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Abstract— This work studies an approach for computing
provably robust control laws for robotic systems operating in
uncertain environments. We develop an actor-critic style policy
search algorithm based on the idea of minimizing an upper
confidence bound on the negative expected advantage of a con-
trol policy at each policy update iteration. This new algorithm
is a reformulation of Probably-Approximately-Correct Robust
Policy Search (PROPS) and, unlike PROPS, allows for both
step-based evaluation and step-based sampling strategies in
policy parameter space, enabled by the use of Generalized Ad-
vantage Estimation and Generalized Exploration. As a result,
the new algorithm is more data efficient and is expected to
compute higher quality policies faster. We empirically evaluate
the algorithm in simulation on a challenging robot navigation
task using a high-fidelity deep stochastic model of an agile
ground vehicle and compare its performance to the original
trajectory-based PROPS.

I. INTRODUCTION

Policy search is a method for computing the optimal
control parameters of a robotic system operating in an
unknown, uncertain environment. A policy search algorithm
can be factored into three components, consisting of the
exploration, policy evaluation, and policy update strategies.
A brief taxonomy of these components is given next (see [1]
for a more detailed taxonomy of policy search algorithms).

a) Exploration Strategy: An algorithm can explore in
policy parameter space or in action space. Popular algorithms
like Trust Region Policy Optimization (TRPO) [2], A3C [3],
and Proximal Policy Optimization (PPO) [4] explore in ac-
tion space by forming a stochastic policy which outputs a dis-
tribution over controls conditioned on the current state. The
algorithm that we develop in this work, along with CMA-
ES [5], [6], Relative Entropy Policy Search (REPS) [7], and
Parameter-exploring Policy Gradients (PEPG) [8] explore in
parameter space. When exploring in policy parameter space,
a policy can be sampled at the beginning of a trajectory
and then held constant or it can be re-sampled at each time-
step. Episode-based sampling strategies result in smoother,
more realistic control trajectories but can only evaluate one
policy per trajectory, while step-based sampling strategies
can evaluate multiple policies per trajectory and may be less
vulnerable to getting stuck in local minima. One can use a
generalized exploration approach to achieve a more balanced
trade-off between the advantages of step-based and episode-
based policy sampling [9].
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b) Policy Evaluation Strategy: Policy search algorithms
can evaluate trajectories in either an episode-based or step-
based manner. That is, an algorithm may estimate the quality
of whole trajectories or the quality of single actions when
computing a policy update. Episode-based evaluation strate-
gies could result in undesirable high variance of the estimated
cost of a trajectory due to the compounding uncertainty
of rolling out a trajectory with stochastic dynamics. It is
possible to combine step-based evaluation strategies with
episode-based sampling strategies as in the PoWER [10] and
PI2 [11] algorithms.

c) Policy Update Strategy: Policy gradient methods like
PEPG, DDPG [12], and REINFORCE [13] estimate the
gradient of the expected reward with respect to the policy
parameters and then use it in a gradient descent algorithm.
Gradient-free methods, such as Reward-weighted Regression
(RwR) [14] and CMA-ES treat the expected reward as a
black-box function to be optimized over the policy param-
eters. Information-theoretic methods like REPS and TRPO
update the policy parameters while limiting the deviation
of the trajectory distribution (in terms of KL divergence)
to a user-specified trust region. Actor-critic methods use a
learned estimate of the value function (the critic) in order to
update a separate policy (the actor). This class of methods
includes, e.g. A3C, TRPO, and [15], [16], [17]. Methods like
High Confidence Policy Improvement [18] and Probably-
Approximately-Correct Robust Policy Search (PROPS) [19]
minimize an upper confidence bound on the expected cost
of trajectories. This update strategy is particularly useful
because it provides a bound on the expected performance
of the policy which it computes, and it does not require
performance-sensitive user-tunable parameters like a descent
step-size or trust region constraint multiplier.

This work presents a novel policy search algorithm based
off of PROPS. Unlike PROPS, this algorithm uses a step-
based policy evaluation strategy which relies on the esti-
mation of the advantage function for each step in a tra-
jectory. The algorithm estimates these unknown advantages
using Generalized Advantage Estimation (GAE) [20]. This
approach results in an advantage estimator that has a tunable
bias-variance trade-off. We refer to this new algorithm as
Actor-Critic PROPS (AC-PROPS) since the advantage es-
timation makes use of a learned value function in order to
update the policy. AC-PROPS uses a generalized exploration
strategy [9] that allows the user to interpolate between step-
based and episode-based exploration. §II develops some
preliminary theory while §III introduces the AC-PROPS
algorithm. §IV evaluates AC-PROPS on a challenging robot
navigation task and compares its performance to that of



PROPS.

