
The CoSTAR Block Stacking Dataset:
Learning with Workspace Constraints

Andrew Hundt1, Varun Jain1, Chia-Hung Lin1, Chris Paxton2, Gregory D. Hager1

Abstract— A robot can now grasp an object more effectively
than ever before, but once it has the object what happens next?
We show that a mild relaxation of the task and workspace
constraints implicit in existing object grasping datasets can
cause neural network based grasping algorithms to fail on even
a simple block stacking task when executed under more realistic
circumstances.

To address this, we introduce the JHU CoSTAR Block Stack-
ing Dataset (BSD), where a robot interacts with 5.1 cm colored
blocks to complete an order-fulfillment style block stacking
task. It contains dynamic scenes and real time-series data
in a less constrained environment than comparable datasets.
There are nearly 12,000 stacking attempts and over 2 million
frames of real data. We discuss the ways in which this dataset
provides a valuable resource for a broad range of other topics
of investigation.

We find that hand-designed neural networks that work on
prior datasets do not generalize to this task. Thus, to establish a
baseline for this dataset, we demonstrate an automated search
of neural network based models using a novel multiple-input
HyperTree MetaModel, and find a final model which makes
reasonable 3D pose predictions for grasping and stacking on
our dataset.

The CoSTAR BSD, code, and instructions are available at
sites.google.com/site/costardataset.

I. INTRODUCTION

Existing task and motion planning algorithms are more
than robust enough for a wide variety of impressive tasks,
and the community is looking into environments that are ever
closer to truly unstructured scenes. In this context, the recent
success of Deep Learning (DL) on challenging computer
vision tasks has spurred efforts to develop DL systems that
can be applied to perception-based robotics [1], [2]. DL
promises end-to-end training from representative data, to
solve complex, perception-based robotics tasks in realistic
environments with higher reliability and less programming
effort than traditional programming methods. Data from
existing planning methods can provide an excellent source
of ground truth data against which we can evaluate new
methods and compare the quality of model based algorithms
against their unstructured peers.

Existing robotics datasets such as those outlined in Ta-
ble II provide a good representation of certain aspects of
manipulation, but fail to capture end-to-end task planning
with obstacle avoidance. Capturing the interaction between
the robot, objects, and obstacles is critical to ensure success
in dynamic environments, as we show in Fig. 1. How can
we investigate these dependencies within a dynamic scene?

1 Johns Hopkins University Department of Computer Science.
{ahundt, vjain, ch.lin, cpaxton, ghager1}@jhu.edu

2 Chris Paxton is with NVIDIA, USA

Grasp Placement

Same Translation
Different Rotation

45° Rotation
Different Translation

Same Translation
No Rotation

Same Translation
Different Rotation

Gripper Motion:
Pure Translation

Grasp
Success

Collision

Failure Failure

✔

Failure

Grasp
Success

Failure

Collision

Topple

Initial Condition

180°

Collision

Topple

Task
Success

Task
Success

Failure

45°Rotate
45°45°

Rotate
180° 45°

✔

45°

Translate

Translate

Translate

Translate

TranslateTranslate

Translate

Translate

Translate

Rotate
Rotate

Rotate Rotate

Fig. 1: A simplified 2-step grasp(red), place(red,
on blue) stacking task with a side wall and asymmetric
gripper. Arrows indicate possible sequences of actions. Task
success is affected by the shape of the gripper, the obstacles,
and the relationship between the pose of the gripper and the
block it is holding.

Dataset Challenges Robot MovesOracle Requests
Specific Order

grasp()

place(on)

grasp()

move (home)

Network has no explicit
object model

Robot occludes objects

Orientation matters,
asymmetrical gripper

Contact allowed but
trial ends at force limit

Bin is inside workspace
where it can shift

AR tags are not an
input to the network

Sunlight varies greatly

place(on)

Neural Network
Predicts Goal Pose

Network Must Learn
-

-

-

-

-
-

Pose constraints due
to bin wall
Color and shape of
specific blocks
Pose of gripper for
grasping,
reorienting,
& placing objects
How to balance
specific blocks
Object Occlusion
How to release
blocks and leave the
scene without
toppling the tower

Input Measurements
-
-

Current Robot Pose
Initial and Current
RGB Images

Robot leaves to prove
the stack stands

Blocks can be on edge,
full 3D gripper
motion required

Fig. 2: An overview of the CoSTAR Block Stacking Dataset
task and the requirements placed on our example neural
network. In each example of stacking, the oracle requests a
random specific order of colored blocks to simulate different
customer choices.

Can an implicit understanding of physical dependencies be
created from raw data? We introduce the CoSTAR Block
Stacking Dataset (Fig. 2, 3, 4, and Sec. III) for the purpose of
investigating these questions. It is designed as a benchmark
for performing complex, multi-step manipulation tasks in
challenging scenes. The target task is stacking 3 of 4 colored
blocks in a specific order with simple target objects in a
cluttered scene and variable surrounding environment.

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Macau, China, November 4-8, 2019

978-1-7281-4004-9/19/$31.00 ©2019 IEEE 1797

Current PoseCurrent P
Input (v(vvvvvvvv(v(tvvvvvvvt , r t

ose
rrrrrrrrrrrrrrttttttt)

Ground Truth Ground Tru
Goal GGGGGGGGGGtt

Predicted Predicted
Goal PPPPPPPPPt

Fig. 3: The CoSTAR system [3] collecting the block stacking

dataset.

