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Abstract

We give a new proof of the “transfer theorem” underlying adaptive data analysis: that
any mechanism for answering adaptively chosen statistical queries that is differentially private
and sample-accurate is also accurate out-of-sample. Our new proof is elementary and gives
structural insights that we expect will be useful elsewhere. We show: 1) that differential privacy
ensures that the expectation of any query on the posterior distribution on datasets induced
by the transcript of the interaction is close to its true value on the data distribution, and
2) sample accuracy on its own ensures that any query answer produced by the mechanism
is close to its posterior expectation with high probability. This second claim follows from
a thought experiment in which we imagine that the dataset is resampled from the posterior
distribution after the mechanism has committed to its answers. The transfer theorem then
follows by summing these two bounds, and in particular, avoids the “monitor argument” used
to derive high probability bounds in prior work.

An upshot of our new proof technique is that the concrete bounds we obtain are substan-
tially better than the best previously known bounds, even though the improvements are in the
constants, rather than the asymptotics (which are known to be tight). As we show, our new
bounds outperform the naive “sample-splitting” baseline at dramatically smaller dataset sizes
compared to the previous state of the art, bringing techniques from this literature closer to
practicality.
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1 Introduction

Many data analysis pipelines are adaptive: the choice of which analysis to run next depends on the
outcome of previous analyses. Common examples include variable selection for regression problems
and hyper-parameter optimization in large-scale machine learning problems: in both cases, common
practice involves repeatedly evaluating a series of models on the same dataset. Unfortunately, this
kind of adaptive re-use of data invalidates many traditional methods of avoiding over-fitting and
false discovery, and has been blamed in part for the recent flood of non-reproducible findings in the
empirical sciences [Gelman and Loken, 2014].

There is a simple way around this problem: don’t re-use data. This idea suggests a baseline
called data splitting : to perform k analyses on a dataset, randomly partition the dataset into k
disjoint parts, and perform each analysis on a fresh part. The standard “holdout method” is the
special case of k = 2. Unfortunately, this natural baseline makes poor use of data: in particular,
the data requirements of this method grow linearly with the number of analyses k to be performed.

A recent literature starting with Dwork et al. [2015c] shows how to give a significant asymptotic
improvement over this baseline via a connection to differential privacy: rather than computing
and reporting exact sample quantities, perturb these quantities with noise. This line of work
established a powerful transfer theorem, that informally says that any analysis that is simultaneously
differentially private and accurate in-sample will also be accurate out-of-sample. The best analysis
of this technique shows that for a broad class of analyses and a target accuracy goal, the data
requirements grow only with

√
k — a quadratic improvement over the baseline [Bassily et al.,

2016]. Moreover, it is known that in the worst case, this cannot be improved asymptotically [Hardt
and Ullman, 2014, Steinke and Ullman, 2015]. Unfortunately, thus far this literature has had little
impact on practice. One major reason for this is that although the more sophisticated techniques
from this literature give asymptotic improvements over the sample-splitting baseline, the concrete
bounds do not actually improve on the baseline until the dataset is enormous. This remains true
even after optimizing the constants that arise from the arguments of [Dwork et al., 2015c] or [Bassily
et al., 2016], and appears to be a fundamental limitation of their proof techniques [Rogers et al.,
2019]. In this paper, we give a new proof of the transfer theorem connecting differential privacy
and in-sample accuracy to out-of-sample accuracy. Our proof is based on a simple insight that
arises from taking a Bayesian perspective, and in particular yields an improved concrete bound
that beats the sample-splitting baseline at dramatically smaller data set sizes n compared to prior
work. In fact, at reasonable dataset sizes, the magnitude of the improvement arising from our new
theorem is significantly larger than the improvement between the bounds of Bassily et al. [2016]
and Dwork et al. [2015c]: see Figure 1.

1.1 Proof Techniques

Prior Work Consider an unknown data distribution P over a data-domain X , and a dataset
S ∼ Pn consisting of n i.i.d. draws from P. It is a folklore observation (attributed to Frank McSh-
erry) that if a predicate q : X → [0, 1] is selected by an ǫ-differentially private algorithmM acting on
S, then it will generalize in expectation (or have low bias) in the sense that |Eq∼M(S)[Ex∼P [q(x)]−
1
n

∑

x∈S q(x)]| ≈ ǫ. But bounds on bias are not enough to yield confidence intervals (except
through Markov’s inequality), and so prior work has focused on strengthening the above obser-
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imagine that after the entire interaction with M is complete, the dataset S is resampled from the
posterior distribution Q on datasets conditioned on the output of M . This thought experiment
doesn’t alter the joint distribution on datasets and outputs, and so any in-sample accuracy guar-
antees that M has continue to hold under this hypothetical re-sampling experiment. But because
the empirical value of the queries on the re-sampled dataset are likely to be close to their expected
value over the posterior Q, the only way the mechanism can promise to be sample-accurate with
high probability is if it provides answers that are close to their expected value over the posterior
distribution with high probability.

This focuses attention on the posterior distribution on datasets induced by differentially private
transcripts. But it is not hard to show that a consequence of differential privacy is that the posterior
expectation of any query must be close to its expectation over the data distribution with high
probability. In contrast to prior work, this argument directly leverages high-probability in-sample
accuracy guarantees of a private mechanism to derive high-probability out-of-sample guarantees,
without the need for additional machinery like the monitor argument of [Bassily et al., 2016].

