Task 3: Table Filling:
a) Task description: Given the “complete” periodic table

of 34 main-group elements, we randomly hide k atoms and
place them back to the slots. We use the same method to fill
the table. At the beginning, we have k empty positions and
k atoms to fill. It is an iterative process (k iterations). For
each iteration, we calculate the Pearson correlation for each
atom candidate and each empty position’s neighbor atoms. We
choose the pair of the highest correlation: we make a decision
to fill the position with the corresponding atom. Then we
remove the position and atom from the candidate sets. The
table is completed after k trials.

b) Task description and evaluation methods: Given a
specific number k (number of hidden atoms), we do 100 trials:
For each trial, we hides k atoms, fills them back into the table,
and evaluate the accuracy. We use two metrics to evaluate the
performance:

• Average Binary Precision (ABP): For each trial, only
when all the placements are correct, i.e., all the k atoms
are placed at the correct positions, we count a precision of
1 for this trial. ABP is the average score of the precision
of all the trials.

• Average Precision (AP): We calculate a precision for each
trial and then report the average score. The precision for
each trial is calculated as the correctly-positioned atoms
over k. It could be a number between 0 and 1.

Higher ABP or higher AP means better performance. Note
that ABP is not bigger than AP, so it is difficult to obtain a
high ABP. When k = 2, AP is the same as ABP.
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Fig. 5. Results on Task 3 (Table Filling) when the number of hidden atoms k
varies: The atom embeddings with both composition and crystal structure
information generate the best Average Precision and reasonable standard
deviation.

c) Experimental results: We vary the number of hidden
atoms k from 2 to 32 and report the results in Table III,
Figure 5, and Figure 6.

Table III shows the ABP and AP scores of the atomic
embeddings under different settings of k. We give the results
when k is 2, 3, 5, 8, 10, and 14. We have the following
observations.

First, all the embeddings that combines composition and
crystal structure information perform better than the baseline
(Composition only). Compo.+Point Group performs the best
when k is 2, 3, or 5 (small). Compo.+Space Group is the
best when k is 8, 10, or 14 (big). The embedding with
structure information significantly improves the AP relatively
by +1.1%, +2.4%, +3.3%, +14.0%, +20.0%, and +28.4%,
when k is 2, 3, 5, 8, 10, and 14, respectively. Clearly, when
k is bigger, the improvement is more significant: when k is
bigger, the table filling problem becomes more challenging
because fewer atoms are known.

Second, the Random embedding performs poorly, showing
that the atomic embeddings did preserve important information
of the atoms and become effective in filling the periodic table.



TABLE III
RESULTS ON TASK 3 (TABLE FILLING): THE ATOM EMBEDDINGS WITH COMPOSITION PLUS SPACE GROUP INFORMATION OFTEN PERFORMS THE BEST.

FOR EACH TRIAL, WE HIDE k ATOMS AND FILL THEM BACK TO THE TABLE. AVERAGE BINARY PRECISION (ABP) COUNTS 0 OR 1 FOR EACH TRIAL: ONLY
WHEN ALL THE ATOMS ARE PLACED CORRECTLY, IT COUNTS 1; OTHERWISE 0. AVERAGE PRECISION (AP) COUNTS THE PRECISION FOR EACH TRIAL,

SAY, THE NUMBER OF ATOMS CORRECTLY PLACED OVER k. (HIGHER ABP/AP MEANS BETTER PERFORMANCE.)

# Hidden atoms k 2 3 5 8 10 14
ABP ABP AP ABP AP ABP AP ABP AP ABP AP

Random 0.4367 0.1081 0.2716 0.0100 0.1540 0.0000 0.0971 0.0000 0.0600 0.0000 0.0588
Composition only [7] 0.9786 0.9333 0.9537 0.8200 0.9140 0.3900 0.7769 0.2000 0.6800 0.0500 0.5413
Compo.+Crystal System 0.9840 0.9504 0.9658 0.8700 0.9380 0.4900 0.8233 0.3100 0.7630 0.0400 0.6124
Compo.+Point Group 0.9893 0.9661 0.9767 0.8700 0.9440 0.6100 0.8698 0.4500 0.8010 0.1900 0.6823
Compo.+Space Group 0.9893 0.9661 0.9765 0.8500 0.9310 0.6700 0.8860 0.4800 0.8160 0.1900 0.6951

Third, the AP is as high as 0.8160 when k = 10; the AP is
0.6951 when k = 14. Our proposed atomic embeddings can
accurately fill the atoms in the table without prior knowledge
(e.g., the electrons arrangement of elements).