Our block stacking task is constrained enough that one

dataset might cover the task sufficiently, while still ensuring

dynamics and physical dependencies are part of the environ-

ment. We show how, despite this simplicity, the task cannot

be completed with the current design of existing grasping

networks (Sec. III), nor by the trivial transfer of one example

underlying architecture to a 3D control scheme (Sec. IV).

Therefore, we apply Neural Architecture Search (NAS)[4] to

this dataset using our novel multiple-input HyperTree Meta-

Model (Fig. 6 and Sec. IV-C) to find a viable model. NAS is

an approach to automatically optimize neural network based

models to specific applications. In fact, we show that useful

training progress is made with only a small subset of network

models from across a broad selection of similar architectures

(Fig 7). We hope that with specialization to other particular

tasks, MetaModels based on HyperTrees might also serve to

optimize other applications which incorporate multiple input

data sources.
To summarize, we make the following contributions:

1) The CoSTAR Block Stacking Dataset: a valuable re-

source to researchers across a broad range of robotics

and perception investigations.

2) The HyperTree MetaModel, which describes a space

for automatically refining neural network models with

multiple input data streams.

3) Baseline architectures to predict 6 Degree of Free-

dom (DOF) end-effector goals for the grasping and

placement of specific objects, as found via HyperTree

search.

II. OVERVIEW AND RELATED WORK

Block stacking is itself already studied to improve scene

understanding [5], and our videos include stacks standing,

leaning, and tumbling. This pairs well with ShapeStacks[6]

a synthetic dataset for understanding how stacks of simple

objects stand or fall. Example use cases for their dataset with

our own includes the evaluation of model based methods’

ability to accurately predict future consequences and detect

subtle collision scenarios with or without an object model.

CoSTAR Block Stacking Dataset Summary

Calibrated Images color, depth
Joint Data angle, velocity
Labels action, success/failure/error.failure
Blocks red, green, yellow, blue
Block Actions grasp(block), place(block, on block(s))
Location Action move to(home)
Typical Example Timeline 18.6s duration, 186 frames, 10Hz

3D Coordinate Poses Recorded
gripper base and center rgb camera depth camera
robot joints AR tags + ID# colored blocks

Examples by Category out of the Combined Total of 11,977

Blocks Only
Blocks + Toys

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

Success Training Task Failures Training Error Failures Training
Success Validation Task Failures Validation Error Failures Validation
Success Test Task Failures Test Error Failures Test

Train Val Test

TABLE I: Stacking was conducted under 2 conditions:

(1) blocks only and (2) blocks with plush toy distractors.

Task Failures complete 5 actions but are unsuccessful at

stacking. Causes of failures with errors include security stops

from collisions, user emergency stops, planning failures, and

software runtime errors.

Intuitively, block stacking might appear to be trivially

solved by existing grasping or 3D object pose estimation

algorithms alone. Recent advances in deep learning have rev-

olutionized robotic grasping with perception based methods

learned from big data [1], [2], [7], [8], [9], [10], [11]. One

notable limitation of past approaches to robotic manipulation

is the restriction of end effector poses to be either vertical

and facing down or normal to local depth values, with

only an angular parameter available to define orientation

changes [1], [2], [12], [13]. Also common is the use of

depth-only data [2] which precludes the possibility of object

discrimination based on color. Progress towards semantic

grasping of specific objects [9] is substantial, but it remains

an open problem.

We demonstrate one specific starting condition for the

block stacking task, visualized in Fig. 1, where obstacles and

task requirements imply these methods are not sufficient on

their own. We can reach two conclusions from the physical

shape, translation, and orientation dependencies in this fig-

ure: (1) The 4 DOF (x, y, z, θ) available for gripper motion

in current grasping networks [14], [12], [15] is not sufficient

for precisely grasping and then placing one specific block on

another in the general case, so at least one additional axis of

rotation is necessary. (2) A neural network which predicts a 6

DOF object pose alone is not sufficient to overcome obstacles

because a one to one mapping between 3D object poses

and a sequence of successful gripper grasp and placement

poses does not exist. In this example, no single definition

of object poses will work because the required 45◦rotation

for precise placement will not match any square object

pose. This means that even if an oracle provides both high-

level task instructions and perfect 3D object poses, an agent

must discern the sequence of gripper poses, the shape of

1798

Fig. 4: Row 1 is a successful and row 2 is a failed block stacking attempt. A sequence starts on the left with a clear view at
frame I0 then proceeds right showing the timesteps of the 5 goal poses Gt (Eq. 2, Fig. 2, 3) at which the gripper may open or
close. Notice the variation in bin position, gripper tilt, the challenging lighting conditions, the stack of 4 blocks, and the object
wear. Viewing video and other details is highly recommended, see sites.google.com/site/costardataset.

the objects, and control the robot correctly without a fatal
collision for all time steps in between. We describe several
of these requirements and challenges in Fig. 2.