1.2 Further Related Work

The study of “adaptive data analysis” was initiated by Dwork et al. [2015c,b] who provided upper
bounds via a connection to differential privacy, and Hardt and Ullman [2014] who provided lower
bounds via a connection to fingerprinting codes. The upper bounds were subsequently strengthened
by Bassily et al. [2016], and the lower bounds by Steinke and Ullman [2015] to be (essentially)
matching, asymptotically. The upper bounds were optimized by Rogers et al. [2019], which we
use in our comparisons. Subsequent work proved transfer theorems related to other quantities
like description length bounds [Dwork et al., 2015a] and compression schemes [Cummings et al.,
2016], and expanded the types of analyses whose generalization properties we could reason about
via a connection to a quantity called approximate max information [Dwork et al., 2015a, Rogers
et al., 2016]. Feldman and Steinke [2017, 2018] gave improved methods that could guarantee out-
of-sample accuracy bounds that depended on query variance. Neel and Roth [2018] extend the
transfer theorems from this literature to the related problem of adaptive data gathering, which was
identified by Nie et al. [2018]. Ligett and Shenfeld [2019] give an algorithmic stability notion they
call local statistical stability (also defined with respect to a posterior data distribution) that they
show asymptotically characterizes the ability of mechanisms to offer high probability out-of-sample
generalization guarantees for linear queries. A related line of work initiated by Russo and Zou
[2016] and extended by Xu and Raginsky [2017] starts with weaker assumptions on the mechanism
(mutual information bounds), and derives weaker conclusions (bounds on bias, rather than high
probability generalization guarantees).

A more recent line of work aims at mitigating the fact that the worst-case bounds deriving
from transfer theorems do not give non-trivial guarantees on reasonably sized datasets. Zrnic and
Hardt [2019] show that better bounds can be derived under the assumption that the data analyst
is restricted in various ways to not be fully adaptive. Feldman et al. [2019] showed that overfitting
by a classifier because of test-set re-use is mitigated in multi-label prediction problems, compared
to binary prediction problems. Rogers et al. [2019] gave a method for certifying the correctness
of heuristically guessed confidence intervals, which they show often out-perform the theoretical
guarantees by orders of magnitude.
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Finally, Elder [2016a,b] proposed a Bayesian reformulation of the adaptive data analysis prob-
lem. In the model of [Elder, 2016a], the data distribution P is assumed to itself be drawn from
a prior that is commonly known to the data analyst and mechanism. In contrast, we work in the
standard adversarial setting originally introduced by Dwork et al. [2015c] in which the mechanism
must offer guarantees for worst case data distributions and analysts, and use the Bayesian view
purely as a proof technique.

2 Preliminaries

Let X be an abstract data domain, and let P be an arbitrary distribution over X . A dataset of
size n is a collection of n data records: S = {Si}ni=1 ∈ X n. We study datasets sampled i.i.d. from
P: S ∼ Pn. We will write S to denote the random variable and x for realizations of this random
variable. A linear query is a function q : X ∗ → [0, 1] that takes the following empirical average
form when acting on a data set S ∈ X n:

q(S) =
1

n

n
∑

i=1

q(Si).

We will be interested in estimating the expectations of linear queries over P. Abusing notation,
given a distribution D over datasets, we write q(D) to denote the expectation of q over datasets
drawn from D, and write Si ∼ S to denote a datapoint sampled uniformly at random from a dataset
S. Note that for linear queries we have:

q(D) = E
S∼D

[q(S)] = E
S∼D,Si∼S

[q(Si)].

We note that for linear queries, when the dataset distribution D = Pn, we have q(Pn) = Ex∼P [q(x)],
which we write as q(P) when the notation is clear from context. However, the more general
definition will be useful because we will need to evaluate the expectation of q over other (non-
product) distributions over datasets in our arguments, and we will generalize beyond linear queries
in Appendices A.1 and A.2.

Given a family of queries Q, a statistical estimator is a (possibly stateful) randomized algorithm
M : X n × Q∗ → R

∗ parameterized by a dataset S that interactively takes as input a stream of
queries qi ∈ Q, and provides answers ai ∈ R. An analyst is an arbitrary randomized algorithm
A : R

∗ → Q∗ that generates a stream of queries and receives a stream of answers (which can
inform the next queries it generates). When an analyst interacts with a statistical estimator, they
generate a transcript of their interaction π ∈ Π where Π = (Q×R)∗ is the space of all transcripts.
Throughout we write Π to denote the transcript’s random variable and π for its realizations.

The interaction is summarized in Algorithm 1, and we write Interact(M,A;S) to refer to it.
When M and A are clear from context, we will abbreviate this notation and write simply I(S).
When we refer to an indexed query qj , this is implicitly a function of the transcript π. Given a
transcript π ∈ Π, write Qπ to denote the posterior distribution on datasets conditional on Π = π:
Qπ = (Pn)|Interact(M,A;S) = π. Note that Qπ will no longer generally be a product distribution.
We will be interested in evaluating uniform accuracy bounds, which control the worst-case error
over all queries:
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Algorithm 1: Interact(M,A;S): An Analyst Interacting with a Statistical Estimator to
Generate a Transcript

Input: A statistical estimator M , an analyst A, and a dataset S ∈ X n.
1 for t = 1 to k do

2 The analyst generates a query qt ← A(a1, . . . , at−1) and sends it to the statistical
estimator;

3 The statistical estimator generates an answer at ←M(S; qt);

4 return Π = ((q1, a1), . . . , (qk, ak)).