II. PRELIMINARIES

A. Markov Decision Process (MDP)

Consider a finite horizon Markov Decision Process (MDP)
defined by a state x ∈ Rn, control inputs u ∈ Rm, reward
function r(x, u), transition dynamics p(x′|x, u), and trajec-
tory length N . Consider a policy u = π(x; ξ) parameterized
by a vector ξ which maps a state x to controls u. Trajectories
τ , (x0, u0, . . . , uN−1, xN ) are generated by sampling an
initial state x0 ∼ p0(·), using the policy π to generate con-
trols ut, and following the transition dynamics p(xt+1|xt, ut)
to generate the next state along with its associated reward
r(xt, ut), for t = 0, . . . , N−1. Our goal is to choose a set
of policy parameters ξ which maximize the expected total
reward

E(x0,u0,... )∼p(τ |ξ)

[
N∑
t=0

r(xt, ut)

]
,

with p(τ |ξ) = p0(x0)
∏N
t=0 p(xt+1|xt, ut) where ut =

π(xt; ξ). One approach for maximizing this objective is
Iterative Stochastic Policy Optimization (ISPO), which is
described in the following section.

B. Iterative Stochastic Policy Optimization (ISPO)

ISPO is a standard approach for policy search which
optimizes the expected reward of a policy by performing
the search in policy parameter space. This method forms
a surrogate stochastic model ρ(ξ|ν) over policy parameters
ξ parameterized by a vector ν and uses this distribution
to explore in policy space. The policies themselves are
deterministic.

A common way to define policy search in policy parameter
space is through the optimization

ν∗ = arg min
ν

Eτ,ξ∼p(·|ν)[J(τ)],

where J =
∑N
t=0−r(xt, ut) is a cost function encoding

the desired behavior. The surrogate stochastic model induces
a joint density p(τ, ξ|ν) = p(τ |ξ)π(ξ|ν) which contains
the natural stochasticity of the system p(τ |ξ) and artificial
control-exploration stochasticity π(ξ|ν) due to the surrogate
model.

Here, we employ a cost function (i.e. a negative of the
total reward) since the proposed method can be more easily
understood in terms of minimizing a confidence bound.
Algorithm 1 shows the general framework for solving the
problem when using an episode-based evaluation strategy
while Algorithm 2 shows the framework when using a step-
based evaluation strategy.

A key step in ISPO is computing the new policy based
on the observed costs of previously executed policies. The
specific implementation of the update step (e.g. step 5 of
Algorithm 1) corresponds to different policy search algo-
rithms such as RwR, REPS, or PROPS. AC-PROPS follows
the framework described in Algorithm 2 and is formulated
in detail in §III.

Algorithm 1 ISPO with Episode-based Policy Evaluation
1: Initialize hyper-distribution ν0, i← 0
2: while Bound on expected cost greater than threshold do
3: for j = 1, . . . ,M do
4: Sample trajectory (ξj , τj) ∼ p(·|νi)
5: Compute a new policy νi+1 using observed trajectory

costs {J(τ1), . . . , J(τM )}
6: Set i = i+ 1

C. Objective in Terms of Advantages

Now, we will formulate the learning objective in terms
of step-wise advantages. We will use modified definitions
of the value function V ν , state-action value function Qν ,
and advantage function Aν which reflect that a trajectory
is generated by a deterministic policy that is sampled from
a distribution ρ(·|ν) as opposed to the traditional definition
which assumes a fixed, stochastic policy. Note that a policy
ξ can either be sampled in a step-based or episode-based
manner. That is, either a new policy can be sampled from
ρ(·|ν) at each time step or a new policy can be sampled
from ρ(·|ν) once at the beginning of an episode and then
held fixed until termination of the episode.

So, the expected reward of a policy distribution is

R(ν) = E(x0,u0,ξ0,... )∼p(·|ν)

[
N∑
t=0

rt(xt, ut)

]
. (1)

The expected total reward starting at state x and following
the policy distribution ρ(·|ν) is denoted by the value function
V ν(x). That is

V ν(xt) = E(ut,ξt,xt+1... )∼p(·|ν)

[
N∑
k=t

rk(xk, uk)

]
.