These principles extend trivially to 3D if we consider all
possible positions and orientations of 4 blocks and all 4 side
walls, with rounded wall intersections. Consideration of other
initial states will reveal other clear counter-examples, but we
leave this exercise to the reader. It quickly becomes clear
that in the general 3D case of this scenario at least 5 DOF
are necessary to successfully grasp and then place a specific
block on another. Our goal is to eventually generalize to
more complex tasks than block stacking, so we design our
example algorithm for full 6 DOF gripper motions.

Other work has investigated learning from simulation and
then incorporating those models into robotic control [16].
Authors have explored simulation [17], [18], [19] and image
composition [20] to generate training data that transfers
to physical scenarios. Our approach to motion learning is
inspired by [1], [9], with additional extensions based on [21],
[20], [22], [23]. Others have used reinforcement learning for
generating API calls for pre-programmed actions [24].

An investigation into the multi-step retrieval of an oc-
cluded object called Mechanical Search [15] specifically
states: “[The] performance gap [between our method and
a human supervisor] suggests a number of open questions,
such as: Can better perception algorithms improve perfor-
mance? Can we formulate different sets of low level policies
to increase the diversity of manipulation capability? Can we
model Mechanical Search as a long-horizon POMDP and
apply deep reinforcement learning in simulation and/or in
physical trials to learn more efficient policies?” Our CoSTAR
dataset is specifically designed as a resource for explor-
ing, addressing, pre-training, and benchmarking solutions to
questions like these.

We can also imagine many additional topics for which
the JHU CoSTAR Block Stacking Dataset might be utilized,
such as the investigation and validation of task and motion
planning algorithms offline on real data, imitation learning
and off policy training of Reinforcement Learning[12], [25]
algorithms for complete tasks with a sparse reward, model
based algorithms which aim to complete assembly tasks in
cartesian or joint space. Both the dataset and HyperTrees

might also be useful for developing, evaluating and compar-
ing algorithms utilizing sim-to-real transfer, GANs, domain
adaptation, and metalearning[26], [27]. These applications
become particularly interesting when the 3D models we have
available are added to a simulation, or when this dataset is
combined with other real or synthetic robotics datasets.

Finally, Neural Architecture Search is an emerging way
to automatically optimize neural network architectures to
improve the generalization of an algorithm. Key examples
include NASNet [28], and ENAS [29], but a broad overview
is outside the scope of this paper, so we refer to a recent
survey [4].

III. BLOCK STACKING DATASET

We define a block stacking task where a robot attempts to
stack 3 of 4 colored blocks in a specified order. The robot
can be seen in Fig. 3, and examples of key image frames for
two stack attempts are shown in Fig. 4. A dataset summary
can be found in Table I.

Data is collected utilizing our prior work on the
collaborative manipulation system CoSTAR [3], [35].
CoSTAR is a system designed for end-user creation of
robot task plans that offers a range of capabilities plus a
rudimentary perception system based on ObjRecRANSAC.
Motion is executed by first planning a direct jacobian
pseudoinverse path, with an RRT-connect fallback if that
path planning fails. In a single stack attempt the robot aims
to complete a stack by performing 5 actions: 2 repetitions
of the CoSTAR SmartGrasp and SmartPlace actions,
plus a final move to the home position above the bin. The
sequence pictured in Fig. 2 consists of the following 5
actions from top to bottom: grasp(red), place(red,
on blue), grasp(yellow), place(yellow,
on red blue), and move(home). There are a total of
41 possible object-specific actions: grasp actions interact
with each of the 4 colored blocks (4 actions), placement
actions are defined for ordered stacks with up to height 2
(36 actions), and move(home).

The dataset provides the appearance of smooth actions
with the gripper entering the frame, creating a stack in the
scene, and finally exiting the frame at the end. During real
time execution the robot (1) proceeds to a goal, (2) saves

1799

Robot Dataset Real
Data

Scene
Varies

Human
Demo

Open
License Grasp Place Specific

Objects
Scene

Obstacle
Phys.
Dep.

Robot
Model

Val
Set

Test
Set

Code
Incl. Trials Time

Steps
Rate
Hz

JHU CoSTAR Block Stacking 3 3 7 3 3 3 3 3 3 3 3 3 3 11,977 186 10
Google Grasping[1] 3 3 7 3 3 7 7 7 7 7 7 7 7 ∼800k ∼25 1
MIME[30] 3 3 3 – 3 3 7 7 3 3 7 7 7 8,260 ∼100 7
BAIR Pushing[31] 3 7 7 – 7 7 7 7 3 3 7 3 3 45,000 30 –
BAIR VisInt-solid/cloth[32] 3 7 7 – 3 7 7 7 3 3 3 3 3 16k/31k 30/20 –
Jacquard[33] 7 7 7 7 3 7 7 7 7 3 7 7 7 54,485 1 –
Cornell[34] 3 7 7 – 3 7 3 7 7 3 7 7 3 1,035 1 –
Dex-Net 2.0[2] 7 7 7 – 3 7 7 7 7 3 7 7 3 6.7M 1 –

TABLE II: A comparison of robotics datasets. Our CoSTAR dataset also includes methods, documentation, examples, and
the details to reproduce it. A dash indicates not available or not applicable. Physical dependencies are described in Fig. 1.
The bin is our “Scene Obstacle”; forceful collision causes a security stop and the “Failure with errors” condition in Table I.

the current robot pose, (3) stops recording data, (4) moves
out of camera view to the home position, (5) estimates
the block poses, (6) moves back to the saved pose, (7)
resumes recording, (8) starts the next action. After moving
to the final home position object poses are estimated and
the maximum z height of a block determines stack success
which is confirmed with human labeling. Some features, such
as collision checks, are disabled so that a set of near-collision
successes and failures may be recorded.

