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Abstract— A fundamental challenge in retinal surgery is
safely navigating a surgical tool to a desired goal position on the
retinal surface while avoiding damage to surrounding tissues, a
procedure that typically requires tens-of-microns accuracy. In
practice, the surgeon relies on depth-estimation skills to localize
the tool-tip with respect to the retina and perform the tool-
navigation task, which can be prone to human error. To alleviate
such uncertainty, prior work has introduced ways to assist the
surgeon by estimating the tool-tip distance to the retina and
providing haptic or auditory feedback. However, automating
the tool-navigation task itself remains unsolved and largely un-
explored. Such a capability, if reliably automated, could serve as
a building block to streamline complex procedures and reduce
the chance for tissue damage. Towards this end, we propose to
automate the tool-navigation task by mimicking the perception-
action feedback loop of an expert surgeon. Specifically, a deep
network is trained to imitate expert trajectories toward various
locations on the retina based on recorded visual servoing to
a given goal specified by the user. The proposed autonomous
navigation system is evaluated in simulation and in real-life
experiments using a silicone eye phantom. We show that the
network can reliably navigate a surgical tool to various desired
locations within 137 µm accuracy in phantom experiments and
94 µm in simulation, and generalizes well to unseen situations
such as in the presence of auxiliary surgical tools, variable eye
backgrounds, and brightness conditions.

I. INTRODUCTION

Retinal surgery is among the most challenging microsurgi-
cal endeavors due to its micron scale precision requirements,
constrained work-space, and the delicate non-regenerative
tissue of the retina. During the surgery, one of the most
challenging tasks is the spatial estimation of the surgical tool
location with respect to the retina in order to precisely move
its tool-tip to a desired location on the retina. For example,
when performing retinal-peeling or vein cannulation, the
surgeon must rely on intuitive depth-estimation skills to
navigate toward a targeted location on the retina, while
ensuring that the tool-tip contacts the retina precisely at the
desired location. Such maneuvers introduce high risk because
the surgical tools are sharp, and the slightest misjudgement
can damage the surrounding tissues, which could lead to
serious complications.
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Fig. 1: (Top) Robot-assisted eye surgery set-up; a light source
projects a shadow on the retina which can be used as cues to
estimate proximity between the tool-tip and the retina. (Bottom)
Demonstration of tool-shadow dynamics; as the surgical tool ap-
proaches to the retina, the tool and its shadow converge (compare
top row to bottom row), which can be used as cues to train a network
how to navigate inside the eye.

In order to assist retinal surgeons, several works intro-
duced ways to close the uncertainty gap of estimating the
depth between the tool-tip and the retina. For example,
proximity between tool-tip and retina can be computed using
stereo vision [1], by estimating the converging characteristics
of the tool-tip and shadow-tip [2], and using optical coher-
ence tomography systems (OCT) [3]. Often, such system
require precise calibration and hand-tuned adjustment to
specific environments. Furthermore, prior works strive to
assist the surgeon by providing rough state estimates, rather
than automating the tool-navigation task.

In this paper, we propose to automate surgical-tool nav-
igation task by learning the closed-loop visual servoing
process employed by surgeons, i.e. mapping from visual
input (video) to euclidean position control commands to
actuate the robot. Specifically, we train a deep network to



Fig. 2: System setup: a surgeon chooses the goal location in 2D and the network generates a 3D waypoint that navigates the surgical tool
toward the selected location. The control cycle is repeated until contact is detected between the tool-tip and the retina, which is detected
using a force-sensor at the end-effector.

imitate expert trajectories toward various locations on the
retina based on many demonstrations of the tool-navigation
task. The input to the network are the monocular top-down
view of the surgery through a microscope and user-input
defining the 2D goal location to be reached. The advantage
of this method is that the user only specifies the goal in 2D,
e.g. as simple as clicking the desired location using a mouse
(Fig. 2), and the network outputs a 3D waypoint toward the
target location on the retina. Since estimating depth is the
challenging task for humans, the network takes the burden
of extrapolating how to navigate along the depth dimension
based on its training experience.