Definition 2.1. M satisfies (α, β)-sample accuracy if for every data analyst A and every data
distribution P,

Pr
S∼Pn,Π∼Interact(M,A;S)

[max
j
|qj(S)− aj | ≥ α] ≤ β.

We say M satisfies (α, β)-distributional accuracy if for every data analyst A and every data distri-
bution P,

Pr
S∼Pn,Π∼Interact(M,A;S)

[max
j
|qj(Pn)− aj | ≥ α] ≤ β.

We will be interested in interactions I that satisfy differential privacy.

Definition 2.2 (Dwork et al. [2006]). Two datasets S, S′ ∈ X n are neighbors if they differ in at
most one coordinate. An interaction Interact(M, · ; ·) satisfies (ǫ, δ)-differential privacy if for all
data analysts A, pairs of neighboring datasets S, S′ ∈ X n, and for all events E ⊆ Π:

Pr[Interact(M,A;S) ∈ E] ≤ eǫ · Pr[Interact(M,A;S′) ∈ E] + δ

where the Pr[·] operator denotes either a probability density or a probability mass. If Interact(M, · ; ·)
satisfies (ǫ, δ)-differential privacy, we will also say that M satisfies (ǫ, δ)-differential privacy.

We introduce a novel quantity that will be crucial to our argument: it captures the effect of the
transcript on the change in the expectation of a query contained in the transcript.

Definition 2.3. An interaction Interact(M,A; ·) is called (ǫ, δ)-posterior sensitive if for every data
distribution P:

Pr
S∼Pn,Π∼Interact(M,A;S)

[max
j
|qj(Pn)− qj(QΠ)| ≥ ǫ] ≤ δ.

3 An Elementary Proof of the Transfer Theorem

3.1 A General Transfer Theorem

In this section we prove a general transfer theorem for sample accurate mechanisms with low pos-
terior sensitivity. In Section 3.2 we prove that differentially private mechanisms have low posterior
sensitivity.
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Theorem 3.1 (General Transfer Theorem). Suppose that Interact (M,A; ·) is an (α, β)-sample
accurate, (ǫ, δ)-posterior sensitive interaction. Then for every c > 0 it also satisfies:

Pr
S∼Pn,Π∼Interact (M,A;S)

[max
j
|aj − qj(P)| > α+ c+ ǫ] ≤ β

c
+ δ

i.e. it is (α′, β′)-distributionally accurate for α′ = α+ c+ ǫ and β′ = β
c + δ.

The theorem follows easily from a change in perspective driven by an elementary observation.
Imagine that after the interaction is run and results in a transcript π, the dataset S is resampled
from its posterior distribution Qπ. This does not change the joint distribution on datasets and
transcripts. This simple claim is formalized below: its elementary proof appears in Appendix B.

Lemma 3.2 (Bayesian Resampling Lemma). Let E ⊆ X n ×Π be any event. Then:

Pr
S∼Pn,Π∼I(S)

[(S,Π) ∈ E] = Pr
S∼Pn,Π∼I(S),S′∼QΠ

[(S′,Π) ∈ E]

The change in perspective suggested by the resampling lemma makes it easy to see why the
following must be true: any sample-accurate mechanism must in fact be accurate with respect to the
posterior distribution it induces. This is because if it can first commit to answers, and guarantee
that they are sample-accurate after the dataset is resampled from the posterior, the answers it
committed to must have been close to the posterior means, because it is likely that the empirical
answers on the resampled dataset will be. This argument is generic and does not use differential
privacy.

Lemma 3.3. Suppose that M is (α, β)-sample accurate. Then for every c > 0 it also satisfies:

Pr
S∼Pn,Π∼Interact (M,A;S)

[max
j
|aj − qj(QΠ)| > α+ c] ≤ β

c

Proof. Denote by j∗(π) = argmax
j
|aj − qj(Qπ)|. Given α ≥ 0 and c > 0, and expanding the

definition of qj∗(Π)(QΠ) we get:

Pr
S∼Pn,Π∼I(S)

[

aj∗(Π) − qj∗(Π)(QΠ) > α+ c
]

= Pr
S∼Pn,Π∼I(S)

[

E
S′∼QΠ

[

aj∗(Π) − qj∗(Π)(S
′)− α

]

> c

]

≤ Pr
S∼Pn,Π∼I(S)

[

E
S′∼QΠ

[

max
{

aj∗(Π) − qj∗(Π)(S
′)− α, 0

}]

> c

]

(1)

≤ 1

c
E

S∼Pn,Π∼I(S)

[

E
S′∼QΠ

[

max
{

aj∗(Π) − qj∗(Π)(S
′)− α, 0

}]

]

(2)

≤ 1

c
E

S∼Pn,Π∼I(S)

[

Pr
S′∼QΠ

[

aj∗(Π) − qj∗(Π)(S
′)− α > 0

]

]

=
1

c
Pr

S∼Pn,Π∼I(S),S′∼QΠ

[

aj∗(Π) − qj∗(Π)(S
′) > α

]

(3)
=
1

c
Pr

S∼Pn,Π∼I(S)

[

aj∗(Π) − qj∗(Π)(S) > α
]
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Here, inequality (1) follows from Markov’s inequality, inequality (2) follows from the fact that
aj∗(Π) − qj∗(Π)(S

