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Abstract

We design a general framework for answering adaptive statistical queries
that focuses on providing explicit confidence intervals along with point
estimates. Prior work in this area has either focused on providing tight
confidence intervals for specific analyses, or providing general worst-case
bounds for point estimates. Unfortunately, as we observe, these worst-case
bounds are loose in many settings — often not even beating simple baselines
like sample splitting. Our main contribution is to design a framework for
providing valid, instance-specific confidence intervals for point estimates
that can be generated by heuristics. When paired with good heuristics, this
method gives guarantees that are orders of magnitude better than the best
worst-case bounds. We provide a Python library implementing our method.

1 Introduction

Many data analysis workflows are adaptive, that is, they re-use data over the course of a
sequence of analyses, where the choice of analysis at any given stage depends on the results
from previous stages. Such adaptive re-use of data is an important source of overfitting
in machine learning and false discovery in the empirical sciences [Gelman and Loken,
2014]. Adaptive workflows arise, for example, when exploratory data analysis is mixed
with confirmatory data analysis, when hold-out sets are re-used to search through large
hyper-parameter spaces or to perform feature selection, and when datasets are repeatedly
re-used within a research community.

A simple solution to this problem—that we can view as a naive benchmark—is to simply
not re-use data. More precisely, one could use sample splitting: partitioning the data set
into k equal-sized pieces, and using a fresh piece of the data set for each of k adaptive
interactions with the data. This allows us to treat each analysis as nonadaptive, and allows
many quantities of interest to be accurately estimated with their empirical estimate, and
paired with tight confidence intervals that come from classical statistics. This seemingly
naive approach is wasteful in its use of data, however: the sample size needed to conduct a
series of k adaptive analyses grows linearly with k.

A line of recent work [Dwork et al., 2015¢,a,b, Russo and Zou, 2016, Bassily et al., 2016,
Rogers et al., 2016, Feldman and Steinke, 2017a,b, Xu and Raginsky, 2017, Zrnic and Hardt,
2019, Mania et al., 2019] aims to improve on this baseline by using mechanisms which provide
“noisy” answers to queries rather than exact empirical answers. The methods coming from this
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line of work require that the sample size grow proportional to the square root of the number
of adaptive analyses, dramatically beating the sample splitting baseline asymptotically.
Unfortunately, the bounds proven in these papers—even when optimized—only beat the
naive baseline when both the data set size n, and the number of adaptive rounds k, are very
large; see Figure 1 (left).

Worst-case bounds, T=0.1,3=0.05 GnC confidence widths, T=0.1,8=0.05

mm—= Baseline = Baseline ¥ v
T 5 CDP+Monitor+RZ el 103 Gauss Bnd v v
g 10 --= CDP+Monitor+XR o —f— GnC Gauss : N
= --- DFHPRR g v
2 BNSSSU @ 102 v
: 103 © //
R, &
L = 1
2 101 g
o o
__________ | T
N3 4 "5 6 7 10° f ' ' )
10 10 10 10 10 5000 10000 15000 20000
No. of samples No. of samples

Figure 1: Left: Comparison of various worst-case bounds for the Gaussian mechanism with
the sample splitting baseline. ‘DFHPRR’ and ‘BNSSSU’ refer to bounds given in prior work
(Dwork et al. [2015d], Bassily et al. [2016]). The other lines plot improved worst-case bounds
derived in this paper. (See Section 2 for the full model and parameter descriptions.) Right:
Performance of Guess and Check with the Gaussian mechanism providing the guesses (“GnC
Gauss”) for a plausible query strategy (see Section 3.1), and comparing it with the best
worst-case bounds for the Gaussian mechanism (“Gauss Bnd”), and the baseline.

The failure of these worst-case bounds to beat simple baselines in practice — despite their
attractive asymptotics — has been a major obstacle to the practical adoption of techniques
from this literature. There are two difficulties with directly improving this style of bounds.
The first is that we are limited by what we can prove: mathematical analyses can often
be loose by constants that are significant in practice. The more fundamental difficulty is
that these bounds are guaranteed to hold even against a worst-case data analyst, who is
adversarially attempting to find queries which over-fit the sample: one would naturally
expect that when applied to a real workload of queries, such worst-case bounds would be
extremely pessimistic. We address both difficulties in this paper.