We note that our approach is grounded in the hypothesis
that the tool-navigation task may be achieved primarily using
vision. In fact, surgeons rely on their vision to localize
objects and estimate their spatial relationship to navigate
the surgical tool. Furthermore, the surgical scene captures
a distinct tool-shadow dynamics which can be useful for
estimating proximity between the tool-tip and the retina.
Specifically, the tool and its shadow converge upon approach-
ing the retina (Fig. 1), which can be as cues to train the
network. In addition, while a complete setup can include
stereo vision, in this work we rely on a single camera alone
for simplicity. We also utilize a force-sensing modality to
detect contact with retina, such that the surgical tool can be
stopped upon contact.

The system performance is validated experimentally using
both an artificial eye-phantom as well as in simulation
employing the Unity3D (Unity Technologies) environment
[4]. The main objective is to assess the quality of surgical
tool navigation to desired locations on the retina. To achieve
this, we employ a batch of benchmark tasks where various
positions on the retina are targeted in a grid-like fashion
(Fig. 6, 9). For simplicity, we keep the eye position and
tool-orientation fixed during the experiments. While this is
not a realistic assumption in practice, since the eye could in-
voluntarily move during procedures, our approach can easily
extend to the more general setting of different eye rotations
through additional training. To test the robustness of our
network, we also perform the benchmark task in the presence
of unseen distractions in the visual input, such as a light-
pipe (used for illuminating the surgery scene) and forceps
(used in retinal-peeling) which are commonly used surgical

tools. On average, we report that the network achieves less
than 137 µm accuracy in various unseen scenarios in real-
experiment using a silicone phantom, and 94 µm accuracy
in simulation. Lastly, we propose a change to the baseline
network resulting in marked improvement in its performance,
specifically by training the network using future images
along with waypoints as labeled outputs, which turns out
to be a richer representation useful for control. We show
that learning such auxiliary task improves the performance
on the tool-navigation task.

II. RELATED WORK

A. Retinal Surgery

Past works in computer-assisted retinal surgery have fo-
cused on state estimation or detection systems to assist sur-
geons with more information about the surgery. For example,
several works have attempted to close the uncertainty gap
of estimating the depth between the tool-tip and the retinal
surface. Image segmentation can be applied to estimate
tool-tip and shadow-tip to model proximity when the tips
approach close by a predefined threshold pixel-distance [2],
though in a flat environment rather than in realistic concave
surface to correctly simulate eye geometry. In addition, stereo
vision can be employed to estimate the depth of the tool and
the retina respectively to create a proximity detection system
[1]. More recently, optical coherence tomography (OCT) was
utilized to manually sense depth between the tool-tip and the
retina [3], [5].

B. Learning

Various works have shown the effectiveness of deep learn-
ing in sensorimotor control such as playing computer games
[6], [7] or navigating in complex environments [8], [9], [10],
[11], [12], [13]. In particular, the approach employed in
our work borrows from the architecture proposed in [12],
where a network is trained to drive a vehicle based on user’s
high level commands such as ”go left” or ”go right” at
an intersection. Similarly, [13], [11] employ topographical
maps to communicate the desired route to a destination
selected by a user to drive a vehicle. In our work, we also
communicate the goal position to navigate the surgical tool as
a topographical representation (Fig. 2). Furthermore, several
prior works employ the idea of learning auxiliary tasks to



Fig. 3: (Left) Real-life experimental setup using an eye phantom. (Right) Experimental setup in simulation

improve accuracy, such as predicting high-dimensional future
image conditioned on input (e.g. goal or action) [14], [15],
[16], [17], [18], and learning auxiliary tasks for improved
sensorimotor control [19], [13].

