
Evaluating Methods for End-User Creation of Robot Task Plans

Chris Paxton,1 Felix Jonathan,1 Andrew Hundt,1 Bilge Mutlu,2 and Gregory D. Hager1

Abstract— How can we enable users to create effective,
perception-driven task plans for collaborative robots? We
conducted a 35-person user study with the Behavior Tree-based
CoSTAR system to determine which strategies for end user
creation of generalizable robot task plans are most usable and
effective. CoSTAR allows domain experts to author complex,
perceptually grounded task plans for collaborative robots. As a
part of CoSTAR’s wide range of capabilities, it allows users to
specify SmartMoves: abstract goals such as “pick up component
A from the right side of the table.” Users were asked to
perform pick-and-place assembly tasks with either SmartMoves
or one of three simpler baseline versions of CoSTAR. Overall,
participants found CoSTAR to be highly usable, with an average
System Usability Scale score of 73.4 out of 100. SmartMove
also helped users perform tasks faster and more effectively; all
SmartMove users completed the first two tasks, while not all
users completed the tasks using the other strategies. SmartMove
users showed better performance for incorporating perception
across all three tasks.

I. INTRODUCTION

The relatively recent development of human-safe robots
has spurred a new wave of innovation in commercial, end-
user-programmable systems such as the Rethink Robotics
Sawyer, Universal Robots UR5, and Franka Emika robots.
Robotic systems in the laboratory are becoming ever more
intelligent, flexible, and robust, and these advances are
increasingly translated into applications in industry. As a
result, todays manufacturers seek skilled workers with strong
problem-solving skills and a STEM background as a part of
the transformation to “Industry 4.0,” focused on smart and
interconnected facilities [1]. The workers and factories of
the future require intelligent, powerful tools that allow them
to utilize the best capabilities of modern robots. However,
whether or not even skilled workers and expert users can
translate the complex perception, planning, and control capa-
bilities offered by modern collaborative robots into industrial
efficiency is unknown.

These developments have led to a growing interest in
making it easy for domain experts to transfer knowledge
to collaborative robots, either through a user interface [2],
[3], [4], [5], natural language [6], or learning from demon-
stration [7], [8], [9], [10]. To take full advantage of these
systems, the human user must have an accurate mental
model of a robot’s capabilities [11]. Therein lies a potential
problem, as people tend to think of robot motions abstractly,

1Department of Computer Science, Johns Hopkins University, 3400 N
Charles Street, Baltimore, MD 21218, USA, {cpaxton, fjonath1,
ahundt1, hager}@jhu.edu

2Department of Computer Sciences, University of Wisconsin–
Madison, 1210 W Dayton Street, Madison, WI 53706, USA
bilge@cs.wisc.edu

Fig. 1: Users interacted with the CoSTAR system in different
ways. Left: a user positions the robot to teach it a new
waypoint. Right: a user fine tunes part of a tree using the
BT-based user interface.

e.g., “grab the next available component for this assembly,”
instead of in terms of basic robotics concepts like fixed
spatial positions.

We previously proposed the CoSTAR system as a potential
solution. 3 CoSTAR offers a set of planning and perceptual
capabilities, united through a Behavior Tree-based task plan
editor, that is designed to enable expert users to author com-
plex plans for collaborative robots. We also demonstrated that
CoSTAR allows users to solve a wide variety of problems
such as sanding, assembly, and wire bending [5]. It provides
users a great deal of flexibility by offering many different
ways to specify actions.

These new “SmartMoves” were designed mimic the ab-
stract way people think about manipulation tasks. To perform
a SmartGrasp or a SmartRelease operation, one of
the two new actions we describe in this paper, a user
demonstrates a grasp or a position. Then they specify the
associated object types and abstract descriptions like “left of

3Source code for the CoSTAR system is available on GitHub: https:
//github.com/cpaxton/costar_stack

ar
X

iv
:1

81
1.

02
69

0v
1

 [c
s.R

O
]

6
N

ov
 2

01
8

the robot” that they want for that operation.
In this paper, we examine the usability of CoSTAR’s

Behavior Tree-based user interface, and explore different
strategies for using perception to create grounded task plans.
To represent different strategies for incorporating advanced
capabilities such as perception and motion planning, we
compare three versions of the CoSTAR system without high-
level abstraction against CoSTAR with SmartMoves:
(1) Simple: a blind version of the system with only the

ability to servo to pre-programmed waypoints in joint
space.