Contributions In this paper, we move the emphasis from algorithms that provide point
estimates to algorithms that explicitly manipulate and output confidence intervals based on
the queries and answers so far, providing the analyst with both an estimated value and a
measure of its actual accuracy. At a technical level, we have two types of contributions:

First, we give optimized worst-case bounds that carefully combine techniques from different
pieces of prior work—plotted in Figure 1 (left). For certain mechanisms, our improved
worst-case bounds are within small constant factors of optimal, in that we can come close
to saturating their error bounds with a concrete, adversarial query strategy (Section 2).
However, even these optimized bounds require extremely large sample sizes to improve over
the naive sample splitting baseline, and their pessimism means they are often loose.

Our main result is the development of a simple framework called Guess and Check, that
allows an analyst to pair any method for “guessing” point estimates and confidence interval
widths for their adaptive queries, and then rigorously validate those guesses on an additional
held-out data set. So long as the analyst mostly guesses correctly, this procedure can
continue indefinitely. The main benefit of this framework is that it allows the analyst to
guess confidence intervals whose guarantees exceed what is guaranteed by the worst-case
theory, and still enjoy rigorous validity in the event that they pass the “check”. This makes
it possible to take advantage of the non-worst-case nature of natural query strategies, and
avoid the need to “pay for” constants that seem difficult to remove from worst-case bounds.
Our empirical evaluation demonstrates that our approach can improve on worst-case bounds
by orders of magnitude, and that it improves on the naive baseline even for modest sample



sizes: see Figure 1 (right), and Section 3 for details. We also provide a Python library Rogers
et al. [2019] containing an implementation of our Guess and Check framework.

Related Work Our “Guess and Check” (GnC) framework draws inspiration from the
Thresholdout method of Dwork et al. [2015a], which uses a holdout set in a similar way.
GnC has several key differences, which turn out to be crucial for practical performance:
first, whereas the “guesses” in Thresholdout are simply the empirical query answers on a
“training” portion of the dataset, we make use of other heuristic methods for generating
guesses (including, in our experiments, Thresholdout itself) that empirically often seem to
prevent overfitting to a substantially larger degree than their worst-case guarantees suggest.
Second, we make confidence-intervals first-order objects: whereas the “guesses” supplied to
Thresholdout are simply point estimates, the “guesses” supplied to GnC are point estimates
along with confidence intervals. Finally, we use a more sophisticated analysis to track the
number of bits leaked from the holdout, which lets us give tighter confidence intervals and
avoids the need to a priori set an upper bound on the number of times the holdout is used.
Gossmann et al. [2018] use a version of Thresholdout to get worst-case accuracy guarantees
for values of the area under the receiver operating charateristic curve (AUC) for adaptively
obtained queries. However, apart from being limited to binary classification tasks and the
dataset being used only to obtain AUC values, their bounds require “unrealistically large”
dataset sizes. Our results are complementary to theirs; by using appropriate concentration
inequalities, GnC could also be used to provide confidence intervals for AUC values. Their
technique could be used to provide the “guesses” to GnC.

Our improved worst-case bounds combine a number of techniques from the existing literature:
namely the information theoretic arguments of Russo and Zou [2016], Xu and Raginsky
[2017] together with the “monitor” argument of Bassily et al. [2016], and a more refined
accounting for the properties of specific mechanisms using concentrated differential privacy
(Dwork and Rothblum [2016], Bun and Steinke [2016D]).

Feldman and Steinke [2017a,b] give worst-case bounds that improve with the variance of the
queries asked. We show in Section 3.1 how our techniques can also be used to give tighter
bounds when the empirical query variance is small.

Mania et al. [2019] give an improved union bound for queries that have high overlap, that
can be used to improve bounds for adaptively validating similar models, in combination with
description length bounds. Zrnic and Hardt [2019] take a different approach to going beyond
worst-case bounds in adaptive data analysis, by proving bounds that apply to data analysts
that may only be adaptive in a constrained way. A difficulty with this approach in practice is
that it is limited to analysts whose properties can be inspected and verified — but provides
a potential explanation why worst-case bounds are not observed to be tight in real settings.
Our approach is responsive to the degree to which the analyst actually overfits, and so will
also provide relatively tight confidence intervals if the analyst satisfies the assumptions of
Zrnic and Hardt [2019].