III. PROBLEM FORMULATION

We consider the task of autonomously navigating a sur-
gical tool to a desired location using a monocular surgical
image and topographical 2D goal-position specified by the
user as inputs (Fig. 2). We formulate the problem as a goal-
conditioned imitation learning scenario, where the network
is trained to map observations and associated goals to actions
performed by the expert. The goal-conditioned formulation
is necessary to enable user-control of the network at test time
(e.g. navigate the surgical tool to a desired location). Given
a dataset of expert demonstrations, D = {(oi, gi), ai}Ni=1,
where oi, gi and ai denote observation, goal, and action,
respectively, the objective is to construct a function approxi-
mator a = F (o; θ) with parameters θ, that maps observation-
goal pairs to actions performed by the expert. The objective
function can then be expressed as the following:

minimize
θ

N∑
i=1

L(ai, F (oi, gi; θ)), (1)

where L is a given loss function.
In our case, we choose the observation to be an image

o ∈ I of the surgical scene, the action a ∈ W ⊂ R3 to be the
3D euclidean coordinates of a point in the surgical workspace
W or a waypoint, and the goal input to be gi = (xi, yi) ∈ R2

which specifies the final desired projected 2D position on the
retinal surface. Further details on how the expert dataset is
collected and network is trained are given next.

IV. METHOD

A. Eye Phantom Experimental Setup

Our experimental setup consists of the robot, a surgical
needle, and a microscope that records top-down view of the
surgery as shown in Fig. 3. For our robot platform, we used
the Steady Hand Eye Robot (SHER), which is a surgical
robot built specifically for eye surgery applications [20]. The
surgical needle is attached at the end-effector with thickness
500µm in diameter (Fig. 6). The artificial eye phantom (i.e.
a rubber eye model) is 25.4mm in diameter, slightly larger
than a human eye which ranges 20 - 22.4mm [21]. To collect

data in our experiments, we control the robot using motors
attached on the robot joints. We record the images from the
microscope and the robot kinematics from the XYZ motor
encoders.

B. Simulation Setup

In simulation, we used Unity3D software to replicate
similar experiment scenarios as the actual experiment as
shown in Fig. 3. For sense of scale, the thick part of the
tool shaft measures 500µm and the tool-tip measures 300µm
(Fig. 9). Because it is easier to change experimental setup
in simulation, we perform domain randomization to change
the eye backgrounds and the lighting condition. We also
created 15 different eyes, each varying in dimension at
20.4mm, 21.2mm, and 22.4mm. These measurements reflect
the minimum, medium, and maximum dimension of human
eye sizes [21], [22], and 5 eyes were created for each
dimension. The texture of the eyes were obtained from [23].
The goal of domain randomization was so that the network
will be agnostic to changing brightness conditions, size of
the eye, and the background texture of the eyes for robust
generalization. For training, 3 eyes from each size were used,
and the remaining 2 eyes from each size were used for
testing.

C. Data Collection

In practice, the proposed network must be trained using
either expert surgeon trajectories or trajectories known to
be safe in achieving the goal. In this work, we do not
rely on actual expert surgeon motions, but instead employ
an automated data collection setup that exploits ground
truth knowledge about the eye geometry, camera calibration,
relative localization of tool and eye, and also precise distance
to collision and tool-tip force sensing (used to slow-down
and stop the motion). Under such controlled conditions, we
can generate multiple high-quality trajectories that can be
regarded as ”expert motions.” During inference, the assump-
tion is that none of this information is available.

For the physical phantom-based experiments, we collected
2000 trajectories in total, 1000 in low brightness setting and
1000 in high brightness setting. In simulation, we collected
2500 trajectories under a wide range of brightness conditions,
while various eyes with different size and backgrounds were
randomly replaced. The procedure for data collection were as



Fig. 4: (Left) Baseline network which predicts incremental waypoint toward the target specified by the user (Right) Extended
network which predicts a waypoint and also learns the auxiliary task of predicting the future state.