′)− α ≤ 1, and equality 3 follows from the Bayesian Resampling Lemma (Lemma
3.2). Repeating this argument for qj∗(Π)(QΠ)− aj∗(Π) yields a symmetric bound, so by combining
the two with the guarantee of (α, β)-sample accuracy we get,

Pr
S∼Pn,Π∼I(S)

[∣

∣aj∗(Π) − qj∗(Π)(QΠ)
∣

∣ > α+ c
]

≤ 1

c
Pr

S∼Pn,Π∼I(S)

[∣

∣aj∗(Π) − qj∗(Π)(S)
∣

∣ > α
]

≤ β

c

Because sample accuracy implies accuracy with respect to the posterior distribution, together
with a bound on posterior sensitivity, the transfer theorem follows immediately:

Proof of Theorem 3.1. By the triangle inequality:

max
j
|aj − qj(P)| ≤ max

i
|ai − qi(QΠ)|+max

l
|ql(QΠ)− ql(P)|.

Lemma 3.3 bounds the first term by α+ c with probability 1− β
c over Π, and the definition of

posterior sensitivity bounds the second term by ǫ with probability 1 − δ over Π, which concludes
the proof.

3.2 A Transfer Theorem for Differential Privacy

In this section we prove a transfer theorem for differentially private mechanisms by demonstrating
that they have low posterior sensitivity and applying our general transfer theorem.

We here show that differentially private mechanisms are posterior-sensitive for linear queries.
In the Appendix we extend this argument to low-sensitivity and optimization queries.

Lemma 3.4. If M is (ǫ, δ)-differentially private, then for any data distribution P, any analyst A,
and any constant c > 0:

Pr
S∼Pn,Π∼Interact (M,A;S)

[

max
j
|qj(QΠ)− qj(P)| > (eǫ − 1) + 2c

]

≤ δ

c

i.e. it is (ǫ′, δ′)-posterior sensitive for every data analyst A, where ǫ′ = eǫ − 1 + 2c and δ′ = δ
c .

Proof. Given a transcript π ∈ Π, let j∗(π) ∈ argmaxj |qj(Qπ)− qj(P)|. define for an α > 0:

Πα =
{

π ∈ Π| qj∗(π)(Qπ)− qj∗(π)(P) > α
}

X+(π) =

{

x ∈ X | Pr
S∼Qπ ,Si∼S

[Si = x] > Pr
Si∼P

[Si = x]

}

B+
α =

⋃

π∈Πα

(

X+(π)× {π}
)

Π+
α (x) =

{

π ∈ Π| (x, π) ∈ B+
α

}
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Fix any α. Suppose that Pr
[∣

∣qj∗(Π)(QΠ)− qj∗(Π)(P)
∣

∣ > α
]

> δ
c . We must have that either

Pr
[

qj∗(Π)(QΠ)− qj∗(Π)(P) > α
]

> δ
2c or Pr

[

qj∗(Π)(P)− qj∗(Π)(QΠ) > α
]

> δ
2c . Without loss of

generality, assume

Pr
[

qj∗(Π)(QΠ)− qj∗(Π)(P) > α
]

= Pr [Π ∈ Πα] >
δ

2c
(1)

Let Si be the random variable obtained by first sampling S ∼ Pn and then sampling Si ∈ S
uniformly at random. We compare the probability measure of B+

α under the joint distribution on
Si and Π with its corresponding measure under the product distribution of Si and Π:

Pr
(Si,Π)

[

(Si,Π) ∈ B+
α

]

− Pr
Si⊗Π

[

(Si,Π) ∈ B+
α

]

=
∑

π∈Πα

Pr[Π = π]
∑

x∈X+(π)

(Pr[Si = x|Π = π]− Pr[Si = x])

≥
∑

π∈Πα

Pr[Π = π]
∑

x∈X+(π)

qj∗(π)(x) (Pr[Si = x|Π = π]− Pr[Si = x])

≥
∑

π∈Πα

Pr[Π = π]
∑

x∈X

qj∗(π)(x) (Pr[Si = x|Π = π]− Pr[Si = x])

=
∑

π∈Πα

Pr[Π = π]
(

qj∗(π)(Qπ)− qj∗(π)(P)
)

> α · Pr [Π ∈ Πα]

On the other hand, using the definition of (ǫ, δ)-differential privacy (See Lemma C.1 for the ele-
mentary derivation of the first inequality):

Pr
(Si,Π)

[

(Si,Π) ∈ B+
α

]

− Pr
Si⊗Π

[

(Si,Π) ∈ B+
α

]

=
∑

x∈X

Pr[Si = x]
(

Pr
[

Π ∈ Π+
α (x)|Si = x

]

− Pr
[

Π ∈ Π+
α (x)

])

≤
∑

x∈X

Pr[Si = x]
(

(eǫ − 1)Pr
[

Π ∈ Π+
α (x)

]

+ δ
)

= (eǫ − 1) Pr
Si⊗Π

[

(Si,Π) ∈ B+
α

]

+ δ

≤ (eǫ − 1)Pr [Π ∈ Πα] + δ

< (eǫ − 1)Pr [Π ∈ Πα] + 2cPr [Π ∈ Πα] (by Equation (1))

= ((eǫ − 1) + 2c) · Pr [Π ∈ Πα]

This is a contradiction for α ≥ (eǫ − 1) + 2c.

Remark. Note

1. Since differential privacy is closed under post processing, this claim can be generalized beyond
queries contained in the transcript to any query generated as function of the transcript.