The state-action value function is given by

Qν(xt, ut) = E(xt+1,ut+1,ξt+1,... )∼p(·|ν)

[
N∑
k=t

rk(xk, uk)

]
.

The advantage function is then defined by

Aν(xt, ut) = Qν(xt, ut)− V ν(xt)

Algorithm 2 ISPO with Step-based Policy Evaluation
1: Initialize hyper-distribution ν0, i← 0
2: while Bound on expected cost greater than threshold do
3: for j = 1, . . . ,M do
4: Sample x0,j ∼ p0(·)
5: for t = 1, . . . , N do
6: Sample policy ξt,j ∼ p(·|νi)
7: Sample state xt+1,j ∼ p(·|xt,j , π(xt,j ; ξt,j))

8: Compute a new policy νi+1 using observed step-wise
costs {−r(x1,1, u1,1), . . . ,−r(xN,M , uN,M )}

9: Set i = i+ 1



where x0 ∼ p0(·), ut = π(xt; ξt), xt+1 ∼ p(·|xt, ut), and
ξt ∼ ρ(·|ν).

Using these definitions, (1) can be reformulated in terms
of an expectation of step-wise advantages over the stationary
state distribution. The expected return of a policy distribution
ρ(·|ν) can be expressed in terms of its advantage over a
policy distribution ρ(·|ν0) as

R(ν)=R(ν0) + E(x0,u0,ξ0... )∼p(·|ν)

[
N∑
t=0

Aν0(xt, ut)

]
, (2)

where x0 ∼ p0(·), ut = π(xt; ξt), xt+1 ∼ p(·|xt, ut), ξt ∼
ρ(·|ν) (see Theorem 2 in Appendix, adapted from [2]).

Thus, maximizing R(ν) is equivalent to maximizing the
expected advantage from policy ν0 under the trajectory distri-
bution induced by policy ν. Let p(x|ξ) be the unnormalized
state visitation distribution for a given fixed policy p(x|ξ) ,∑N
t=0 p(xt = x|ξ). Then, we can re-write the last term in (2)

as an expectation over states instead of a sum over time-steps
as

E(x0,u0,ξ0... )∼p(·|ν)

[
N∑
t=0

Aν0(xt, ut)

]

=

∫ N∑
t=0

[∫
p(xt = x|ξ)Aν0(x, u)dx

]
ρ(ξ|ν)dξ

=

∫ ∫ N∑
t=0

[p(xt = x|ξ)Aν0(x, u)] ρ(ξ|ν)dx dξ

=

∫ ∫
p(x|ξ)Aν0(x, u)ρ(ξ|ν)dx dξ

= Ex,ξ∼p(x|ξ)ρ(ξ|ν) [Aν0(x, u)] .

Now, one can see that maximizing
Ex,ξ∼p(x|ξ)ρ(ξ|ν) [Aν0(x, u)] is equivalent to maximizing the
expected reward under policy distribution ν.

Finally, we can then further reformulate the objective with
respect to a different density ρ(ξ|ν0) as:

Ex,ξ∼p(x|ξ)ρ(ξ|ν) [Aν0(x, u)]

= Ex,ξ∼p(x|ξ)ρ(ξ|ν0)
[
Aν0(x, u)

ρ(ξ|ν)

ρ(ξ|ν0)

]
,

which now includes a likelihood ratio between ν0 and ν.
This formulation will be employed to develop an algorithm
using data sampled from the current policy ν0 to estimate the
expected advantage (and thus reward) of an untested policy
ν. AC-PROPS follows this strategy and is described next.

III. ACTOR-CRITIC PAC ROBUST POLICY SEARCH
(AC-PROPS)

The goal of AC-PROPS is to compute a new policy νi+1

with minimal expected cost using estimates of step-wise
advantages Âνi(xt, ut) corresponding to policy parameters
ξt sampled from νi, where i denotes the iteration index. That
is, it seeks to solve the following program

νi+1 = arg min
ν

Ex,ξ∼p(x|ξ)ρ(ξ|ν0)
[
−Aν0(x, u)

ρ(ξ|ν)

ρ(ξ|ν0)

]
.