Fig. 5: (Left) training trajectories with small initialization region;
blue tips indicate starting position of the trajectory (Right) Training
trajectories with large initialization space as data augmentation.

follows: we initialized the tool at a random position in view
of the camera, then navigated towards a randomly selected
position below the eye in a straight-line trajectory. We use
straight-line trajectories as a way to generate predictable and
simple ground-truth expert data. When collision was detected
between the tool and the eye phantom using a force sensor
at the end-effector (Fig. 3), we logged the images and the
robot kinematics of the trajectory. For simplicity, we kept
the orientation of the tool fixed and only moved the xyz-
pose of the tool. The position of the eye remained fixed as
well. These conditions apply for both real-life experiments
and in simulation.

To synthesize the goal for each trajectory, we used the
last xy-coordinate of the executed trajectory and plotted it
as a white square with dark background as illustrated in
Fig. 2. Effectively, we changed the 2-dimensional coordinate
representation of the goal to an image representation. This
is an important design choice because ultimately our goal
was to train the network based on visual goals that spatially
corresponded with the surgical scene. This can be useful in
an application where a surgeon may simply use a mouse
to click the goal location in the visual-feed of the surgery,
then the corresponding image of the white square can be
generated, and the network will navigate the surgical tool to
the exact location of the white square corresponding to the
surgical scene (Fig.3). For such an application, it requires
that the dataset contain goal images where the center of
the white square corresponds exactly with the final tool-
tip position, or with some consistent offset. However, this
requires manual annotation to create the goal images. In this
work, however, our objective is to test the accuracy with

which the network can navigate to the desired location given
a particular goal image. Thus, we do not annotate the images
manually. Furthermore, this approach is necessary because it
allows us to calculate tool-navigation errors during inference;
since we know that the plotted position of the white square is
the desired final xy-tool position in the surgical workspace,
we can calculate the final accuracy by comparing the plotted
values to the final landing position of the tool.

D. Network Details and Training

The input to the network are the current image of the
surgery (224x224x3) and the goal image (224 x 224 x 1)
stacked along the channel dimension, yielding a combined
dimension of (224 x 224 x 4). The output of the network is
a xyz-waypoint in the surgical workspace (XYZ values or 3-
dimensional vector) which the network must travel in order to
reach closer to the target location on the retina. Specifically,
for a single trajectory consisting of n frames I1, ...In ∈ I,
n robot-kinematic positions p1, . . . , pn ∈ R3, and the goal
image coordinates g ∈ R2 specific to this trajectory, a single
sample is then expressed as (input, output) = ((It, g), pt+d),
for t = 1, . . . , n−d, where d is a parameter denoting the look-
ahead of the commanded action, which is used as a feed-
forward reference signal to the robot. We chose d = 8, which
is equivalent to approximately 70µm apart between learned
waypoints to ensure that the network moved the surgical
tool by a noticeable distance every control cycle. All inputs
and outputs, including the waypoints and the images, are
normalized from 0 to 1 via min-max scaling. The complete
data set D is constructed using multiple such trajectories and
their corresponding samples. Internally, the network maps the
goal g into an image Ig ∈ I which is concatenated with the
actual camera image Ii to form the complete network input.

We experimented with two architectures, a baseline net-
work that predicts an xyz waypoint and another network that
predicts an xyz waypoint plus the future image as shown
in Fig. 4. We refer to the latter network as the extended
network. Predicting the future image was considered as
an auxiliary objective to learn a richer representation for
control. Intuitively, the motivation was that if a network could
generate the correct xyz-waypoint for navigation and also
predict what that future looked-like, it would arguably have
learned a richer understanding of the navigation task. The
benefit of using auxiliary objective for learning sensorimotor



Fig. 6: (Left) Example start positions of the surgical tool in real-experiment (Right) Various conditions used to train/test the network.

control has been similarly demonstrated in [19][13]. For
the extended network, a single sample for training can be
expressed as (input, output) = ((It, g), (pt+d, It+d)). In the
following, we discuss each network in greater detail.