2. In the case of (ǫ, 0)-differential privacy, choosing c = 0, the claim holds for every query with
probability 1.
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Combined with our general transfer theorem (Theorem 3.1), this directly yields a transfer
theorem for differential privacy:

Theorem 3.5 (Transfer Theorem for (ǫ, δ)-Differential Privacy). Suppose that M is (ǫ, δ)-differentially
private and (α, β)-sample accurate for linear queries. Then for every analyst A and c, d > 0 it also
satisfies:

Pr
S∼Pn,Π∼Interact (M,A;S)

[max
j
|aj − qj(P)| > α+ (eǫ − 1) + c+ 2d] ≤ β

c
+

δ

d

i.e. it is (α′, β′)-distributionally accurate for α′ = α+ (eǫ − 1) + c+ 2d and β′ = β
c + δ

d .

Remark. As we will see in Section 4, the Gaussian mechanism (and many other differentially
private mechanisms) has a sample accuracy bound that depends only on the square root of the
log of both 1/β and 1/δ. Thus, despite the Markov-like term β′ = β

c + δ
d in the above transfer

theorem, together with the sample accuracy bounds of the Gaussian mechanism, it yields Chernoff-
like concentration.

Our technique extends easily to reason about arbitrary low sensitivity queries and minimization
queries. See Appendix A.1 and A.2 for more details.

4 Applications: The Gaussian Mechanism

We now apply our new transfer theorem to derive the concrete bounds that we plotted in Figure
1. The Gaussian mechanism is extremely simple and has only a single parameter σ: for each query
qi that arrives, the Gaussian mechanism returns the answer ai ∼ N (qi(S), σ

2) where N (qi(S), σ
2)

denotes the Gaussian distribution with mean qi(S) and standard deviation σ. First, we recall the
differential privacy properties of the Gaussian mechanism.

Theorem 4.1 (Bun and Steinke [2016]). When used to answer k linear queries, the Gaussian
mechanism with parameter σ satisfies ρ-zCDP for ρ = k

2n2σ2 . A consequence of this is that for
every 0 < δ < 1, it satisfies (ǫ, δ)-differential privacy for:

ǫ =
k

2n2σ2
+

√

√

√

√2
k

n2σ2
log

(

√

π · k

2n2σ2
/δ

)

It is also easy to see that the sample-accuracy of the Gaussian mechanism is characterized by
the CDF of the Gaussian distribution:

Lemma 4.2. For any 0 < β < 1, the Gaussian mechanism with parameter σ is (αG, β)-sample
accurate for:

αG =
√
2σ · erfc−1

(

2− 2

(

1− β

2

)1/k
)

<
√
2σ · erfc−1

(

β

k

)

<
√
2σ

√

√

√

√log

(√
2k

πβ

)

.

Above, erfc(x) = 1− erf(x) is the complementary error function.
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Proof. For a query qj , write aj = qj(S) + Zj where Zj ∼ N (0, σ2). The sample error is maxj |aj −
qj(S)| = maxj |Zj |. We have that Pr[maxj |Zj | ≥ α] ≤ Pr[maxj Zj ≥ α] + Pr[minj Zj ≤ −α]. αG is
the value that solves the equation Pr[maxj Zj ≥ α] = Pr[minj Zj ≤ −α] = β/2

With these quantities in hand, we can now apply Theorem 3.5 to derive distributional accuracy
bounds for the Gaussian mechanism:

Theorem 4.3. Fix a desired confidence parameter 0 < β < 1. When σ is set optimally, the
Gaussian mechanism can be used to answer k linear queries while satisfying (α, β)-distributional
accuracy, where α is the solution to the following unconstrained minimization problem:

α = min
σ,δ>0

{

√
2σ · erfc−1

(

δ

k

)

+ e
k

2n2σ2+

√

2 k

n2σ2 log
(√

π· k

2n2σ2 /δ
)

− 1 + 6

(

δ

β

)

}

Proof. Using Theorem 3.5 and fixing β′ = δ and c = d, we have that an (α′, β′)-sample accurate,
(ǫ, δ)-differentially private mechanism is (α, β)-distributionally accurate for α = α′ + (eǫ − 1) + 3c
and β = 2δ

c where c can be an arbitrary parameter. For any fixed value of β, we can take c = 2δ
β ,

and see that we obtain (α, β)-distributional accuracy where α = α′+(eǫ−1)+6 (δ/β). The theorem
then follows from plugging in the privacy bound from Theorem 4.1, the sample accuracy bound
from Theorem 4.2, and optimizing over the free variables σ and δ.

5 Discussion

We have given a new proof of the transfer theorem for differential privacy that has several appealing
properties. Besides being simpler than previous arguments, it achieves substantially better concrete
bounds than previous transfer theorems, and uncovers new structural insights about the role of
differential privacy and sample accuracy. In particular, sample accuracy serves to guarantee that
the reported answers are close to their posterior means, and differential privacy serves to guarantee
that the posterior means are close to their true answers. This focuses attention on the posterior
data distribution as a key quantity of interest, which we expect will be fruitful in future work.
In particular, it may shed light on what makes certain data analysts overfit less than worst-case
bounds would suggest: because they choose queries whose posterior means are closer to the prior
than the worst-case query.