Computing the expectation exactly is intractable. It can,
however, be bound from above using a relation developed
in [21]. The leads to a program of the following form

νi+1 = min
ν,α
Ĵα(ν) + αd(ν, ν0) + φ(α,K, δ), (3)

where Ĵα is a robust empirical estimate of
Ex,ξ∼p(x|ξ)ρ(ξ|ν0)

[
−Aν0(x, u) ρ(ξ|ν)ρ(ξ|ν0)

]
, d(·, ·) denotes a

distance between policy distributions, K is the number of
samples, and φ is a concentration-of-measure term which
reflects the discrepancy between the empirical advantage
Ĵα and the true mean advantage. The expression in (3)
(denoted J +) is in fact a high-confidence bound on the
expected advantage, i.e. with probability 1 − δ it hold that
Ex,ξ∼p(x|ξ)ρ(ξ|ν0)

[
−Aν0(x, u) ρ(ξ|ν)ρ(ξ|ν0)

]
≤ J +. This is an

alternative, step-based formulation of the PROPS update
law, which is explained in more detail in §III-A (see [19]
for the original formulation).

The advantages that are used in this formulation are
unknown and, thus, need to be estimated. The specifics of
the advantage estimation and policy sampling procedures
are described in §III-B and §III-C, respectively. Algorithm 3
describes the entire AC-PROPS procedure.

Algorithm 3 AC-PROPS
1: Initialize hyper-distribution ν0, i← 0
2: while Bound on expected cost greater than threshold do
3: for j = 1, . . . ,M do
4: Sample x0,j ∼ p0(·)
5: for t = 1, . . . , N do
6: Sample policy ξt,j according to (6)
7: Sample state xt+1,j ∼ p(·|xt,j , π(xt,j ; ξt,j))

8: Compute Âνi(xt,j , ut,j) using GAE
9: Compute νi+1 using {(ξi,j , Âνi(xt,j , ut,j))} in (3)

10: Update value function parameters φ using (5).
11: Set i = i+ 1

A. Upper Confidence Bound

This section defines the terms that compose the upper
confidence bound (3). Define the expectation over negative
advantages as

J(ν) , Ex,ξ∼p(x|ξ)ρ(ξ|ν0)
[
−Aν0(x, u)

ρ(ξ|ν)

ρ(ξ|ν0)

]
.

J (ν) can be approximated empirically using samples
ξt,j ∼ ρ(ξ|ν0) and xt,j ∼ p(x|ξt,j), i.e. J (ν) ≈
1

MN

∑M
j=1

∑N
t=0

[
−Aν0(xt,j , ut,j)

ρ(ξt,j |ν)
ρ(ξt,j |ν0)

]
, where j is an

index over trajectory samples. As noted in [22], the change-
of-measure likelihood ratio ρ(ξt,j |ν)

ρ(ξt,j |ν0) can be unbounded, so a
standard Hoeffding or Bernstein bound becomes impractical
to apply. The bound derived in [21] employs a recent robust
estimation technique [23] to deal with the unboundedness of
the policy adaptation. Instead of estimating the expectation
m = E[X] of a random variable X ∈ [0,∞) using its
empirical mean m̂ = 1

M

∑M
j=1Xj , a more robust estimate



can be obtained by truncating its higher moments, i.e. using
m̂α , 1

αM

∑M
j=1 ψ(αXj) for some α > 0 where ψ(x) =

log(1+x+ 1
2x

2). As a result, as long as x has finite variance
it is possible to obtain practical bounds even if x itself is
unbounded.

To obtain tight bounds, it is useful to use samples created
during previous iterations of AC-PROPS, say from L previ-
ous policies ν0, ν1, . . . , νL−1 from iterations i = 0, . . . , L−
1. Let z = (x, u, ξ) and define `i(z, ν) , −Aνi(x, u) ρ(ξ|ν)ρ(ξ|νi) .
The expected cost based on multiple iterations can now be
expressed as

J (ν) ≡ 1

L

L−1∑
i=0

Ez∼p(·|νi)`i(z, ν).

This, again, can be approximated by the empirical mean
J (ν) ≈ 1

NML

∑L−1
i=0

∑M
j=1

∑N
t=0[`i(ztij , ν)] . The more

robust estimate is then given by

Ĵα(ν) ,
1

αNLM

L−1∑
i=0

M∑
j=1

N∑
t=1

ψ (α`i(ztij , ν)) .