TABLE I: Eye Phantom Experiment Results

Test Condition Baseline Network
Error (mm)

Extended Network
Error (mm)

Train Low Brt.1 0.134 0.139
Train High Brt. 2 0.092 0.108

Unseen Brt. 0.177 0.127
Unseen Brt. + Distr. (1 tool) 0.165 0.146

Unseen Brt. + Distr. (2 tools) 0.155 0.137

”Unseen” Avg. (above 3 rows) 0.166 0.137

TABLE II: Eye Phantom Training Results

Axes Baseline Val.
Acc. (%)

Extended Network
Val. Acc. (%)

X 82.0 82.8
Y 76.0 76.7

Z (Depth) 60.8 61.9
XYZ Total Sum 218.8 221.3

1) Baseline Network: The baseline network architecture
is shown in Fig. 4. The baseline architecture aims to learn
the tool-navigation task in the simplest manner using a feed-
forward network. We use Resnet-18 [24], which encodes
the high dimensional input image (224 x 224 x 4) to 512-
dim feature vectors. To learn the waypoints or the action
output, we discretize the continuous x, y, and z coordinate
representation into 100 steps. We discretized the action space
because training the network with cross-entropy loss yielded
better results than using root-mean-squared-error loss in the
continuous case. Specifically, we add a fully-connected layer
outputting 300 neurons on top of the 512-feature vectors,
where each 100 neurons is a discretized representation of the
continuous x, y, and z coordinates of the surgical workspace
respectively. The network was trained using cross-entropy
loss with Adam optimizer [25] with an initial learning rate
of 0.0003 and batch size of 170. After discretizing the space,
the loss function is redefined as

L(b, p̂) =
∑

j∈{x,y,z}

Mj∑
c=1

−bj,c log(p̂j,c), (2)

where bj,c are binary indicators for the true class label c, and
p̂j,c are the predicted probability that the coordinate j is of

class c. The cost combines the errors for all three dimensions
j ∈ {x, y, z}. As specified above, we employed Mx =My =
Mz = 100 bins.

2) Baseline + Predicting Future Image (Extended Net-
work): The extended architecture aims to achieve the base-
line task and additionally predict future images. The ar-
chitecture is shown in Fig. 4. On top of the Resnet-18
architecture, a decoder network with skip-connections is
added, similar to the U-Net architecture [26]. After encoding
the images to 512-feature vectors, six deconvolutions are
performed to obtain the future image, which is the same
dimension as the input surgical state (224 x 224 x 3). After
each deconvolution, the tensors of the same dimension from
the encoder network are concatenated, and two additional
convolutions are performed to combine the concatenated
tensors and refine the up-sampled tensors. Learning to predict
future image in addition to the waypoints is intended to learn
a richer representation for control than the baseline network.
The waypoints were trained using cross-entropy loss similar
to the baseline network and the future prediction was trained
using RMSE function. The network is trained using Adam
optimizer with an initial learning rate of 0.0003 and batch
size of 120. The combined loss function is given as

L((b, I), (p̂, Î))=
∑

j∈{x,y,z}

Mj∑
c=1

−bj,c log(p̂j,c)+(I−Î)2, (3)

where Î denotes the future-image prediction by the network
and I denotes the label for the future image. The second
term on the right-hand side is a pixel-wise subtraction, and
the first term follows as previously defined in the baseline
network. To balance the loss functions, drop-out approach
was used where we performed back-propagation 70% of the
time for the future-image loss term.

E. Data Augmentation

For robust learning, we utilized data augmentation, such
as drop-out of pixels (maximum of 2x2 size, less than
70 distributed across the image), added Gaussian noise,
and jittered the image (randomize the brightness, contrast,
saturation, and hue). These augmentations were enabled 20
percent of the time each epoch and the gain of the jitter was
set at 0.08. We also expanded the initialization space so that
the network could reach the same target location from various
initial positions as shown in Fig. 5. This effectively enabled
the network to recover from mistakes when it deviated



Fig. 7: (Left) Future prediction by the extended network under various unseen conditions (Right) Different futures predicted by changing
the goal input (rectangle frames are fixed, added to clarify shifted positions of the tool); visual predictions can be useful to surgeons to
foresee the result of the future before executing the predicted waypoint

from its hero path, and it enabled the network to reach
various goal locations from any reasonable initialization
position. Data augmentation and expanding the initialization
region was crucial to achieving good performance in real-life
experiments and in simulation.