Figure 5 presents the curves of Average Precision (AP) vs.
the number of hidden atoms k: (a) is for the mean value of
AP scores on the 100 trials; (b) is for the standard deviation.

From Figure 5(a) we have the following observations.
First, the Random embedding performs poorly (the grey line).
Second, it matches our intuition that the performance would
be worse when k becomes bigger. Third, the embeddings
that combines composition and crystal structure information
(purple, green, and red) perform better than Composition
only (blue). Lastly, we find that Compo.+Point Group and
Compo.+Space Group have similar performances.

As shown in Figure 5(b), the standard deviations of the
atomic embeddings are similar with each other. It is around 0.2
when k is between 5 and 20, which is a bit high. This shows
that the 34 main-group atoms have different difficulty levels
of being learned into numerical representations and filled into
the periodic table.

A case study: Let’s look at a specific case when k is 14.
So given 20 atoms and their positions, we use the atomic
embeddings to put the remaining 14 atoms back into the table.

Figure 6 shows (a) the ground truth and (b–f) how the table-
filling results of different atomic embedddings. The Random
embedding fills only one element GeGeGe correctly. The baseline
method (Composition only) [7] fills 5 elements correctly
among 14. When the top level of crystal structures, i.e., crystal
system, is considered in the environment, the SSS and III are
correctly positioned, making the number of correct placements
7. When the second level (point group) is considered, another
pair of elements, BBB and NNN , are correctly placed in the table.
The number of correct placements increases to be 9. Finally,
the third level (space group)-based atomic embedding fills 10
positions correctly!

It is also interesting to look at the remaining wrong predic-
tion by Compo.+Space Group in this case: (1) the pair of KKK
and BaBaBa and (2) the pair of AlAlAl and GeGeGe. Due to inert pair effect,
the properties of T lT lT l are similar with KKK, so KKK was placed as
the neighbor of T lT lT l. AlAlAl and GeGeGe are on the diagonal, which

TABLE IV
RESULTS ON TASK 4 (ELPASOLITE FORMATION ENERGY PREDICTION):

THE ATOM EMBEDDINGS WITH COMPOSITION AND CRYSTAL SYSTEM
INFORMATION PERFORMS THE BEST ON MEAN ABSOLUTE PRECISION

(MAP). (SMALLER MAP MEANS BETTER PERFORMANCE.)

MAE: Mean ± Std (eV/atom)
Random 0.13310 ± 0.00874
Composition only [7] 0.12182 ± 0.00816
Compo.+Crystal System 0.11833 ± 0.00582
Compo.+Point Group 0.11915 ± 0.00610
Compo.+Space Group 0.12198 ± 0.00958

often indicates similar properties.

C. Results on Materials Discovery

In this section, we apply the atomic embeddings to a
standard task that has been used in [7] and compare their
performances.

1) Task 4: Elpasolite Formation Energy Prediction: In this
section, we describe the task, introduce evaluation methods,
and give and analyze the results.

a) Task description: Elpasolite has the form of
ABC2D6ABC2D6ABC2D6. We assign each elpasolite a feature vector by
concatenating the embeddings of all four elements (AAA, BBB, CCC
and DDD). Here AAA, BBB, CCC and DDD are all main-group elements. The
task is to train a predictive model for predicting the formation
energy of elpasolites. The embedding of the elapsolite is put
into a two-layer neural network trained by the numerical
label, i.e., formation energy. In the neural network, there are
10 neurons in the first layer and one neuron in the second
layer. Rectified gated linear unit (ReLU) is put between two
intermediate layers as activation function.

b) Evaluation methods: We implement hold-out and split
the set of elapsolites into the training set (80%), validation
set (10%), and testing set (10%). We use mean absolute
error (MAE) as both loss function and monitor of validation
set. When the error of validation set is not decreasing, we
stop our training process and calculate the MAE of test set.
We implement the neural network model in Keras [39]. The
number of epochs is set as 1000. The batch size is set as
32. The learning rate of the Adam optimizer is 0.01 and the
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Fig. 6. Results on Task 3 (Table Filling): The atom embeddings with both composition and crystal structure information fill the periodic table more accurately.