The main result obtained in [21] can now be stated as
follows:

Theorem 1: With probability 1 − δ the expected cost of
executing a stochastic policy with parameters ξ ∼ ρ(·|ν) is
bounded according to

J (ν) ≤ inf
α>0

{
Ĵα(ν) +

α

2L

L−1∑
i=0

b2i e
D2(ρ(·|ν)||ρ(·|νi))

+
1

αLM
log

1

δ

}
,

(4)

computed after L iterations, with NM samples
zti1, . . . , ztiM ∼ p(·|νi) obtained at iterations
i = 0, . . . , L − 1, where Dη(p||q) denotes the η-order
Renyii divergence between p and q. The constants bi are
such that 0 ≤ −Aνi(xt, ut) ≤ bi at each iteration. Note that
AC-PROPS requires all negative advantages to be greater
than 0, so an offset equal to the smallest sampled advantage
estimate is subtracted from all advantage value to ensure
that this property holds.

B. Generalized Advantage Estimation

AC-PROPS requires the step-wise advantages Aν(xt, ut)
in its update law, but they are unknown. One solution
is to model V ν using a parameterized function approx-
imator V (x;φ) (e.g. a neural network) and to estimate
the advantages using one-step rewards as Âν(xt, ut) =
r(xt, ut)+ V̂ (xt+1;φ)− V̂ (xt;φ). However, estimation error
in V (x, φ) can lead to excessive bias in the advantage estima-
tor Âν(xt, ut) which will result in an unstable policy update.
On the other hand, we could reduce this bias in the estimator
by using an N-step rollout of the rewards as Âν(xt, ut) =∑N−t
k=0 r(xt+k, ut+k) − V̂ (xt;φ), but the sum over rewards

leads to excessively high variance. Generalized Advantage
Estimation (GAE) introduces an advantage estimator which

has parameters for tuning this bias-variance trade-off [20].
We use GAE in this work whenever computing sample
estimates Âν(xt, ut). For such an estimator, AC-PROPS
needs an approximate representation of the value function.
The procedure for learning the value function follows.

1) Value Function Learning: After each policy update,
AC-PROPS uses the data generated from the most recent
iteration to update the value function parameters φ using
a trust-region method (as in [20]). The trust region helps
to avoid overfitting to the most recent batch of data. We
first compute sample estimates of the value function as
V̂t =

∑N−t
k=0 γ

kr(xt+k, ut+k), where γ ∈ [0, 1] is a tunable
discount factor. Next, let σ2 = 1

M

∑M
i=0 ‖V (xi;φ) − V̂i‖2.

Then, the value function optimization can be formulated as

minimize
φ

M∑
i=0

‖V (xi;φ)− V̂i‖2

subject to
1

M

M∑
i=0

‖V (xi;φ)− V (xi;φold)‖2

2σ2
< ε, (5)

where φold represents the value function parameters from the
previous iteration and ε defines the size of the trust region.
This objective is optimized using the conjugate gradient
algorithm. We refer readers to [20] for more details.

C. Generalized Policy Exploration

AC-PROPS uses generalized policy exploration so that
it can trade-off between the advantages of step-based and
episode-based exploration strategies. Generalized policy ex-
ploration introduces a parameter β ∈ [0, 1] that determines
how smoothly the policy parameters can change across time-
steps. In this work, we choose the policy distribution to be
Gaussian. That is, ξ ∼ N (µν ,Σν), where µν and Σν are the
mean and covariance encoded by ν. Given this form, policy
sampling can be smoothed across time-steps as

ξt+1 = βξ̃ + (1− β)ξt, ξ̃ ∼ N
(
µν ,

(
2

β
− 1

)
Σν

)
, (6)

where β = 1 corresponds to a purely step-based exploration
and β = 0 corresponds to episode-based exploration. The
covariance of the policy distribution is modified by a function
of β to preserve detailed balance as explained in [9].

D. Implementation Details

The AC-PROPS update equation (3) is implemented in
Tensorflow so that gradient computation can be parallelized
on a GPU, which is crucial for efficiently optimizing over
large numbers of parameters. AC-PROPS uses a truncated
Newton (also known as Newton Conjugate-Gradient) method
to minimize (3) using the computed gradients. See Section
6.2 of [24] for more details on truncated Newton methods.