V. RESULTS AND DISCUSSION

A. Real-Life Experiment Results

To assess the accuracy of our networks, we performed
benchmark experiments where the baseline and the extended
network visited 50 predefined locations in the training region
in grid-like fashion (5 x 10), starting from 3 different
initial locations as shown in Fig. 6. The objective of such
experiment was to test how accurately the network could
navigate to various targeted locations, given various goal
inputs. We tested each network in the following familiar
and unseen environments to test their robustness (Table I):
two training conditions (low, high brightness settings), in
one unseen brightness setting, in the same unseen brightness
setting plus with dynamically moving distraction using a
light-pipe tool, and in the same unseen brightness setting
plus with two dynamically moving distractions using a light-
pipe and forceps, both of which are commonly-used retinal
surgery tools (Fig.6). For experiments with tool-distractions,
we only tested from the right-most initial position out of the
three, since a human had to hold the tools throughout the long
experiments. The light-pipe was dynamically maneuvered to
follow the tool-tip, and the forceps was held by-hand on the
opposite side. Both tools occasionally occluded the surgical
tool and its shadow.

Our experimental results are summarized in Table I and
the executed trajectories are shown in Fig. 10. The table
contains numeric xy-error values in reaching the goal po-
sition under various test conditions. Since the eye posi-
tion is fixed during training and experimental validation,
the error can be calculated by comparing the input goal-
image coordinate (x, y) against the final landing position
of the surgical tool (x

′
, y

′
) after the trajectory execution

is complete (e.g. when force is detected using the force
sensor). Thus, the error reported in Table I is calculated

Fig. 8: (Left) Waypoint prediction accuracies on the ”real-life”
validation dataset and in (Right) simulation. Y-axis is the sum of
the classification accuracies for xyz axes (i.e. maximum possible
is 3.0). Dashed lines mark the maximum accuracy achieved. It can
be seen that the extended network trains faster and is more data-
efficient than the baseline network in both simulation and real-life

using the formula
√
(x− x′)2 + (y − y′)2. The accuracy

reported in Table II are the classification accuracies achieved
on the validation dataset offline, not the online benchmark
experiments. In Table II, we are able to report errors in the
z-axes (depth) because we have ground-truth xyz-values of
the full trajectory from the previously collected dataset.

Our results show that the both baseline and extended
network generalizes well to unseen scenarios, achieving
166µm and 137µm in error, even in the presence of unseen
brightness conditions and unseen surgical tools significantly
occluding the scene. The extended network also performed
marginally better than the baseline network. This result is
expected given the higher accuracy achieved by the extended
network in the validation dataset, achieving 2.5% higher
accuracy than the baseline (Table II). Also, as shown in
Fig. 8, the extended network trains faster and is more data-
efficient than baseline network, achieving best classification
accuracy on the 18th epoch versus 26th epoch by the baseline
network. In addition to improving the baseline network
performance, the extended network is able to predict clear
future images. Clear visual predictions could enable surgeons
to intuitively understand the future outcome of the surgery,
instead of trying to make sense of numeric outputs from
the network. As shown in Fig. 7, the extended network
can imagine different futures depending on various goal
inputs (e.g. move the tool forward, left, right), recognize
the surgical tool as a dynamic object apart from the static



Fig. 9: (Left) Three start positions and test region of the surgical tool in simulation. (Right) Various unseen conditions to test the network

background, and also reliably reconstruct unseen objects (e.g.
forceps and light-pipe) and unseen brightness settings. Such
visual predictions could be useful in future applications for
visual task planning, where a tool trajectory may be visually
planned then selected based on recurrent roll-out of various
future outcomes.