There seems to be one remaining place to look for improvement in our transfer theorem: Lemmas
3.3 and 3.4 both exhibit a Markov-like tradeoff between a parameter c and β and δ respectively.
Although the dependence on β and δ in our ultimate bounds is only root-logarithmic, it would
still yield an improvement if this Markov-like dependence could be replaced with a Chernoff-like
dependence. It is possible to do this for the β parameter: we give an alternative (and even simpler)
proof of the transfer theorem for (ǫ, 0)-differential privacy which shows that posterior distributions
induced by private mechanisms exhibit Chernoff-like concentration, in Appendix D. But the only
way we know to extend this argument to (ǫ, δ)-differential privacy requires dividing δ by a factor
of n, which yields a final theorem that is inferior to Theorem 3.5.

Acknowledgements We thank Adam Smith for helpful conversations at an early stage of this
work.
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A Extensions

A.1 Low Sensitivity Queries

Our technique extends easily to reason about arbitrary low sensitivity queries. We only need to
generalize our lemma about posterior sensitivity.

Definition A.1. A query q : X n → R is called ∆-sensitive if for all pairs of neighbouring datasets
S, S′ ∈ X n: |q(S)− q(S′)| ≤ ∆. Note that linear queries are (1/n)-sensitive.
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Lemma A.1. If M is an (ǫ, δ)-differentially private mechanism for answering ∆-sensitive queries,
then for any data distribution P, analyst A, and any constant c > 0:

Pr
S∼Pn,Π∼Interact (M,A;S))

[

max
j
|qj(QΠ)− qj(Pn)| > (eǫ − 1 + 4c)n∆

]

≤ δ

c

i.e. it is (ǫ′, δc )-posterior sensitive for every A, where ǫ′ = (eǫ − 1 + 4c)n∆.

Proof. We introduce a useful bit of notation: q̄ (x≤i) = E
S′∼Pn−i

[q ((x≤i, S
′))]. Notice that q̄ (x≤0) =

q (Pn) and q̄ (x≤n) = q (x). Given a transcript π ∈ Π, let j∗(π) ∈ argmaxj |qj(Qπ)− qj(Pn)|.
Denote for any α ≥ 0

Πα =
{

π ∈ Π | qj∗(π) (Qπ)− qj∗(π) (Pn) > α
}

and for any z ∈ [0, 2∆] denote

Πα,z (x≤i) =
{

π ∈ Πα | q̄j∗(π) (x≤i)− q̄j∗(π) (x≤i−1) > z −∆
}

From the definition of differential privacy:

E
S∼Pn

[

∑

π∈Πα

Pr
Π∼I(S)

[Π = π]
(

q̄j∗(π) (S≤i)− q̄j∗(π) (S≤i−1) + ∆
)

]

= E
S∼Pn

[
∫ 2∆

0
Pr

Π∼I(S)
[Π ∈ Πα,z (S≤i)] dz

]

≤ E
S∼Pn,Y∼P

[
∫ 2∆

0

(

eǫ Pr
Π∼I(Si←Y )

[Π ∈ Πα,z (S≤i)] + δ

)

dz

]

= E
S∼Pn,Y∼P

[

eǫ
∑

π∈Πα

Pr
Π∼I(Si←Y )

[Π = π]
(

q̄j∗(π) (S≤i)− q̄j∗(π) (S≤i−1) + ∆
)

+ 2∆δ

]

= E
S∼Pn,Y∼P

[

eǫ
∑

π∈Πα

Pr
Π∼I(S)

[Π = π]
(

q̄j∗(π)
(

Si←Y
≤i

)

− q̄j∗(π) (S≤i−1) + ∆
)

+ 2∆δ

]

where Si←Y = (S1, . . . , Si−1, Y, Si+1, . . . , Sn), and the last equality follows from the observation
that (S, Y ) and (Si←Y , Si) are identically distributed. Since Y ∼ P, independently from Π, we get

that EY∼P

[

q̄j∗(π)
(

Si←Y
≤i

)]

= q̄j∗(π) (S≤i−1), so

E
S∼Pn

[

∑

π∈Πα

Pr
Π∼I(S)

[Π = π]
(

q̄j∗(π) (S≤i)− q̄j∗(π) (S≤i−1) + ∆
)

]

≤ E
S∼Pn

[(

eǫ Pr
Π∼I(S)

[Π ∈ Πα] + 2δ

)

∆

]

= (eǫ Pr [Π ∈ Πα] + 2δ)∆

Subtracting ∆Pr [Π ∈ Πα] from both sides we get

E
S∼Pn

[

∑

π∈Πα

Pr
Π∼I(S)

[Π = π]
(

q̄j∗(π) (S≤i)− q̄j∗(π) (S≤i−1)
)

]

≤ ((eǫ − 1)Pr [Π ∈ Πα] + 2δ)∆ (2)
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We now chooose α = (eǫ − 1 + 4c)n∆. Suppose that Pr
[∣

∣qj∗(Π)(QΠ)− qj∗(Π)(Pn)
∣

∣ > α
]

> δ
c .