(2) Motion Planning: a system that uses perception with
motion planning to avoid obstacles.

(3) Relative Motion: a system that can detect object posi-
tions but requires that users explicitly specify how to
interact with each object.

By contrast, (4) SmartMove integrates perception and plan-
ning via abstract queries for objects matching a specified
predicate. This condition allows users to more easily specify
pick-and-place tasks via the addition of the new high-
level SmartGrasp and SmartRelease operations. Users
found CoSTAR and Behavior Trees to be a usable and even
enjoyable system; the higher levels of abstraction present in
condition (4) allowed for improved task performance and
better generalization to new environments. 4 In short, in this
work we contribute:
• Two new high-level actions to the existing CoSTAR

framework, SmartGrasp and SmartRelease, de-
signed to improve usability and generalization.

• Comparative analysis of different strategies for ground-
ing end-user task plans via machine perception.

• Usability analysis of CoSTAR and each of its variants.

II. BACKGROUND

Recent approaches for end-user instruction of collaborative
robots include the development of new user interfaces [2],
[3], [4], learning from demonstration [7], [10], or systems
that make use of natural language together with ontologies
and large knowledge bases to follow high-level instructions,
such as Tell Me Dave [6] or RoboSherlock [12].

Our proposed user interface is based on Behavior Trees,
which have previously been used on humanoid and surgical
robots, among other applications [13], [14], [15]. Others have
explored designing user interfaces for robot task specifica-
tion [2], [4], [5]. Nguyen et al. [2] describe ROS Comman-
der as a user interface based on finite state machines for
authoring task plans. Similarly, Steinmetz and Weitschat [4]
describe a graphical tool called RAFCON.

Previous work in robot task specification has shown com-
plex [12], [16] or interactive behavior [17] without examining
the specification of this behavior. Dantam et al. [17] specify

4Supplementary video of experiments and of the CoSTAR
system in use is available on YouTube, including expert
instruction of the CoSTAR system and highlights from trials:
https://www.youtube.com/watch?v=TPXcWU-5qfM&list=
PLF86ez-NVmyFMuj10dkUkgGlGpcM5Vok9https://www.youtube.com/watch?v=TPXcWU-
5qfM&list=PLF86ez-NVmyFMuj10dkUkgGlGpcM5Vok9

a complex motion grammar that allows a human to interac-
tively play chess with a robot, where the robot must pick up
and manipulate every piece on the board. Methods for Task
and Motion Planning allow planners to integrate selection of
task parameterizations with computation of motion plans that
will satisfy its requirements [16], [18]; these methods are an
inspiration for incorporating SmartMove into CoSTAR.

An alternate approach to direct task specification is to learn
tasks from expert demonstrations. Alizadeh et al. [7] learn
skills which can be re-used according to a PDDL planner.
Levine et al. [8] proposed reinforcement learning methods
for effectively learning individual skills with a demonstration
as a prior. In these cases, the end user still needs a way to
connect individual skills. Dianov et al. [9] take a hybrid ap-
proach, using task graph learning to infer task structure from
demonstrations and a detailed ontology. Other recent work
explored combining learned actions with sampling-based
motion planning and a high-level task specification [10].

III. THE COSTAR SYSTEM

CoSTAR is a Behavior Tree-based user interface that aims
to facilitate user interaction through a combination of an
intuitive user interface, robust perception, and integrated
planning and reasoning operations. It is designed to be
reliable, capable and cross-platform and was applied to both
the KUKA LBR iiwa and Universal Robots UR5 robot. It is
implemented as a component-based framework, where each
component exposes a set of distinct operations that can be
composed as a task plan [5].

The underlying task is represented as a Behavior Tree
(BT). BTs allow us to visually construct complex, concurrent
behaviors out of the equivalent of programming constructs
such as IF-statements, TRY-CATCH blocks, and FOR- and
WHILE-loops. In this section, we describe the basics of our
BT implementation and the CoSTAR framework. For more
information on Behavior Trees, see prior work [19], [5].