IV. PROBLEM AND APPROACH

We explore one example application on the CoSTAR
dataset by demonstrating how high-level pose goals might
be set without object models. We assume that a higher
level oracle has identified the next necessary action, and the
purpose of the neural network is to learn to set 3D pose
goals from data and an object-specific action identifier. The
proposed goal can then be reached by a standard planning
or inverse kinematics algorithm. The high-level task and
requirements placed on the network are outlined in Fig. 2.

A. Goals and Encodings

Each successful stacking attempt consists of 5 sequential
actions (Fig. 2, 4) out of the 41 possible object-specific ac-
tions described in Sec. III. Stacking attempts and individual
actions vary in duration and both are divided into separate
100 ms time steps t out of a total T . There is also a pose
consisting of translation v and rotation r at each time step
(Fig. 3), which are encoded between [0,1] for input into the
neural network as follows: The translation vector encoding
is v = (x, y, z)/d+0.5, where d is the maximum workspace
diameter in meters. The Rotation r axis-angle encoding is
r = (ax, ay, az, sin(θ), cos(θ))/s+ 0.5, where ax, ay, az is
the axis vector for gripper rotation, θ is the angle to rotate
gripper in radians, and s is a weighting factor relative to
translation. Example E is the input to the neural network:

Et = (I0, It, vt, rt, at) (1)

Where I0 and It are the initial and current images, vt, rt are
the respective base to gripper translation and rotation (Fig.
3). at is the object-specific one-hot encoding of 41 actions.
Ground Truth Goal Pose Gt from Fig. 3 is the 3D pose at

time g at which the gripper trigger to open or close, ending
an action in a successful stacking attempt:

Gt = (vgt , r
g
t)|t ≤ g ≤ T, eg 6= eg−1, ag == at (2)

where g is the first time the gripper moves after t, e is the
gripper open/closed position in [0, 1]. Finally, the Predicted
Goal Pose Pt = (vpt , r

p
t) is a prediction of Gt.

Each example Et has a separate sub-goal Gt defined by
(1) the current action at and (2) the robot’s 3D gripper pose
relative to the robot base frame at the time step g when the
gripper begins moving to either grasp or release an object.
Motion of the gripper also signals the end of the current
action, excluding the final move(home) action, which has
a fixed goal pose.

B. Exploring the Block Stacking Dataset

We implemented several models similar to those found
in existing work[1], [36], [21], [37]. We minimized our
modifications to those necessary to accommodate our data
encoding. Despite our best efforts, no baseline model we
tried, and no hand-made neural network variation thereof
could converge to reasonable values. Once we verified the
CoSTAR dataset was itself correct, evaluated models on the
Cornell Grasping Dataset[34] without issue, and tried a va-
riety of learning rates, optimizers, models and various other
parameters tuned by hand this complete lack of progress
became very surprising. We analyze the underlying cause in
Sec. V-A and include one reference model based on Kumra
et. al.[36] in Fig. 5 and Table III for comparison. It quickly
became clear that manually tweaking configurations would
not be sufficient, so a more principled approach to network
design would be essential. To this end, Neural Architecture
Search and hyperparmeter search are well studied methods
for automatically finding optimal parameters for a given
problem, and we apply them here.

C. HyperTree MetaModel

Much like how Dr. Frankenstein’s creature was assembled
from pieces before he came to life in the eponymous book,
HyperTrees combine parts of other architectures to optimize
for a new problem domain. Broadly, robotics networks
often have inputs for images and/or vectors which are each
processed by some number of neural network layers. These

1800

3D Gripper Rotations - Distribution of Angular Error

train
HyperTree val

test
Handmade train

ResNet val
Model test 58%

56%
20%
12%
5%
6%

32%
32%

9%
7%

8%
8%

9%
11%

21%
18%

22%
23%

1%
1%

31%
23%

28%
36%

19%
40%

37%
26%

0-7.5 ° 7.5-15 ° 15-30 ° 30-60 ° 60-120 °

3D Gripper Translations - Distribution of Cartesian Error

train
HyperTree val

test
Handmade train

ResNet val
Model test

0% 25% 50% 75% 100%

100%
100%
23%

1%
1%
1%

48%
5%
4%

2%

20%
23%
19%

13%

7%
31%

32%
33%

2%
15%

17%
22%

12%
11%

14%

13%
16%

15%

0-5 mm 5-10 mm 10-20 mm 20-40 mm 40-80 mm 80-160 mm 160+ mm
2%

Cross-Model HyperTree Comparison
Distribution of Test Cartesian Error

0%

25%

50%

75%

100%

final* 1 2 3 4 5 6 7 8 9

0-5 mm 5-10 mm 10-20 mm 20-40 mm
40-80 mm 80-160 mm 160-320 mm 320-2560 mm

Separate Models Ranked By Average Cartesian Error at 200 Epochs
Larger Proportion with Low Error is Better (*final is model 1 with no epoch limit)

Fig. 5: (All) The best models’ predictions Pt against ground truth Gt at random times t. A high percentage of samples with

low error is better. (Left) The importance of hyperparameter choice is visible in models 1-9 which were selected from the

best of 1100 HyperTree candidates and then trained for 200 epochs. (Top) Distribution of angular error between predicted

and actual 3D gripper rotations ΔRot(rpt , r
g
t) (Eq. 2, and Fig. 3). (Bottom) Distribution of translation error ‖vpt − vgt ‖ (Eq.