1.1 Preliminaries

As in previous work, we assume that there is a data set X = (21, -+ ,2,) ~ D™ drawn
i.i.d. from an unknown distribution D over a universe X. This data set is the input to
a mechanism M that also receives a sequence of queries ¢1, ¢, ... from an analyst A and
outputs, for each one, an answer. Each ¢; is a statistical query, defined by a bounded function
¢; : X — [0,1]. We denote the expectation of a statistical query ¢ over the data distribution
by ¢(D) = E,p [¢(x)], and the empirical average on a dataset by ¢(X) = 2 3" | ¢(z;).

The mechanism’s goal is to give estimates of ¢;(D) for query ¢; on the unknown D. Previous
work looked at analysts that produce a single point estimate a;, and measured error based
on the distances |a; — ¢;(D)|. As mentioned above, we propose a shift in focus: we ask
mechanisms to produce a confidence interval specified by a point estimate a; and width 7;.
The answer (a;, ;) is correct for ¢; on D if ¢;(D) € (a; — 73, a; + ;). (Note that the data
play no role in the definition of correctness—we measure only population accuracy.)

An interaction between randomized algorithms M and A on data set X € X™ (denoted
M(X) = A) consists of an unbounded number of query-answer rounds: at round 7, A sends



¢i, and M(X) replies with (a;, 7;). M receives X as input. A receives no direct input, but
may select queries adaptively, based on the answers in previous rounds. The interaction
ends when either the mechanism or the analyst stops. We say that the mechanism provides
simultaneous coverage if, with high probability, all its answers are correct:
Definition 1.1 (Simultaneous Coverage). Given 8 € (0,1), we say that M has simultaneous
coverage 1 — (8 if, for all n € N, all distributions D on X and all randomized algorithms A4,
L [Vi € [k] : ¢i(D) € (ai — Tisa;i + 7)) 21— 5.
{($0,ai,m) i (M(X)=A)

We denote by k the (possibly random) number of rounds in a given interaction.

Definition 1.2 (Accuracy). We say M is (7, 8)-accurate, if M has simultaneous coverage
1 — 8 and its interval widths satisfy max;ex) 73 < 7 with probability 1.

2 Confidence intervals from worst-case bounds

Our emphasis on explicit confidence intervals led us to derive worst-case bounds that are as
tight as possible given the techniques in the literature. We discuss the Gaussian mechanism
here, and defer the application to Thresholdout in Appendix B.4, and provide a pseudocode
for Thresholdout in Algorithm 4.

The Gaussian mechanism is defined to be an algorithm that, given input dataset X ~ D™ and

1

2n2p>, where p > 0 is a parameter.

a query ¢ : X — [0, 1], reports an answer a = ¢(X )+ N (O,

It has existing analyses for simultaneous coverage (see Dwork et al. [2015d], Bassily et al.
[2016]) — but these analyses involve large, sub-optimal constants. Here, we provide an
improved worst-case analysis by carefully combining existing techniques. We use results
from Bun and Steinke [2016a] to bound the mutual information of the Gaussian mechanism.
We then apply an argument similar to that of Russo and Zou [2016] to bound the bias of
the empirical average of a statistical query selected as a function of the perturbed outputs.
Finally, we use Chebyshev’s inequality, and the monitor argument from Bassily et al. [2016]
to obtain high probability accuracy bound. Figure 1 (left) shows the improvement in the
number of queries that can be answered with the Gaussian mechanism with (7, 5)-accuracy
for 7 = 0.1, 8 = 0.05. Our guarantee is stated below, with its proof deferred to Appendix C.2.

Theorem 2.1. Given input X ~ D™, confidence parameter 5, and parameter p, the Gaussian
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Figure 2: Worst-case upper (proven) and lower bounds (realized via the single-adaptive
query strategy) on RMSE with n = 5,000 for Gaussian (left) and Thresholdout (right).