decay in training is 0.0001. Mean absolute error(MAE) and
standard deviation(Std) of test set are utilized to evaluate the
performance.

c) Experimental results: Table IV shows the performance
of the atomic embeddings on Task 4. We have the following
observations. First, the Compo.+Crystal System performs the
best: it makes the smallest MAE on both mean value and stan-
dard deviation. The other two proposed embeddings perform a
bit worse but not too much. Second, the baseline (Composition
only) performs not bad either. Surprisingly, we observe that
the random embedding can also generate a good performance.
The reason is that the neural network model learns to predict
the formation energy from not only the embedding of atoms
but also the compositions of the elpasolites. Though the
embeddings distribute randomly, the elpasolite composition
contributes to the prediction with essential information. We
conclude with the importance of using Task 1–3 (the Periodic
Table Filling) for evaluation: Formation energy prediction can-
not directly evaluate the usefulness of the atomic embeddings.

VI. CONCLUSIONS

In this paper, we applied representation learning algorithms
to the chemistry domain. Given a large set of chemical
compounds, the algorithms learns the embeddings of atoms
for interesting tasks such as filling the atoms into the periodic
table and predicting the formation energy of elpasolite. One
of our primary contributions is that we reveal the important
role of crystal structure information in the atomic embeddings.
Our algorithms preserve not only the compounds’ composition
but also the crystal structures such as the crystal system,

point group, or space group. Through an extensive set of
experiments we demonstrated the effectiveness of the proposed
algorithms. One interesting result was that given 20 atoms in
the periodic table, our method could achieve an accuracy of
70%, while the baseline achieved only 54% accuracy for filling
14 hidden atoms into the Periodic table.

Different from traditional networks, crystals in three-
dimensions contain intrinsic hierarchical symmetric elements:
crystal systems, point group, and space group. In future work,
we intend to move beyond treating the symmetric elements
as extra attributes utilizing existing methods. Instead, we
intend to embed the symmetric elements inside the embed-
dings with some pattern extraction methods or neural network
related techniques. We can gain better and more universal
atomic/elemental embeddings to design and predict materials.

Another future goal is to implement the constraints related
to symmetric properties directly in the loss function. Current
methods tend to sample input to the neural network or design
target functions to approximate constraints. We may be able
to design innovative models to jointly learn other useful em-
beddings from symmetric elements and the crystal properties.

ACKNOWLEDGEMENTS

We thank Shou-Cheng Zhang for his innovative work in this
field of study.



REFERENCES

[1] N. N. Greenwood and A. Earnshaw, “Chemistry of the elements,” 1984.
[2] L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, and M. Schef-

fler, “Big data of materials science: critical role of the descriptor,”
Physical review letters, vol. 114, no. 10, p. 105503, 2015.

[3] A. Agrawal and A. Choudhary, “Perspective: Materials informatics and
big data: Realization of the ”fourth paradigm” of science in materials
science,” Apl Materials, vol. 4, no. 5, p. 053208, 2016.

[4] B. Kang and G. Ceder, “Battery materials for ultrafast charging and
discharging,” Nature, vol. 458, no. 7235, p. 190, 2009.

[5] J. K. Nørskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen,
“Towards the computational design of solid catalysts,” Nature chemistry,
vol. 1, no. 1, p. 37, 2009.

[6] S. Curtarolo, G. L. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, and
O. Levy, “The high-throughput highway to computational materials
design,” Nature materials, vol. 12, no. 3, p. 191, 2013.

[7] Q. Zhou, P. Tang, S. Liu, J. Pan, Q. Yan, and S.-C. Zhang, “Learning
atoms for materials discovery,” Proceedings of the National Academy of
Sciences, vol. 115, no. 28, pp. E6411–E6417, 2018.

[8] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear
singular value decomposition,” SIAM journal on Matrix Analysis and
Applications, vol. 21, no. 4, pp. 1253–1278, 2000.

[9] F. Faber, A. Lindmaa, O. A. von Lilienfeld, and R. Armiento, “Crystal
structure representations for machine learning models of formation
energies,” International Journal of Quantum Chemistry, vol. 115, no. 16,
pp. 1094–1101, 2015.

[10] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[11] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[12] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701–710.

[13] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee, 2015, pp. 1067–1077.

[14] H. Gui, J. Liu, F. Tao, M. Jiang, B. Norick, and J. Han, “Large-
scale embedding learning in heterogeneous event data,” in Data Mining
(ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016,
pp. 907–912.