A. Overview of Behavior Trees

The basic operation of the BT is the “tick:” a status check
sent at some high frequency (e.g., 60 hz) and propagated
through the tree according to the rules associated with each
node. Every node has an associated action that is performed
when it is ticked; if a node is ticked, it will return some
value in {SUCCESS,FAILURE,RUNNING}. The Root of a BT
has a single child node, generally a logical node, and is the
source of all ticks.

Complex task structure is achieved via Logical and dec-
orator nodes. These control program flow and the order of
operations. CoSTAR’s logical nodes include:
• Sequence (->): Tick all children in order. This will stop

when a tick reaches a running child.
• Selector (?): Tick all children in order until one returns

success. This is used to construct IF-statements with
multiple cases.

• Parallel-All (|A|): Tick all children in parallel; return
success if all children return success and failure other-
wise.

Fig. 2: A sample CoSTAR Behavior Tree displaying a complex task plan, including error checking and high-level queries
to pick up and manipulate objects. Colors have been altered for readability.

• Repeat: Tick all children some (possibly infinite) num-
ber of times

These elements can be combined to create relatively complex
behavior. Fig. 2 shows a tree that moves to the Home joint
position and opens the gripper in parallel, detects all objects
in the world, and then checks to see if it found any objects
of class Node.

B. CoSTAR Architecture

CoSTAR has a modular, component-based architecture.
What follows is a brief high-level overview of the CoSTAR
system; for more detail see Paxton et al. [5]. In particular,
we will refer to Operations u, which are specific actions
that influence the world or update the robot’s knowledge
thereof. These are generally exposed as BT leaf nodes
such as manipulation actions or calls to object detection
software. Operations can update the value of Symbols such
as waypoints or known object positions, and also expose
information as Predicates that make logical statements about
the world like “object A is to the left of object B.”

The main components of the CoSTAR system are shown
in Fig. 3. In this work, we add the SmartGrasp and
SmartRelease operations, building on previous function-
ality, to allow users to better perform pick and place tasks.

1) Target Users: Modern manufacturing is increasingly a
high-tech field that requires strong problem-solving, math,
and technical skills in its workers [1]. As such, CoSTAR
is designed for expert workers with a STEM background,
though not necessarily with formal schooling.

2) User Interface: The heart of the CoSTAR UI is the
BT-based task editor, which allows the end user to combine
and parameterize operations exposed to the user by all of
these different components. Users can switch the robot into a
compliant mode by pressing a TEACH button, and can enable

Perception

Predicator

Behavior Tree

Sensor

Object
Classification

Arm

Gripper

Predicator Core

Geometric
Reasoning

2 Finger Gripper

UR5

Data
Flow

Operation
Call

Pose
Estimation

Fig. 3: A compressed overview of the CoSTAR system, based
on the similar diagram in our previous work [5].

autonomous execution by pressing the SERVO button. Other
functionality is hidden in a collapsible set of menus in the
lower right, which bring up dialogs for saving waypoints
or SmartMove positions. The task editor is accompanied
by a 3D visualization of the robot, detected objects, and
coordinate frames via the ROS RViz interface [20].

3) Perception and System Knowledge: CoSTAR stores
knowledge accumulated from a distributed set of sen-
sors and components through a special component called
Predicator. Predicator aggregates information about
which objects have been detected, what types of objects they
are, and how they relate to each other and the task at hand. It
is exposed to end users through the KnowledgeTest and
PoseQuery operations. The KnowledgeTest operation
checks to see if a certain predicate is true. In Fig. 2, we
use knowledge tests to make sure that a node object has
been found, and to make sure that the gripper successfully
grasped an object. One specific source of knowledge is the
DetectObjects operation, which calls a 3D perception

system to detect and estimate 6DOF poses for all objects in
the scene [5]. For example, the DetectObjects operation
appears near the top of the tree in Fig. 2. In this work, we
also add a DisableCollisions operation, which allows
us to specify that the robot can move closer than its minimum
safe distance to a particular object (e.g. to pick it up or push
it).

4) Motion Planning and Execution: The Arm component
handles motion planning and execution, and ties in closely
with the Predicator component to expose more advanced
operations. Grasping an object requires multiple steps: the
robot must (a) align the gripper properly with the grasp
position, (b) move in, (c) close the gripper, and finally (d) lift
the object. The steps to this simple task plan remain the same
in a wide variety of tasks, being parameterized solely by the
grasp frame and the backoff distance. This backoff distance
is used in steps (a) and (d) to compute how far back from the
object the robot will position its gripper. Placing an object
is similarly complex.