2, and Fig. 3).

Vector Branch Trunk

Vision Branch Vision Branch

Image Model

concat

Conv Trunk Blocks

sigmoid

3D Gripper Pose
Prediction Pt

Image Model

Vector Blocks

Translation vt

Rotation rt

Action at

tile

Dense Block
concat

HyperTree MetaModel

Initial Clear View I0 Current Arm Visible It

Fig. 6: A detailed view of the HyperTree MetaModel

configured for predicting 3D ground truth goal poses, Gt,

on the block stacking dataset. HyperTrees can accept an

arbitrary number of image and vector inputs. Hyperparameter

definitions are in Table III. “Blocks” are a sequence of layers.

components may then be concatenated to apply additional

blocks of layers for data fusion. The output of these layers

are subsequently split to one or more block sequences,

typically dense layers. To search for viable architectures, the

HyperTree MetaModel (Fig. 6) parameterizes these elements

(Table III) so that models and their constituent parts might

be defined, swapped, evaluated and optimized in a fully

automatic fashion. In fact, a HyperTree MetaModel’s search

space can generalize many of the previously referenced

T
ra

ns
la

ti
on

 E
rr

or

m
et

er
s,

 l
og

 s
ca

le
0.01

0.1

1

10

Rotation Error, radians, linear scale

0.65 0.813 0.975 1.138 1.3

simultaneous test error
simultaneous val error
independent val error
independent test error

lower is better, 1 epoch of training
Cross-Model Comparison of Average Error

Fig. 7: A cross-model comparison of average error with 1

epoch of training. Each dot represents a single HyperTree

architecture which predicts both translation and orientation,

Pt. Many models within the search space do not converge to

useful predictions. The squares demonstrate how a selected

pair of HyperTree architectures reduce error by predicting

translation vpt and rotation rpt independently.

architectures as a special case.

We explore and then optimize the models’ hyperparam-

eter based configuration of the network structure using the

standard optimization framework GPyOpt [42]. We (1) run

HyperTree search for 1 epoch on between 500-5,000 models

with augmentation, such as cutout[43], disabled depending

on the available computing resources and dataset size. From

this we (2) automatically construct a table of the best models,

which we sort by a chosen metric, typically the average

cartesian or angular validation error. We then (3) conduct

a second automated training run proceeding down the top

1-10% of this sorted list for 10 epochs per model, which is

added to our model table. In step (4) we repeat steps 2 and 3

for 200 epochs with 2-10 models and augmentation enabled,

if appropriate. Step (5) is a 600 epoch training run initialized

with the best model from step 4 resumed as needed until

convergence, to reach a final model according to the chosen

validation metric. An optional step (6) is to manually narrow

the hyperparameter search space to ranges defined by the best

image and trunk models and repeat steps 1-5.

Variables, dimensions and inputs above (as in Sec. IV-

A and IV-C) are parameterized. For example, HyperTrees

1801

Hyperparameter HyperTree Search Space Translation Model Rotation Model Handmade

Image Model [VGG, DN, RN, IRNv2, NAS] NAS VGG16 ResNet50
Trainable Image Model Weights* [True, False] True True True
CoordConv Layer Location [None, Pre-Trunk, Pre-Image] None Pre-Trunk None
Loss Function* [mse, mae, msle] mse msle mse
Activation (Conv3x3, VB, DB) [relu, elu, linear] relu, relu, relu N/A, relu, relu relu, N/A, relu
Vector Block Model [Dense, DN] Dense DN N/A
Vector Block Layer Count n ∈ [0..5) 2 1 0
Conv Trunk Block Model [Conv3x3, NAS, DN, RN] Conv3x3 NAS N/A
Conv Trunk Block Count n ∈ [0..11) 8 8 0
Filters (Vector, Trunk, DB) 2n|n ∈ [6..13), [6..12), [6..14) 2048, 1024, 512 256, 32, 2048 N/A, N/A, 1024
Dense Block Layer Count n ∈ [0..5) 2 3 2
Normalization (Vector, Trunk) [Batch, Group, None] Batch, None Batch, Batch N/A, Batch
Optimizer* [SGD, Adam] SGD SGD SGD
Initial Learning Rate* 0.9n|n ∈ [0.0..100.0] continuous 1.0 1.0 1.0
Dropout rate* [0, 1/8, 1/5, 1/4, 1/2, 3/4] 1/5 1/5 1/5