We must have that either Pr
[

qj∗(Π)(QΠ)− qj∗(Π)(Pn) > α
]

> δ
2c or Pr

[

qj∗(Π)(Pn)− qj∗(Π)(QΠ) > α
]

>
δ
2c . Without loss of generality, assume

Pr
[

qj∗(Π)(QΠ)− qj∗(Π)(Pn) > α
]

= Pr [Π ∈ Πα] >
δ

2c
(3)

But this leads to a contradiction, since

Pr [Π ∈ Πα] (e
ǫ − 1 + 4c)n∆ <

∑

π∈Πα

Pr [Π = π]
(

qj∗(π)(Qπ)− qj∗(π)(Pn)
)

= E
S∼Pn

[

∑

π∈Πα

Pr
Π∼I(S)

[Π = π]
(

qj∗(π) (S)− qj∗(π) (Pn)
)

]

=
n
∑

i=1

E
S∼Pn

[

∑

π∈Πα

Pr
Π∼I(S)

[Π = π]
(

q̄j∗(π) (S≤i)− q̄j∗(π) (S≤i−1)
)

]

≤ ((eǫ − 1)Pr [Π ∈ Πα] + 2δ)n∆ (by Equation (2))

<Pr [Π ∈ Πα] (e
ǫ − 1 + 4c)n∆ (by Equation (3))

We can combine this Lemma with Lemma 3.3 (which holds for any query type) to get our
transfer theorem:

Theorem A.2 (Transfer Theorem for Low Sensitivity Queries). Suppose that M is (ǫ, δ)-differentially
private and (α, β)-sample accurate for ∆-sensitive queries. Then for every analyst A, c, d > 0 it
also satisfies:

Pr
S∼Pn,Π∼Interact (M,A;S)

[

max
j
|aj − qj(Pn)| > α+ c+ (eǫ − 1 + 4d)n∆

]

≤ β

c
+

δ

d

i.e. it is (α′, β′)-distributionally accurate for α′ = α+ c+ (eǫ − 1 + 4d)n∆ and β′ = β
c + δ

d .

A.2 Minimization Queries

Definition A.2. Minimization queries are specified by a loss function L : X n×Θ→ [0, 1] where Θ
is generally known as the “parameter space”. An answer to a minimization query L is a parameter
θ ∈ Θ. We work with ∆-sensitive minimization queries: for all pairs of neighbouring datasets
S, S′ ∈ X n and all θ ∈ Θ, |L(S, θ)− L(S′, θ)| ≤ ∆.

A mechanism M is (α, β)-sample accurate for minimization queries if for every data analyst A
and every dataset S ∈ X n:

Pr
Π∼Interact(M,A;S)

[

max
j

∣

∣

∣

∣

Lj(S, θj)−min
θ∈Θ

Lj(S, θ)

∣

∣

∣

∣

≥ α

]

≤ β

We say that M satisfies (α, β)-distributional accuracy for minimization queries if for every data
analyst A and every data distribution P:

Pr
S∼Pn,Π∼Interact(M,A;S)

[

max
j

∣

∣

∣

∣

E
S′∼Pn

[

Lj(S
′, θj)−min

θ∈Θ
Lj(S

′, θ)

]∣

∣

∣

∣

≥ α

]

≤ β
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Remark. Note that

E
S′∼Pn

[

Lj(S
′, θj)

]

−min
θ∈Θ

E
S′∼Pn

[

Lj(S
′, θ)

]

≤ E
S′∼Pn

[

Lj(S
′, θj)−min

θ∈Θ
Lj(S

′, θ)

]

So as long as the RHS is bounded, the LHS is bounded too.

Remark. For a given ∆-sensitive minimization query Lj and an answer θj, define:

qj(S) := Lj(S, θj)−min
θ∈Θ

Lj(S, θ) and aj := 0

Note several things:

1. If Lj is ∆-sensitive, then qj is 2∆-sensitive.

2. The mapping from a minimization query transcript π = ((L1, θ1), . . . , (Lk, θk)) to the 2∆-
sensitive query transcript π′ = ((q1, a1), . . . , (qk, ak)) as defined above is a dataset-independent
post-processing π′ = f(π).

3. π satisfies an (α, β)-accuracy guarantee if and only if π′ does.

With the above observation, the transfer theorem for minimization queries immediately follows
by Lemma A.1 and Lemma 3.3.

Theorem A.3 (Transfer Theorem for Minimization Queries). Suppose that M is (ǫ, δ)-differentially
private and (α, β)-sample accurate for ∆-sensitive minimization queries. Then for every analyst A
and c, d > 0 it also satisfies:

Pr
S∼Pn,Π∼Interact (M,A;S)

[

max
j

∣

∣

∣

∣

E
S′∼Pn

[

Lj(S
′, θj)−min

θ∈Θ
Lj(S

′, θ)

]
∣

∣

∣

∣

> α+ c+ 2(eǫ − 1 + 4d)n∆

]

≤ β

c
+
δ

d

i.e. it is (α′, β′)-distributionally accurate for α′ = α+ c+ 2(eǫ − 1 + 4d)n∆ and β′ = β
c + δ

d .

B Details from Section 3.1

Proof of Lemma 3.2. This follows from the expansion of the definition, and an application of Bayes
Rule.

Pr
S∼Pn,Π∼I(S),S′∼QΠ

[(S′,Π) ∈ E] =
∑

x

∑

π

∑

x
′

Pr[S = x] Pr[Π = π|S = x] Pr
S′∼Qπ

[S′ = x
′]1[(x′, π) ∈ E]

=
∑

π

∑

x
′

Pr[Π = π] Pr
S′∼Qπ

[S′ = x
′]1[(x′, π) ∈ E]

=
∑

π

∑

x
′

Pr[Π = π] Pr[S = x
′|Π = π]1[(x′, π) ∈ E]

=
∑

π

∑

x
′

Pr[Π = π]
Pr[Π = π|S = x

′] · Pr[S = x
′]

Pr[Π = π]
1[(x′, π) ∈ E]

= Pr
S∼Pn,Π∼I(S)

[(S,Π) ∈ E]
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C Details from Section 3.2

Lemma C.1. If M is (ǫ, δ)-differentially private, then for any event E and datapoint x:

Pr
S∼Pn,Si∼S,Π∼I(S)

[Π ∈ E|Si = x] ≤ eǫ Pr
S∼Pn,Π∼I(S)

[Π ∈ E] + δ

Proof. This follows from expanding the definitions.