B. Simulation Experiment Results
Similar to real-life experiments, we performed benchmark

tests where each baseline and extended network visited 100
predefined locations in the training region in grid-like fashion
(10 x 10), starting from 3 different initial locations as shown
in Fig. 9. We tested each network in the following conditions,
which are different from real-life experiments: 9 training eyes
under random brightness setting ranging from low to high, 6
unseen eyes under random brightness ranging from the same
low to high brightness, in the presence of unseen surgical tool
using a light-pipe, and in the presence of two unseen surgical
tools using a light-pipe and forceps (Fig.9). For experiment
with tool-distractions, we only tested from the middle initial
position out of the three. Both the light-pipe and forceps
were moved randomly every frame to imitate hand-tremor,
and both tools occasionally occluded the surgical tool and
its shadow.

The simulation results are summarized in Table III and
the executed trajectories are shown in Fig. 10. The errors
shown in Table III are calculated using the same formula
mentioned in the real-life experiment results, specifically
using the formula

√
(x− x′)2 + (y − y′)2 where (x, y) de-

notes input goal-image coordinate and (x
′
, y

′
) denotes the

final landing position of the surgical tool after trajectory
execution. Similarly, Table IV shows network results on
the validation dataset. Our results show that both baseline
and extended networks achieve good performance and can
generalize robustly to unseen scenarios, even in the presence
of unseen eye backgrounds and unseen surgical tools occlud-
ing the scene. Similar to real-life experiments, the extended
network also performed marginally better than the baseline
network. This result is expected since the extended network
achieved 4.9% higher accuracy than the baseline network in
the validation dataset (Table IV). Similar to real-life experi-
ments, the extended network is also more data-efficient than
the baseline network, achieving maximum accuracy at 13th
epoch versus 9th epoch by the baseline network (Fig.8) and
achieving significantly higher maximum validation accuracy.
Regarding the future predictions generated by the extended

network, the future predictions were clear and interpretable,
however, it was not able to precisely predict the surgical tool
at the expected future position based on changing goal input.
We conjecture that using naive squared-error loss function is
not sufficient for accurate tool-position reconstruction due
to higher sample complexity of the changing backgrounds.
One possible solution is to use a weighted squared-error
loss where more weight is carried on learning the pixels
corresponding to the surgical tool-tip.

TABLE III: Simulation Experiment Results

Testing Condition Baseline Network
Error (mm)

Extended Network
Error (mm)

Train 0.107 0.098
Unseen Eyes 0.102 0.096

Unseen Brt. + Distr. (1 tool) 0.140 0.100

Unseen Brt. + Distr. (2 tools) 0.169 0.087

”Unseen” Avg. (above 3 rows) 0.137 0.094

TABLE IV: Simulation Training Results

Axes Baseline Val.
Acc. (%)

Extended Network
Val. Acc. (%)

X 78.9 81.4
Y 84.8 84.0

Z (Depth) 67.3 70.6
XYZ Total Sum 231.0 235.9

Fig. 10: (Left) Trajectories executed in real-life in unseen
brightness condition (Right) trajectories executed in real-life
in changing brightness condition + unseen eyes

VI. CONCLUSIONS

In this work, we demonstrate end-to-end autonomous
navigation of a surgical tool inside the eye using deep



networks. We demonstrate a baseline approach and propose
an improved network architecture that predicts a future
image, which improved the baseline performance. We also
show that the network generalizes well to unseen brightness
setting and in the presence of unseen distractions, overall
achieving 137µm error on average in real-life experiments
and 94µm error in simulation. In future work, we hope to
test our framework in more realistic scenarios. For example,
in real surgery, the surgical tool is constrained at a point and
can only slide and tilt through a scelerotomy port on the eye-
ball. The eye lens also introduces aberrations by distorting
the surgical scene. It may also be possible to integrate the
tool-navigation task as a sub-task to achieve more complex
tasks. We also hope to propose frameworks that enable more
efficient learning requiring less demonstration data in the
future.
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