TABLE III: Architecture Search Parameters for the HyperTree MetaModel (Fig. 6) vs the Handmade model. Image Models:
VGG16 [38], DN is DenseNet 121 [37], RN is ResNet 50 [21], [39], IRNv2 is Inception ResNetv2 [40], NAS is NASNet
Mobile [28]. For Conv Trunk Block Model, NAS refers to the NASNet A Cell, DN refers to the DenseNet Dense Block,
and ResNet refers to their Identity Block. The Activation hyperparameter applies to the Vector Model, the Conv3x3 Trunk
Block, and the Dense Layers in the Dense Block (DB). CoordConv [41] “Pre-Image” applies an initial CoordConv Layer
to each input image and CoordConv “Pre-Trunk” applies a CoordConv layer after the vision and vector branches have been
concatenated in the HyperTree Trunk. In the Vector Block (VB) Model, “Dense” is a sequence of Dense Layers, while
“DNBlock” is a DenseNet style block where Dense layers replace convolutions for the purpose of working with 1D input.
Starred * parameters were searched then locked in manually for subsequent searches to ensure consistency across models.

accept zero or more vector and image inputs. The Cornell
Grasping Dataset provides one image, and we utilize two
on the block stacking dataset. Block stacking results are
described in Fig. 5, Table III, and Section V.

V. RESULTS

Cornell Grasping Dataset: We first demonstrate that
the HyperTree MetaModel with vector inputs generalizes
reasonably well on the Cornell Grasping Dataset. Our pose
classification model gets 96% object-wise 5-fold cross evalu-
ation accuracy, compared with 93% for DexNet 2.0 [2]. State
of the art is an image-only model at 98%[14].

Separation of translation and rotation models: In our
initial search of the CoSTAR Block Stacking Dataset, a
single model contained a final dense layer which output
8 sigmoid values encoding Pt. The results of this search
represent 1,229 models which are pictured as dots in Fig.
7. The figure demonstrates that we found no models which
were effective for both translation vpt and rotation rpt simul-
taneously. This observation led us to conduct independent
model searches with one producing 3 sigmoid values vpt (Eq.
2) encoding translations, and 5 sigmoid values predicting rpt
(Eq.2) encoding rotations in Pt (Eq. 2). An example of the
resulting improvement in performance plotted as squares is
shown in Fig. 7.

CoSTAR Block Stacking Dataset: The hyperparameters
of the best models resulting from the separate translation
and rotation model searches are in Table III, while the
performance of the top translation and rotation model is
detailed in Fig. 5 for the training, validation, and test data.

Results are presented on the success-only non-plush subset
because the plush subset was being prepared during these
experiments. For translations on the HyperTree network,
67% of test pose predictions are within 4 cm and the average
error is 3.3 cm. For comparison, the colored blocks are 5.1
cm on a side. HyperTrees have 81% of rotation predictions
within 30◦and an average test angular error of 18.3◦.

A. Ablation Study

In essence, HyperTree search is itself an automated abla-
tive study on the usefulness of each component in its own
structure. This is because a hyperparameter value of 0 or
None in Table III represents the case where that component
is removed. For this reason, the best HyperTree models will
or will not have these components depending solely on the
ranking of validation performance (Fig. 7). For example,
a ResNetv2[36] based grasping model like the manually
defined one in Fig. 5 and Table III is a special case which
would rise to the top of the ranking if it were particularly
effective.

As we look back to our initial hand-designed models (Sec.
IV-B), recall that these did not converge to useful levels of
error. Fig. 7 reveals why this might be. Only a select few of
the HyperTree models make substantial progress even after
training for 1 full epoch of more than 1 million time steps.
Essentially, this means the hand-designed models are simply
not converging due to the choice of hyperparameters. For this
reason we can conclude that an automated search of a well
designed search space can improve outcomes dramatically.

1802

Fig. 8: A successful execution of the grasp(red) action

with our final model. The predicted gripper orientation keeps

the attached AR tag facing away from the walls.

An additional HyperTree search of 1100 cartesian mod-

els confirms that differences in model quality persist with

additional training (Fig. 5). This search specified a NASNet-

Mobile [28] image model and either a Conv3x3 or NASNet

model A cell trunk, selected to explore the space around

our final cartesian model. We conducted an initial 1 epoch

run, a second 40 epoch run, and then a final 200 epoch run

on the 9 best models with respect to validation cartesian

error. The hyperparameters of the top 9 models vary widely

within the search space. Examples of variation include: 0-3

vector branch layers, both vector block models, 0-4 dense

block layers, 2-10 trunk layers, 512-8192 vector filters, all

3 CoordConv options, and both trunk options. This dramatic

variation is very counter-intuitive. Indeed, we found the

selection of 8 separate 32 filter NASNet A cells in our

own best rotation HyperTree model (Table III) to be a very

surprising choice. We would be unlikely to select this by

hand. This unpredictability implies that there are many local

minima among different possible architectures. Therefore,

the broader conclusion we draw here is that researchers ap-

plying neural networks to new methods should perform broad

hyperparameter sweeps and disclose their search method

before reaching a firm conclusion regarding the strength of

one method over another.

B. Physical Implications and Future Work

An example of the physical behavior of our final model

(Fig. 8) shows initial progress towards an understanding of

the obstacles in the scene, because the protruding side of the

gripper faces away from the wall. Our accompanying video

shows several qualitative test grasps and the motion of the

predicted pose as a block moves around the scene. However,

these qualitative tests also indicate the current model is not

yet accurate enough for end-to-end execution, which we

leave to future work.