We now consider the extent to which our analyses are improvable for worst-case queries to the
Gaussian and the Thresholdout mechanisms. To do this, we derive the worst query strategy
in a particular restricted regime. We call it the “single-adaptive query strategy”, and show
that it maximizes the root mean squared error (RMSE) amongst all single query strategies
under the assumption that each sample in the data set is drawn w.a.r. from {—1,1}¥*1 and



the strategy is given knowledge of the empirical correlations of each of the first k features
with the (k + 1)st feature (which can be obtained e.g. with k non-adaptive queries asked
prior to the adaptive query). We provide a pseudocode for the strategy in Algorithm 5,
and prove that our single adaptive query results in maximum error, in Appendix C.1. To
make the bounds comparable, we translate our worst-case confidence upper bounds for both
the mechanisms to RMSE bounds in Theorem C.8 and Theorem B.10. Figure 2 shows
the difference between our best upper bound and the realized RMSE (averaged over 100
executions) for the two mechanisms using n = 5,000 and various values of k. (For the
Gaussian, we set p separately for each k, to minimize the upper bound.) Oun the left, we
see that the two bounds for the Gaussian mechanism are within a factor of 2.5, even for
k = 50,000 queries. Our bounds are thus reasonably tight in one important setting. For
Thresholdout (right side), however, we see a large gap between the bounds which grows with
k, even for our best query strategy®. This result points to the promise for empirically-based
confidence intervals for complex mechanisms that are harder to analyze.

3 The Guess and Check Framework

In light of the inadequacy of worst-case bounds, we here present our Guess and Check (GnC)
framework which can go beyond the worst case. It takes as inputs guesses for both the point
estimate of a query, and a confidence interval width. If GnC can validate a guess, it releases
the guess. Otherwise, at the cost of widening the confidence intervals provided for future
guesses, it provides the guessed confidence width along with a point estimate for the query
using the holdout set such that the guessed width is valid for the estimate. An instance of
GnC, M, takes as input a data set X, desired confidence level 1 — 8, and a mechanism M,
which operates on inputs of size ng < n. M randomly splits X into two, giving one part
X4 to Mg, and reserving the rest as a holdout Xj,. For each query ¢;, mechanism M, uses
X, to make a “guess” (ag,4,7;) to M, for which M conducts a validity check. If the check
succeeds, then M releases the guess as is, otherwise M uses the holdout X} to provide a
response containing a discretized answer that has 7; as a valid confidence interval. This is
closely related to Thresholdout. However, an important distinction is that the width of the
target confidence interval, rather than just a point estimate, is provided as a guess. Moreover,
the guesses themselves can be made by non-trivial algorithms. We provide pseudocode for
GnC in Algorithm 1, and block schematic of how a query is answered by GnC in Figure 3.

Guess and Check (GnC)
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Figure 3: A schematic of how query ¢ is answered via our Guess and Check (GnC) framework.
Dataset X, is the guess set randomly partitioned by GnC. The dotted box represents
computations that are previleged, and are not accessible to the analyst.

5We tweak the adaptive query in the single-adaptive query strategy to result in maximum error
for Thresholdout. We also tried “tracing” attack strategies (adapted from the fingerprinting lower
bounds of Bun et al. [2014], Hardt and Ullman [2014], Steinke and Ullman [2015]) that contained
multiple adaptive queries, but gave similar results.



Algorithm 1 Guess and Check

Require: Data X € X", confidence parameter 3, mechanism M, with inputs of size n, < n
Define ¢; + W for j >0 //only needs to satisfy > ;5 ,c; <1
Randomly partition X into a guess set X, of size ny, and a holdout X}, of size nj, = n—ny,
Initialize f < 0
for i =1 to co do

if f >0 then Vi foyd (1}1) Hje[f] (%) else Vi fyd 1 //# possible transcripts
Bi = (B-cimi-cp) /v, g o0
For query ¢;, receive guess (ag;, 7;) < My(Xy, ¢;)
Let holdout answer ay, ; < ¢;(Xp)
Let 73, < HoldoutTol(B;,aq.,an;) //HoldoutT ol returns a valid tolerance for ay ;
if lag; — ani| <7 — 7, then
Output (ag,:, )
else
f—f+1
Let ¢ < maxy s.t. 2e
[0,75)

—2(ri=7)’nn < B; //max. discretization param. with validity
if vf > 0 then

Output (|an,i|~,,7:), where |y, denotes y discretized to multiples of ~
else

Output L

break //Terminate for loop

We provide coverage guarantees for GnC without any restrictions on the guess mechanism.
To get the guarantee, we first show that for query ¢;, if function HoldoutTol returns a
(1—;)-confidence interval 75, for holdout answer ay, ;, and GnC’s output is the guess (aq.;, 7i),
then 7; is a (1— f3;)-confidence interval for a, ;. We can get a simple definition for HoldoutT ol
(formally stated in Appendix C.3.1), but we provide a slightly sophisticated variant below that
uses the guess and holdout answers to get better tolerances, especially under low-variance
queries. We defer the proof of Lemma 3.1 to Appendix C.3.2.