In this work, we propose two unique actions to make
pick and place tasks easier to specify in a general way:
SmartGrasp and SmartRelease. Each solves a plan-
ning problem for either grasping or placing with multiple
possible goals based on user-provided information. As a
result, these two SmartMoves are more intuitive and re-
liable than the capabilities found in previous versions of
CoSTAR [5]; where operations had no memory of the spe-
cific object being manipulated and thus sequential motions
occasionally led to unexpected behavior.
SmartGrasp and SmartRelease query the

Predicator component for objects matching some
set of conditions, and use object symmetry information to
generate a list of potential grasps. Then the Arm computes
backoff poses and sorts them based on joint-space distance.
The resulting sorted list of grasp poses is used to generate
motion plans in order of preference via the RRT-Connect
algorithm [21] so that it will grab the closest object that
meets the given criteria. In effect, users can then frame the
task plan as a sequence of high-level commands such as:

grasp(obj) with grasp position such that

is node(obj) and right of(robot, obj)

to grasp any node object on the right side of the robot.
SmartRelease is largely the same as SmartGrasp,

but it computes the backoff pose in the world frame’s −z axis
and opens the gripper. This is helpful when stacking objects
or placing them on a table. The backoff distance can be
tuned by the user to achieve different behaviors. Again, the
SmartRelease is parameterized by a single demonstrated
action and a predicate specification.

IV. USER STUDY

The goal of this study was to see how well users could use
the operations provided by each of four different perception
strategies in order to adapt to an increasingly complex task.

Participants were randomly assigned to one of four groups,
each associated with a specific level of system capabilities

and then asked to complete the study tasks. Fig. 4 compares
resulting task plans. This procedure was approved by the
Johns Hopkins University Institutional Review Board (IRB)
under protocol #HIRB00005268.

Condition 1 — Simple represents a system similar to
the commercially available programming environments of the
Universal Robot UR5. The robot can open or close its gripper
and move to positions relative to the robot base, but does
not have access to any other CoSTAR capabilities including
motion planning.

Condition 2 — Motion Planning adds motion planning:
the user can update the scene model by detecting objects,
but perception is only used to update scene geometry for
the purposes of object avoidance. Thus, the robot will plan
trajectories that avoid collisions and joint limits, but there
is no ability to move relative to detected objects. The
DisableCollisions operation allows the robot to move
close to a specific object by disabling collision checking
against it. This condition represents a “naive” approach of
motion planning without abstraction.

Condition 3 — Relative Motion provides simple
perception-based movements: users have access to the
DetectObjects operation and can define waypoints rela-
tive to detected object positions. This represents the “naive”
approach to incorporating object pose information where
users must explicitly handle every object in the scene.

Condition 4 — SmartMove exposes two types of high-
level actions: SmartGrasp and SmartRelease. They
were asked to use these capabilities and the PlanToHome
action to complete the task. These represent abstract, high-
level set of capabilities instead of the simpler, more explicit
capabilities exposed in the other conditions.

A. Study Tasks and Procedure

We broke the study up into three phases: training, task per-
formance, and the exit survey with subsequent generalization
experiments on the user created trees.

Phase 1: We began with a short training phase, in which
the participant moved a single block from the right to the
left side of the robot. This task was not timed or used to
score participants, and users could ask as many questions
as they wanted. Users were given an opportunity to ask any
questions before moving on. This phase took 15 minutes.

Phase 2: Next we presented participants with three pick-
and-place tasks with increasing complexity. They were given
15 minutes to complete as much of each task as possible.
These tasks were designed to enable participants to incre-
mentally learn and put into practice how each UI component
works, how the robot responds to user commands, and
how to build task plans using specific technologies such
as perception and planning. All three tasks required that
participants move square blocks called “nodes” in different
configurations from the right to the left of the robot without
knocking over an obstacle: a red “link.”