Several clear avenues for improvement exist. Predictions

might be made on a pixel-wise basis[13] to improve spatial

accuracy, and pose binning[44] might improve accuracy. The

Cross Entropy Method could sample around proposals for

assessment with a Q function[12]. In turn, a well defined

MetaModel based on HyperTrees might improve the accu-

racy of the networks underlying these other methods.

Beyond models, several open questions remain before

we can more fully leverage datasets: How can we assess

accuracy with respect to successful or failed end-to-end trials

without a physical robot? For example, there is not a trivial

mapping from a given rotation and translation error to a

trial’s success, so what metric will best generalize to real

robot trials? Can we encode, embed, represent, and evaluate

such information in a way that generalizes to new situations?

The CoSTAR dataset can itself serve as a medium with which

to tackle these objectives.

VI. CONCLUSION

We have presented the CoSTAR Block Stacking Dataset

as a resource for researchers to investigate methods for

perception-based manipulation tasks. This dataset supports

a broad range of investigations including training off-policy

models, the benchmarking of model based algorithms against

data driven algorithms, scene understanding, semantic grasp-

ing, semantic placement of objects, sim-to-real transfer,

GANs, and more. The CoSTAR BSD can serve to bridge the

gap between basic skills and multi-step tasks, so we might

explore the broader capabilities necessary to achieve gener-

alized robotic object manipulation in complex environments.

To establish a baseline for this dataset we created the

HyperTree MetaModel automated search method, which is

designed for this problem and others in which existing archi-

tectures fail to generalize. Our final model from this search

qualitatively demonstrates grasping of a specific object and

can correctly avoid a scene’s boundaries, an essential capa-

bility for the full stacking task in a real-world environment.

VII. ACKNOWLEDGEMENTS

We thank Chunting Jiao for his assistance with data

collection. This material is based upon work supported by the

National Science Foundation under NSF NRI Grant Award

No. 1637949.

REFERENCES

[1] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen,
“Learning hand-eye coordination for robotic grasping with deep
learning and large-scale data collection,” The International Journal of
Robotics Research, vol. 37, no. 4-5, pp. 421–436, 2018, dataset:https:
//sites.google.com/site/brainrobotdata/home. [Online]. Available: https:
//doi.org/10.1177/0278364917710318

[2] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” in Robotics:
Science and Systems (RSS), 2017, dataset:berkeleyautomation.github.
io/dex-net/.

[3] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D.
Hager, “CoSTAR: Instructing collaborative robots with behavior
trees and vision,” Robotics and Automation (ICRA), 2017 IEEE
International Conference on, 2017. [Online]. Available: https:
//arxiv.org/abs/1611.06145

[4] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search:
A survey.” Journal of Machine Learning Research, vol. 20, no. 55,
pp. 1–21, 2019. [Online]. Available: http://arxiv.org/abs/1808.05377

[5] A. Lerer, S. Gross, and R. Fergus, “Learning physical intuition of
block towers by example,” International Conference on Machine
Learning, pp. 430–438, 2016.

[6] O. Groth, F. B. Fuchs, I. Posner, and A. Vedaldi, “Shapestacks: Learn-
ing vision-based physical intuition for generalised object stacking,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 702–717.

1803

[7] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[8] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning
to grasp from 50k tries and 700 robot hours,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA), 2016,
pp. 3406–3413. [Online]. Available: http://arxiv.org/abs/1509.06825

[9] E. Jang, S. Vijayanarasimhan, P. Pastor, J. Ibarz, and S. Levine,
“End-to-end learning of semantic grasping,” in Conference on
Robot Learning, 2017, pp. 119–132. [Online]. Available: http:
//arxiv.org/abs/1707.01932

[10] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning
to poke by poking: Experiential learning of intuitive physics,” in
Advances in Neural Information Processing Systems, 2016, pp. 5074–
5082.

[11] J. Redmon and A. Angelova, “Real-time grasp detection using convo-
lutional neural networks,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2015, pp. 1316–1322.

[12] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
“Scalable deep reinforcement learning for vision-based robotic
manipulation,” in Conference on Robot Learning, 2018. [Online].
Available: https://arxiv.org/abs/1806.10293

[13] D. Morrison, J. Leitner, and P. Corke, “Closing the loop for
robotic grasping: A real-time, generative grasp synthesis approach,”
Robotics: Science and Systems XIV, Jun 2018. [Online]. Available:
http://dx.doi.org/10.15607/RSS.2018.XIV.021

[14] H. Zhang, X. Zhou, X. Lan, J. Li, Z. Tian, and N. Zheng,
“A real-time robotic grasp approach with oriented anchor box,”
arXiv preprint arXiv:1809.03873, 2018. [Online]. Available: http:
//arxiv.org/abs/1809.03873

[15] M. Danielczuk, A. Kurenkov, A. Balakrishna, M. Matl, R. Martin-
Martin, A. Garg, S. Savarese, and K. Goldberg, “Mechanical
search: Mutli-step retrieval of a target object occluded by
clutter,” 2019. [Online]. Available: https://abalakrishna123.github.io/
files/2018-mech-search.pdf

[16] I. Mordatch, N. Mishra, C. Eppner, and P. Abbeel, “Combining model-
based policy search with online model learning for control of physical
humanoids,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2016, pp. 242–248.