The trajectory sample generation is parallelized across
multiple workers with different random seeds to take full
advantage of the power offered by multi-core CPUs.



Fig. 1. A simulated mobile robot (top) and a real robot (bottom) using an
optimized control policy to follow a 22 m × 14 m oval track at 6.5 m/s
while avoiding randomly sampled virtual obstacles in the vehicle’s path.
This work only trains a policy in simulation, but recent work suggests the
policy can be safely transferred directly to a real robot [25]

IV. TRAINING OBSTACLE AVOIDANCE POLICY FOR AN
AGILE MOBILE ROBOT

We leverage a deep stochastic dynamic model of a 1/5
scale off-road UGV and use it to train a control policy in
simulation using Algorithm 3. The goal is to track an oval
trajectory at a speed of 6.5 m/s while avoiding randomly
generated virtual obstacles in the path of the vehicle. Al-
though this work only trains a policy in simulation, recent
work suggests the policy can be safely transferred directly
to a real robot [25]. Figure 1 illustrates the task.

A. Deep Stochastic UGV Model

The UGV that we model is a heavily modified 1/5 scale
Redcat Racing Rampage XB-E. We collected about 30
minutes of dynamics data, including position, orientation,
wheel velocity, steering angle, and steering and velocity
commands, while manually driving the car on an astroturf
field and took care to make sure the data distribution evenly
spanned the state-action space of the vehicle expected for
the task. We built a stochastic dynamics model using the
technique described in [25]. The model inputs include the car
orientation θ, body-x velocity v, steering angle δs, velocity
command vc, and commanded steering angle δc. The model
outputs ẋ, with x = (p, θ, v, δs), where p = (px, py) ∈ R2

is the position of the vehicle.

B. Control Policy

Using the dynamics model discussed in the previous sec-
tion, we optimize control policies for the UGV in simulation
using both PROPS and AC-PROPS. We use a policy based
on feedback controllers for achieving desired lateral offset,
speed, and obstacle avoidance, with relatively few learnable

parameters. The policy formulation is described in more
detail in [25].

C. Policy Optimization

Navigation Cost: The policy search cost function that
we attempt to minimize takes the form

J(τ)=

tf/dt∑
t=0

[Ra2t +Qrer
2
t +Qv(vt/vgoal−1)2 + |vt|O(dt)]dt,

where (·)t indicates the state at a discrete time index t, a is
the vehicle acceleration, er is the lateral offset of the vehicle
relative to the track, vgoal is the goal velocity, R,Qr, Qv > 0
are tuning weights, dt is the time step, and O(d) is a cost
that encourages obstacle avoidance and is defined as

O(d) =


O(olow) + Clow(olow − d)2, d < olow

Chigh(ohigh − d)2, olow < d < ohigh

0, otherwise,

where d is the distance from the car to the closest obstacle
with distance measured from the edge of the car to the edge
of the obstacle. The variables ohigh and olow are distance
thresholds that determine when the car incurs a small penalty
or a large penalty for being close to the obstacle, respectively.
O(d) is multiplied by the car velocity to encourage the
vehicle to stay away from the obstacle rather than allowing
it to quickly speed close by the obstacle without incurring a
large penalty.

For our experiments we set vgoal = 6.5 m/s, tf =
7 s, dt = 0.02 s, R = 10−3, Qr = 0.25, Qv = 4, Clow =
800, Chigh = 80, olow = 0.5 m, and ohigh = 1.0 m.

Stochastic Policies: The surrogate policy p(·|ν) is a
Gaussian with a diagonal covariance matrix. We initialize
the surrogate policy to have a standard deviation of 2 in all
dimensions.

Environment: The robot attempts to follow a 22 m ×
14 m oval track at a goal velocity of 6.5 m/s. At the start of
each episode, an obstacle is randomly generated 8 m in front
of the vehicle with a track offset uniformly distributed in the
range [−4 m, 4 m] and a radius uniformly distributed in the
range [0.3 m, 1.0 m]. An episode terminates either when the
robot has hit an obstacle or when tf seconds have elapsed.
When the episode terminates, the obstacle is cleared and
a new obstacle is generated at the beginning of the next
episode. The robot state at the end of one episode is the
same as its initial state at the beginning of the next episode,
i.e. the robot remains in motion from one episode to the next.