Task A — Move Blocks asked participants to move two
blocks from the right side of the workspace to the left.
Participants had to apply the knowledge from Phase 1 to

(1) Simple

(2) Motion Planning

(3) Relative Motion

(4) SmartMove

Fig. 4: Different CoSTAR operations were enabled and disabled under four different conditions to test different strategies
for incorporating perception, as described in Section IV. All versions used the same BT-based user interface. Waypoints are
expressed in square brackets (e.g. C1 01 OVER). Likewise, object names and parameters of SmartMoves appear in their
respective boxes.

teach the robot to move the second block themselves. The
obstacle was introduced to the world, but far enough away
from the blocks that participants did not need to actively
avoid it.

Task B — Avoid Obstacle required participants to sim-
ilarly move two blocks from the right to the left, although
one of the blocks was placed in a different position from the
previous task and the obstacle was placed closer to the two
objects (Fig. 5a).

Task C — Place Link presented participants with three
blocks all of which were in positions different from previous
tasks. The link was moved farther away again, and partici-
pants were asked to move two blocks of their choice and to

pick up the link and place it on top of one of these blocks.
This configuration is shown in Fig. 5b.

Phase 3: Finally, participants filled out a questionnaire
that included the System Usability Scale [22] and answered
a set of interview questions. After they left, we tested the
generalization of user-authored task plans in two different
cases , shown in Fig. 6. In one case, we add additional
obstacles to a scene and compare the motion planning vs.
SmartMove condition. In the second case, we move objects
to new positions to determine if SmartMoves can adapt better
than Relative Motions to the new positions.

B. Hypotheses and Metrics

We examine three specific hypotheses in this study:

(a) (b)

Fig. 5: Two of the study tasks. In Fig. 5a, users move two
blocks from right to left; in Fig. 5b users can use any two
blocks and additionally were asked to pick up the red link.

Fig. 6: Alternate world configurations. In the first case,
additional links are added to Task 3 as obstacles. In the
second, all objects in Task 3 are moved to new positions.

H1. CoSTAR’s SmartMove system will be perceived to be
at least as usable as the baseline,

H2. When users are asked to generalize their Task 1 plan
to a new environment configuration, users with the
SmartMove condition will perform best.

H3. SmartMove plans will likewise perform best on gener-
alization tasks

We developed a scoring metric to compare user per-
formance. Users can attain a maximum of 1 point per
component of the final assembly, with a bonus for fast task
completion. Performance on Task 1 and Task 2 was scored
according to: score = nnodes−nerrors +2× (1− t), where t is
the fraction of time in the trial used between 0 and 1, nnodes
is the number of nodes successfully moved from the right
to the left, and nerrors is 1 if the link was knocked over and
0 otherwise. This score was configured to give a bonus to
users who completed the task quickly, with a strong score of
3 if they used half of their time to finish the task.

We scored performance on Task 3 based on how many
blocks were moved. The Behavior Trees created by users
were retained and tested after the end of the trial to compute
this score. The user received (1) one point for each of up
to two nodes moved and (2) one point if the link was
successfully moved and placed. Due to the difficulty of using
a novel component, we give partial credit of 0.25 points for
attempting to grasp the link, 0.75 points for moving and
placing the link but not achieving a successful mate, with
1.0 point reserved for a perfect task performance. We give
the same time-to-completion bonus as for Task 2 above.

We quantify perceived usability with a variant of the
commonly used System Usability Scale (SUS) [22], which
has been found to correlate well with other metrics for

TABLE I: Modified System Usability Scale for robotics user
interface. Responses are scored from 1 (strongly disagree) to
5 (strongly agree).

Statement
1 I think that I would use this interface frequently.
2 I found this interface unnecessarily complex.
3 I thought the interface was easy to use.
4 I would need the help of a robotics expert to be able to use this

interface.
5 I found the various functions provided by this interface to be

well integrated.
6 I thought the interface design was too inconsistent.
7 I imagine most people would learn to use this interface very

quickly.
8 I found this interface cumbersome to use.
9 I feel very confident in using this interface.
10 I need to learn a lot of things before I could be an effective user

of this interface.

usability [23]. Table I shows the items included in the scale.

C. Participants

Our target demographic represents highly skilled manufac-
turing workers with a STEM background [1]. To approximate
this demographic, we performed our study on undergraduate
and graduate students in math, science, engineering, and
computer science: users who are technically savvy with some
education but who are not necessarily experts in robotics.
Subjects were recruited via email.