[17] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp.
23–30.

[18] F. Zhang, J. Leitner, M. Milford, and P. Corke, “Modular
deep q networks for sim-to-real transfer of visuo-motor policies,”
Australasian Conference on Robotics and Automation (ACRA) 2017,
2016. [Online]. Available: http://arxiv.org/abs/1610.06781

[19] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakr-
ishnan, L. Downs, J. Ibarz, P. Pastor, K. Konolige, et al., “Using
simulation and domain adaptation to improve efficiency of deep
robotic grasping,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2018, pp. 4243–4250.

[20] C. Li, M. Zeeshan Zia, Q.-H. Tran, X. Yu, G. D. Hager, and
M. Chandraker, “Deep supervision with shape concepts for occlusion-
aware 3d object parsing,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep
residual networks,” European Conference on Computer Vision, pp.
630–645, 2016. [Online]. Available: http://arxiv.org/abs/1603.05027

[22] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine, “Learn-
ing modular neural network policies for multi-task and multi-robot
transfer,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 2169–2176.

[23] L. Wang, C.-Y. Lee, Z. Tu, and S. Lazebnik, “Training deeper
convolutional networks with deep supervision,” arXiv preprint
arXiv:1505.02496, 2015. [Online]. Available: http://arxiv.org/abs/
1505.02496

[24] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese,
“Neural task programming: Learning to generalize across hierarchical
tasks,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 1–8.

[25] Y. Aytar, T. Pfaff, D. Budden, T. Paine, Z. Wang, and N. de Freitas,

“Playing hard exploration games by watching youtube,” in Advances
in Neural Information Processing Systems, 2018, pp. 2935–2945.

[26] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan,
J. Ibarz, S. Levine, R. Hadsell, and K. Bousmalis, “Sim-to-real via
sim-to-sim,” in CVPR, 2019, pp. 12 627–12 637. [Online]. Available:
http://arxiv.org/abs/1812.07252

[27] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks.” International Conference on
Machine Learning, pp. 1126–1135, 2017.

[28] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning
transferable architectures for scalable image recognition,” in The
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018. [Online]. Available: http://arxiv.org/abs/1707.07012

[29] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient
neural architecture search via parameters sharing,” International
Conference on Machine Learning, pp. 4092–4101, 2018. [Online].
Available: http://arxiv.org/abs/1802.03268

[30] P. Sharma, L. Mohan, L. Pinto, and A. Gupta, “Multiple interactions
made easy (mime): Large scale demonstrations data for imitation,” in
Conference on Robot Learning, 2018, pp. 906–915.

[31] F. Ebert, C. Finn, A. X. Lee, and S. Levine, “Self-supervised vi-
sual planning with temporal skip connections,” in Conference on
Robot Learning, 2017, pp. 344–356, dataset:https://sites.google.com/
berkeley.edu/robotic-interaction-datasets/home.

[32] F. Ebert, S. Dasari, A. X. Lee, S. Levine, and C. Finn,
“Robustness via retrying: Closed-loop robotic manipulation with
self-supervised learning,” in Conference on Robot Learning,
2018, pp. 983–993, dataset:https://sites.google.com/berkeley.edu/
robotic-interaction-datasets/home.

[33] A. Depierre, E. Dellandréa, and L. Chen, “Jacquard: A large scale
dataset for robotic grasp detection,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 3511–3516.

[34] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” The International Journal of Robotics Research, vol. 34, no.
4-5, pp. 705–724, 2015, dataset:http://pr.cs.cornell.edu/grasping/rect.
[Online]. Available: https://doi.org/10.1177/0278364914549607

[35] C. Paxton, F. Jonathan, A. Hundt, B. Mutlu, and G. D. Hager,
“Evaluating methods for end-user creation of robot task plans,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 6086–6092.

[36] S. Kumra and C. Kanan, “Robotic grasp detection using deep
convolutional neural networks,” 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sep 2017.
[Online]. Available: http://dx.doi.org/10.1109/IROS.2017.8202237

[37] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017.

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” International Conference on
Learning Representations, 2015. [Online]. Available: http://arxiv.org/
abs/1409.1556

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 770–778. [Online]. Available:
http://arxiv.org/abs/1512.03385

[40] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
in Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence. AAAI Press, 2017, pp. 4278–4284.

[41] R. Liu, J. Lehman, P. Molino, F. P. Such, E. Frank, A. Sergeev, and
J. Yosinski, “An intriguing failing of convolutional neural networks and
the coordconv solution,” in Advances in Neural Information Processing
Systems, 2018, pp. 9628–9639.

[42] T. G. authors, “GPyOpt: A bayesian optimization framework in
python,” http://github.com/SheffieldML/GPyOpt, 2016.

[43] T. DeVries and G. W. Taylor, “Improved regularization of
convolutional neural networks with cutout,” arXiv preprint
arXiv:1708.04552, 2017. [Online]. Available: http://arxiv.org/abs/
1708.04552

[44] S. Mahendran, M. Y. Lu, H. Ali, and R. Vidal, “Monocular
object orientation estimation using riemannian regression and
classification networks,” arXiv preprint arXiv:1807.07226, 2018.
[Online]. Available: http://arxiv.org/abs/1807.07226

1804