Pr
S∼Pn,Si∼S,Π∼I(S)

[Π ∈ E|Si = x] =
1

n

n
∑

i=1

Pr
S∼Pn,Π∼I(S)

[Π ∈ E|Si = x]

=
1

n

n
∑

i=1

∑

x∈Xn

Pr
S∼Pn

[S = x] · Pr[Π ∈ E|S = (x−i, x)]

≤ 1

n

n
∑

i=1

∑

x∈Xn

Pr
S∼Pn

[S = x] · (eǫ Pr[Π ∈ E|S = x] + δ)

= eǫ Pr
S∼Pn,Π∼I(S)

[Π ∈ E] + δ

where the inequality follows from the definition of differential privacy.

D An (even) Simpler and Better Proof for ǫ-Differential Privacy

In this section we give an even simpler proof of an even better transfer theorem for (ǫ, 0)-differential
privacy. Rather than using Markov’s inequality as we did in the proof of Lemma 3.3, we can
directly show that posteriors induced by differentially private mechanisms exhibit Chernoff-like
concentration.

Lemma D.1. If M is (ǫ, 0)-differentially private, then for any data distribution P, any transcript
π ∈ Π, any linear query q, and any η > 0:

Pr
S∼Qπ

[

|q(S)− q(P)| ≥ (eǫ − 1) +

√

2 ln(2/η)

n

]

≤ η

Proof. Define the random variables Vi = q(Si) − E[q(Si)|S<i], and let Xi =
1
n

∑i
j=1 Vj . Then the

sequence 0 = X0, X1, . . . , Xn forms a martingale and |Xi −Xi−1| = 1
n |Vi| ≤ 1

n . We can therefore
apply Azuma’s inequality to conclude that:

Pr

[∣

∣

∣

∣

∣

1

n

n
∑

i=1

q(Si)−
1

n

n
∑

i=1

E[q(Si)|S<i]

∣

∣

∣

∣

∣

≥ t

]

≤ 2 exp

(−t2n
2

)

(4)
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Now fix any realization x, and consider each term: E[q(Si)|S<i = x<i]. We have:

E
S∼Qπ

[q(Si)|S<i = x<i] =
∑

x

q(x) · Pr
S∼Pn

[Si = x|Π = π, S<i = x<i]

=
∑

x

q(x) · PrS∼Pn [Π = π|Si = x, S<i = x<i] · PrS∼Pn [Si = x]

Pr[Π = π|S<i = x<i]

≤ eǫ ·
∑

x

q(x) · Pr
S∼Pn

[Si = x]

= eǫq(P)
where the inequality follows from the definition of (ǫ, 0)-differential privacy. Symmetrically, we can
show that ES∼Qπ

[q(Si)|S<i = x<i] ≥ e−ǫq(P). Therefore we have that:

e−ǫq(P) ≤ 1

n

n
∑

i=1

E[q(Si)|S<i] ≤ eǫq(P).

Combining this with Equation 4 gives us that for any η > 0, with probability 1− η when S ∼ Qπ:

q(S) ≤ eǫq(P) +
√

2 ln(2/η)

n
and q(S) ≥ e−ǫq(P)−

√

2 ln(2/η)

n

A transfer theorem follows immediately from lemma D.1.

Theorem D.2. Suppose that M is (ǫ, 0)-differentially private and (α, β)-sample accurate. Then

for any η > 0 it is (α′, β′)-distributionally accurate for α′ = α+(eǫ−1)+

√

2 ln(2/η)
n and β′ = β+η.

Proof. For a given π, let j∗(π) = argmaxj |aj − qj(P)|. By the triangle inequality we have:

|aj∗(Π)−qj∗(Π)(P)| ≤ |aj∗(Π)−qj∗(Π)(S)|+|qj∗(Π)(S)−qj∗(Π)(P)| ≤ max
j
|aj−qj(S)|+|qj∗(Π)(S)−qj∗(Π)(P)|

By the definition of (α, β)-sample accuracy, we have that with probability 1−β, maxj |aj−qj(S)| ≤
α. The Bayesian Resampling Lemma (Lemma 3.2) gives us that:

Pr
S∼Pn,Π∼I(S)

[

|qj∗(Π)(S)− qj∗(Π)(P)| ≥ (eǫ − 1) +

√

2 ln(2/η)

n

]

= Pr
S∼Pn,Π∼I(S), S′∼QΠ

[

|qj∗(Π)(S
′)− qj∗(Π)(P)| ≥ (eǫ − 1) +

√

2 ln(2/η)

n

]

= E
S∼Pn,Π∼I(S)

[

Pr
S′∼QΠ

[

|qj∗(Π)(S
′)− qj∗(Π)(P)| ≥ (eǫ − 1) +

√

2 ln(2/η)

n

]]

≤ η

Because Lemma D.1 guarantees us that for every π,

Pr
S′∼Qπ

[

|qj∗(π)(S′)− qj∗(π)(P)| ≥ (eǫ − 1) +

√

2 ln(2/η)

n

]

≤ η.

The theorem then follows from a union bound.
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