We recruited at least 8 users for each of 4 conditions, in
line with accepted practices for studies in this category[24].
Altogether, 40 users participated in the study. Five users were
excluded for the following reasons: three were excluded for
being non-technical novice users and not undergraduate or
graduate students, and two users were excluded due to issues
with the perception system during their trials. Characteristics
of the population are described in Table II. Our user pool
is less familiar with robotics (M = 3.5, SD = 1.8) than with
programming (M = 5.6, SD = 1.6). Not coincidentally, many
of our test subjects were computer science students.

D. Study Results

Data from the System Usability Scale [22] indicate that
users found CoSTAR to be highly usable with an average
SUS score of 73.4 out of 100 across all users. Previous
work has found that a system with “good” usability will
have a mean score of 71.4, while a system with “excellent”
usability will have a mean score of 85.5 [23]. In aggregate,
they considered CoSTAR to be good, but not a perfectly
usable system.

Table III summarizes the task performance and usability
data collected in the study. We limited the time users were
able to spend on each task in order to see some variability in
task success rates, since all versions of the system were ca-
pable of completing all tasks given enough time. In general,
users performed similarly on Task A, as seen in Fig. 7.

Task B: SmartMove users performed significantly better
than Motion Planning users on Task B (p = 0.0096) or
Relative Motion users (p = 0.0079) according to a pairwise

TABLE II: Self-reported participant population characteris-
tics.

Population Characteristic Value
Average Age 23.0±3.1

Gender # Male 25
Female 10

Familiarity (1 to 7)
Robotics 3.5±1.8
Programming 5.6±1.6
Video Games 3.8±1.8

Major

Computer Science 15
Robotics 4
Other Engineering 7
Other Math/Science 2
Unspecified 7

0.00

1.00

2.00

3.00

4.00

Task A Task B Task C

1 - Simple 2 - Motion Planning

3 - Relative Motion 4 - SmartMove

Fig. 7: Scores for each condition on tasks A-C. Error bars
indicate interquartile range. Results showed a wide variance
of final scores for Task C in particular; users had trouble
understanding how best to use many variants of the system.

T-test on our task completion metric. They only performed
marginally better than users of the Simple condition (p =
0.0207). All significance results use Bonferroni-corrected
alpha levels of 0.05/3 = 0.0167.

Task C: User performance varied the most on Task C, most
likely due to the difficulty of learning how to manipulate a
new object. Scores from SmartMove are still higher than
those from the Motion Planning and Relative Motion groups
(p= 0.035 and p= 0.048, respectively). Differences are even
clearer when comparing total scores across all three tasks as
shown in Table III: SmartMove is better than both Motion
Planning (p = 0.007) and Relative Motions (p = 0.003).

Generalization: The SmartMove system also had a higher
score than Motion Planning at the generalization task with
extra obstacles (p = 0.029). SmartMove scored an aver-
age of 1.65± 0.89, Motion Planning scored an average of
0.43±1.28. On the generalization task with changed object
positions, it likewise scored higher than the Relative Motion
test case (p = 0.056), with an average of 2.25± 0.35 vs.
1.5±1.29. We saw much more variation on the object pose
generalization task for the Relative Motions task: some users’
trees generalized very well, others very poorly. SmartMove
task plans were comparatively very consistent across users.

V. DISCUSSION

There are three key findings from this study. First, these
results show that users find Behavior Trees to be a practical
and effective means of defining a robot program. Second,

perceptual abstractions such as SmartMove allow end users
to more easily specify and adapt robot programs. Finally,
such programs are more general and more robust to en-
vironmental variation. Users can employ advanced robotic
capabilities if exposed to them properly and with proper
training. For motion planning and perception to make a
substantial impact they must support the user’s mental model
of the task.

Users were comfortable with the mixture of hands-on
teaching and editing the Behavior Tree, as shown in Fig. 1.
Participants assigned to the Simple or Motion Planning
groups found the robot easy to manage and predictable, but
they expressed frustration by the degree to which they had to
micro-manage positioning the robot by specifying multiple
waypoints. One user operating under the Simple condition
complained that in a large tree, “replacing them one by one
every time is a little inconvenient.” The effect was clear when
users were asked to generalize their plan for Task 1 to solve
Task 2: SmartMove users clearly outperformed the others,
lending strong support to H1. Indeed, some users of the
Simple condition struggled with this generalization because
they had so many waypoints that needed to change.