Policy Search: We perform ten policy search trials each
for PROPS and AC-PROPS. We train each policy for 400
iterations, collecting 50 episodes (i.e. trajectory roll-outs) in
each iteration and using a sliding window of 20 batches for
each policy update. For both algorithms, we set the bound
confidence 1 − δ = .95 indicating that the computed per-
formance bound should hold with 95% probability. For AC-
PROPS, we pre-train the value function using 500 trajectory
samples before policy updates begin and we use a value
function update constraint of ε = 0.01. The value function



Fig. 2. Comparison of convergence of policy costs of PROPS (red) and
AC-PROPS (blue). Shaded regions show standard deviation over 10 trials.

Fig. 3. Comparison of convergence of policy costs for AC-PROPS over
different values of policy smoothing parameter β. Shaded regions show
standard deviation over 10 trials.

approximator is a neural network with three hidden layers of
sizes 32, 32, and 16. Each layer uses a Rectified Linear Unit
(ReLU) activation function. For GAE used in AC-PROPS,
we set λ = 0.99 and γ = 0.999. Furthermore, we sample
policy parameters only at the beginning of each episode for
both methods (i.e. β = 0).

D. Results and Discussion

Figure 2 compares the learning curves for the navigation
policies trained with PROPS and AC-PROPS over ten trials.
AC-PROPS converges at a faster rate than PROPS, suggest-
ing that the reduced variance of the advantage estimates
relative to that of the total trajectory cost used by PROPS
leads to a more stable update strategy. However, note that
the variance of the learning curve across trials is larger for
AC-PROPS. The bias induced by by the advantage estimator
due to the estimation error of the learned value function may
result in premature convergence of the policy distribution.

It is important to note that the bias introduced by the
advantage estimator is not properly accounted for in the per-
formance bound used in the update law. Thus, the computed
upper confidence bound based on estimated advantages may

be violated more often than expected. This is not a major
issue because (1) the data demonstrate that it still results in
a reliable policy update and (2) a trajectory-based confidence
bound can still be computed as in [19] and used to certify
the resulting policy.

Figure 3 compares the learning curves of AC-PROPS for
different values of β, the tunable parameter for generalized
exploration. The data indicate that for this particular task,
pure episode-based policy sampling results in the fastest
convergence. Since van Hoof et. al. demonstrate that small
values of β can lead to gains in sample complexity for
learning policies for certain tasks [9], we suspect that the
same may be true for AC-PROPS even if it does not help
on this particular navigation task. Future work will evaluate
the practicality of generalized exploration in AC-PROPS on
a wider range of scenarios.

V. CONCLUSION

This work presented Actor-Critic PAC Robust Policy
Search, a policy search algorithm based on minimizing an
upper confidence bound on the expected step-wise negative
advantage of a policy. We evaluated the algorithm on a
vehicle navigation task and showed that it exhibited a faster
learning rate than the original PROPS formulation. Since AC-
PROPS is capable of step-wise policy sampling, we exper-
imented with generalized policy exploration and found that
episode-based sampling worked best on this particular task.
Future work will leverage AC-PROPS to train more general
policy representations with larger numbers of parameters
(like neural networks) and will evaluate AC-PROPS on a
wider range of tasks.

VI. APPENDIX

Theorem 2: The expected reward of a policy distribution
ρ(·|ν) can be expressed in terms of the expectation of
advantages Aν0 from some other policy distribution ρ(·|ν0)
under the trajectory distribution induced by ρ(·|ν) as

R(ν) = R(ν0) + Eτ,ξ∼p(·|ν)

[
N∑
t=0

Aν0(xt, ut)

]
.

Proof: Note that Aν(x, u) can be re-written as

Aν(x, u) = Ex′∼p(x′|x,u)[r(x, u) + V ν(x′)− V ν(x)].

Then, we have

Eτ,ξ∼p(·|ν)

[
N∑
t=0

Aν0(xt, ut)

]

= Eτ,ξ∼p(·|ν)

[
N∑
t=0

(r(xt, ut) + V ν0(xt+1)− V ν0(xt))

]

= Eτ,ξ∼p(·|ν)

[
N∑
t=0

r(xt, ut)− V ν0(x0)

]
= −Ex0∼p0(x)[V ν0 (x0)] + Eτ,ξ∼p(·|ν) [r(xt, ut)]

= −R(ν0) +R(ν)

from which Theorem 2 follows.
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