[15] Y. Shi, H. Gui, Q. Zhu, L. Kaplan, and J. Han, “Aspem: Embedding
learning by aspects in heterogeneous information networks,” in Pro-
ceedings of the 2018 SIAM International Conference on Data Mining.
SIAM, 2018, pp. 144–152.

[16] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network
embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec,” in Proceedings of the Eleventh ACM International Confer-
ence on Web Search and Data Mining. ACM, 2018, pp. 459–467.

[17] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding
by translating on hyperplanes.” in AAAI, vol. 14, 2014, pp. 1112–1119.

[18] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation
embeddings for knowledge graph completion.” in AAAI, vol. 15, 2015,
pp. 2181–2187.

[19] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolutional
2d knowledge graph embeddings,” in Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[20] W. Liu, Z. Li, and X. Tang, “Spatio-temporal embedding for statistical
face recognition from video,” in European Conference on Computer
Vision. Springer, 2006, pp. 374–388.

[21] D. Wang, M. Jiang, Q. Zeng, Z. Eberhart, and N. V. Chawla, “Multi-type
itemset embedding for learning behavior success,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. ACM, 2018, pp. 2397–2406.

[22] P. Levi, The periodic table. Everyman’s Library, 1996, vol. 218.
[23] E. R. Scerri, The periodic table: its story and its significance. OUP

USA, 2007.

[24] B. J. McFarland, A World from Dust: How the Periodic Table Shaped
Life. Oxford University Press, 2016.

[25] S. E. Ahnert, J. A. Marsh, H. Hernández, C. V. Robinson, and S. A.
Teichmann, “Principles of assembly reveal a periodic table of protein
complexes,” Science, vol. 350, no. 6266, p. aaa2245, 2015.

[26] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2016, pp. 1225–1234.

[27] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding,” in Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

[28] D. Zhu, P. Cui, D. Wang, and W. Zhu, “Deep variational network
embedding in wasserstein space,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining. ACM, 2018, pp. 2827–2836.

[29] D. Zhu, P. Cui, Z. Zhang, J. Pei, and W. Zhu, “High-order proximity
preserved embedding for dynamic networks,” IEEE Transactions on
Knowledge and Data Engineering, vol. 30, no. 11, pp. 2134–2144, 2018.

[30] J. Ma, P. Cui, X. Wang, and W. Zhu, “Hierarchical taxonomy aware
network embedding,” in Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining. ACM,
2018, pp. 1920–1929.

[31] Z. Zhang, P. Cui, X. Wang, J. Pei, X. Yao, and W. Zhu, “Arbitrary-
order proximity preserved network embedding,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. ACM, 2018, pp. 2778–2786.

[32] I. Abarenkov, M. Boyko, and P. Sushko, “Embedding and atomic orbitals
hybridization,” International Journal of Quantum Chemistry, vol. 111,
no. 11, pp. 2602–2619, 2011.

[33] J. Behler and M. Parrinello, “Generalized neural-network representation
of high-dimensional potential-energy surfaces,” Physical review letters,
vol. 98, no. 14, p. 146401, 2007.

[34] S. Gong, W. Wu, F. Q. Wang, J. Liu, Y. Zhao, Y. Shen, S. Wang, Q. Sun,
and Q. Wang, “Classifying superheavy elements by machine learning,”
Physical Review A, vol. 99, no. 2, p. 022110, 2019.

[35] Z. Quan, X. Lin, Z.-J. Wang, Y. Liu, F. Wang, and K. Li, “A system
for learning atoms based on long short-term memory recurrent neural
networks,” in 2018 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM). IEEE, 2018, pp. 728–733.

[36] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2016,
pp. 855–864.

[37] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder,
and K. a. Persson, “The Materials Project: A materials
genome approach to accelerating materials innovation,” APL
Materials, vol. 1, no. 1, p. 011002, 2013. [Online]. Available:
http://link.aip.org/link/AMPADS/v1/i1/p011002/s1&Agg=doi

[38] F. A. Faber, A. Lindmaa, O. A. Von Lilienfeld, and R. Armiento,
“Machine learning energies of 2 million elpasolite (a b c 2 d 6) crystals,”
Physical review letters, vol. 117, no. 13, p. 135502, 2016.

[39] F. Chollet et al., “Keras,” https://keras.io, 2015.