We found evidence for H2, noting that our perceptually
abstracted SmartMoves offered superior generalization to
Motion Planning or Relative Motion alone. When tested on
more challenging scenarios with additional obstacles, trees
using SmartMove were able to adapt by choosing an alternate
grasp or an alternate object to pick up when a more explicit
method for specifying the task would have failed. The Simple
condition, while easy to use, had no ability to generalize
whatsoever.

Perception was not useful to our participants if they
could not communicate effectively with the robot. Compare
the Simple condition with Motion Planning and Relative
Motion in Fig. 7. It offers no built-in problem solving ability
(resulting in high variance in Task B) but is comparable
or better than these conditions. Users of Motion Planning
and Relative Motion often could not predict what the robot
would do or why it would do it. As a result, these were
less effective or consistent than either the SmartMove or
Simple conditions. Participants were often unclear on when
knowledge they provided to the robot would generalize and
when it would not. One user assigned to the Relative Motion
condition felt the robot “spazzed out,” i.e., it did not do what
they were expecting.

SmartMove was more predictable, although there is room
to improve the way the design and implementation details are
communicated within the interface. For instance, users often
believed that SmartGrasp operations had to be re-taught
for every node object, but this is not necessary. On the other
hand, it was also not clear that new drop positions must
be taught to SmartRelease for every new node in the
workspace. The physical meaning of the arguments for the
SmartMove query could also benefit from improved clarity.
For example, One user said they “were not able to figure
out why [the next block] was left,” they only knew that it
worked. These points suggest areas for future improvement.

TABLE III: Results from each of the four conditions on the three tasks showing performance times and self-reported System
Usability Scale (SUS) scores after completion of the experiment.

Task A Task B Task C Total
Condition # Users Score % Success Time Score % Success Time Score SUS Score
1 Simple 9 2.64±0.73 88.9% 8:39 2.37±1.04 66.7% 7:06 2.28±0.52 73.8±8.7 7.15±1.78
2 Motion Planning 9 2.44±0.32 100.0% 11:43 2.53±0.66 88.9% 9:36 1.59±1.13 74.2 ±10.1 6.58±1.67
3 Relative Motion 8 1.72±0.97 71.4% 12:24 1.98±1.13 62.5% 9:16 2.1±1.24 69.5±10.4 5.56±1.96
4 SmartMove 9 2.62±0.35 100.0% 10:23 3.24±0.47 100.0% 5:40 2.42±0.50 75.3±6.7 8.31±0.34

VI. CONCLUSIONS

In conclusion, our results show that abstract perception
allows users to construct robust, generalizable task plans
without negatively impacting usability. In addition, behavior
Trees can form the basis for a powerful, flexible, and
highly usable visual programming language for collaborative
robots.

ACKNOWLEDGMENT

This work was funded by NSF Award No. 1637949.

REFERENCES

[1] C. Giffi, B. Dollar, M. Drew, J. McNelly, G. Carrick, and B. Gangula,
“The skills gap in US manufacturing 2015 and beyond,” Washington,
DC: Deloitte Development LLC, 2015.

[2] H. Nguyen, M. Ciocarlie, K. Hsiao, and C. C. Kemp, “ROS comman-
der (ROSCo): Behavior creation for home robots,” in Robotics and
Automation (ICRA), 2013 IEEE International Conference on. IEEE,
2013, pp. 467–474.

[3] C. Mateo, A. Brunete, E. Gambao, and M. Hernando, “Hammer: An
Android based application for end-user industrial robot programming,”
in Mechatronic and Embedded Systems and Applications (MESA),
2014 IEEE/ASME 10th International Conference on. IEEE, 2014,
pp. 1–6.

[4] S. G. Brunner, F. Steinmetz, R. Belder, and A. Dömel, “RAFCON:
a graphical tool for task programming and mission control,” arXiv
preprint arXiv:1605.09185, 2016.

[5] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D. Hager,
“CoSTAR: Instructing collaborative robots with behavior trees and
vision,” Robotics and Automation (ICRA), 2017 IEEE International
Conference on, 2017.

[6] D. K. Misra, J. Sung, K. Lee, and A. Saxena, “Tell me dave: Context-
sensitive grounding of natural language to manipulation instructions,”
Proceedings of Robotics: Science and Systems (RSS), Berkeley, USA,
2014.

[7] S. R. Ahmadzadeh, A. Paikan, F. Mastrogiovanni, L. Natale, P. Ko-
rmushev, and D. G. Caldwell, “Learning symbolic representations of
actions from human demonstrations,” in Robotics and Automation
(ICRA), 2015 IEEE International Conference on. IEEE, 2015, pp.
3801–3808.

[8] S. Levine, N. Wagener, and P. Abbeel, “Learning contact-rich manip-
ulation skills with guided policy search,” in Robotics and Automation
(ICRA), 2015 IEEE International Conference on. IEEE, 2015, pp.
156–163.

[9] I. Dianov, K. Ramirez-Amaro, P. Lanillos, E. Dean-Leon, F. Bergner,
and G. Cheng, “Extracting general task structures to accelerate the
learning of new tasks,” in Humanoid Robots (Humanoids), 2016 IEEE-
RAS 16th International Conference on. IEEE, 2016, pp. 802–807.

[10] C. Paxton, F. Jonathan, M. Kobilarov, and G. D. Hager, “Do what
I want, not what I did: Imitation of skills by planning sequences of
actions,” in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on. IEEE, 2016, pp. 3778–3785.

[11] H. Sharp, Y. Rogers, and J. Preece, Interaction Design: Beyond Human
Computer Interaction. John Wiley & Sons, 2007.

[12] M. Beetz, F. Bálint-Benczédi, N. Blodow, D. Nyga, T. Wiedemeyer,
and Z.-C. Márton, “Robosherlock: unstructured information processing
for robot perception,” in Robotics and Automation (ICRA), 2015 IEEE
International Conference on. IEEE, 2015, pp. 1549–1556.

[13] J. A. Bagnell, F. Cavalcanti, L. Cui, T. Galluzzo, M. Hebert,
M. Kazemi, M. Klingensmith, J. Libby, T. Y. Liu, N. Pollard, et al.,
“An integrated system for autonomous robotics manipulation,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2012, pp. 2955–2962.

[14] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ogren, “Towards a
unified behavior trees framework for robot control,” in Robotics and
Automation (ICRA), 2014 IEEE International Conference on, 2014.

[15] D. Hu, Y. Gong, B. Hannaford, and E. J. Seibel, “Semi-autonomous
simulated brain tumor ablation with raven-ii surgical robot using
behavior tree,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2015, pp. 3868–3875.

[16] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning,” in International
Joint Conference on Artificial Intelligence, 2015.

[17] N. Dantam, P. Koine, and M. Stilman, “The motion grammar for
physical human-robot games,” in Robotics and Automation (ICRA),
2011 IEEE International Conference on. IEEE, 2011, pp. 5463–
5469.

[18] F. Lagriffoul, D. Dimitrov, J. Bidot, A. Saffiotti, and L. Karlsson,
“Efficiently combining task and motion planning using geometric
constraints,” The International Journal of Robotics Research, vol. 33,
no. 14, pp. 1726–1747, 2014.

[19] K. R. Guerin, C. Lea, C. Paxton, and G. D. Hager, “A framework
for end-user instruction of a robot assistant for manufacturing,” in
Proceeding of IEEE International Conference on Robotics and Au-
tomation. IEEE, 2015.

[20] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[21] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in Robotics and Automation, 2000.
Proceedings. ICRA’00. IEEE International Conference on, vol. 2.
IEEE, 2000, pp. 995–1001.

[22] W. Albert, T. Tullis, and D. Tedesco, Beyond the usability lab:
Conducting large-scale online user experience studies. Morgan
Kaufmann, 2009.

[23] A. Bangor, P. Kortum, and J. Miller, “Determining what individual
SUS scores mean: Adding an adjective rating scale,” Journal of
usability studies, vol. 4, no. 3, pp. 114–123, 2009.

[24] K. Caine, “Local standards for sample size at CHI,” in Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems.
ACM, 2016, pp. 981–992.