Lemma 3.1. If the function HoldoutTol in GnC (Algorithm 1) is defined as

(M)” < B where
min ¢ 7 € (0,7) : etutr J =2 if ag > apn,

¢ solves % =pu+7

! = 14/ (‘=) \"
HoldoutTol(f', ag, ap) (%) < g, where
min¢ 7" € (0,7): ' =1—p, and £ solves 0.W.
1L
e — W T

then for each query ¢; s.t. GnC’s output is (ag,,7;), we have Pr (lag; — ¢:(D)| > 1;) < Bi.

Next, if failure f occurs within GnC for query ¢;, by applying a Chernoff bound we get that
~v is the maximum possible discretization parameter s.t. 7; is a (1 — ;)-confidence interval for
the discretized holdout answer |ap;|,,. Finally, we get a simultaneous coverage guarantee
for GnC by a union bound over the error probabilities of the validity over all possible
transcripts between the mechanism and any analyst A with adaptive queries {¢1, ..., dx}.
The guarantee is stated below, with its proof deferred to Appendix C.3.1.

Theorem 3.2. The Guess and Check mechanism (Algorithm 1), with inputs data set X ~ D™,
confidence parameter 8, and a mechanism Mg that, using inputs of size ng < n, provides
responses (“guesses”) of the form (ag:,7;) for query ¢;, has simultaneous coverage 1 — 3.

3.1 Experimental evaluation

Now, we provide details of our empirical evaluation of the Guess and Check framework. In
our experiments, we use two mechanisms, namely the Gaussian mechanism and Thresholdout,



for providing guesses in GnC. For brevity, we refer to the overall mechanism as GnC Gauss
when the Gaussian is used to provide guesses, and GnC Thresh when Thresholdout is used.

Strategy for performance evaluation: Some mechanisms evaluated in our experiments
provide worst-case bounds, whereas the performance of others is instance-dependent and relies
on the amount of adaptivity present in the querying strategy. To highlight the advantages of
instance-dependent bounds, we design a query strategy called the quadratic-adaptive query
strategy. It contains both adaptive and non-adaptive queries, where the adaptive queries
become more sparsely distributed with time. “Hard” adaptive queries ¢;,7 > 1, are asked
when i is a perfect square. They are computed using the answers to all the non-adaptive
queries asked in prior rounds, using a strategy similar to that used in Figure 2. We provide
pseudocode for the strategy in Algorithm 5.

Experimental Setup: We run the quadratic-adaptive strategy for up to 40,000 queries.
We tune the hyperparameters of each mechanism to optimize for this query strategy. We fix
a confidence parameter § and set a target upper bound 7 on the maximum allowable error
we can tolerate, given our confidence bound. We evaluate each mechanism by the number of
queries it can empirically answer with a confidence width of 7 for our query strategy while
providing a simultaneous coverage of 1 — 3: i.e. the largest number of queries it can answer
while providing (7, 8)-accuracy. We plot the average and standard deviation of the number
of queries k answered before it exceeds its target error bound in 20 independent runs over
the sampled data and the mechanism’s randomness. When we plot the actual realized error
for any mechanism, we denote it by dotted lines, whereas the provably valid error bounds
resulting from the confidence intervals produced by GnC are denoted by solid lines. Note that
the empirical error denoted by dotted lines is not actually possible to know without access
to the distribution, and is plotted just to visualize the tightness of the provable confidence
intervals. We compare to two simple baselines: sample splitting, and answer discretization:
the better of these two is plotted as the thick solid line. For comparison, the best worst-case
bounds for the Gaussian mechanism (Theorem 2.1) are shown as dashed lines. Note that
we improve by roughly two orders of magnitude compared to the tightest bounds for the
Gaussian. We improve over the baseline at data set sizes n > 2, 000.

Boost in performance for low-variance queries: Since all the queries we construct
take binary values on a sample z € X, the variance of query ¢; is given by var(¢;) =
¢:(D)(1 — ¢:(D)), as ¢;(D) = Pr(¢;(x) = 1). Now, var(¢;) is maximized when ¢;(D) = 0.5.
Hence, informally we call ¢; as low-variance if either ¢;(D) < 0.5, or ¢;(D) > 0.5. We
want to be able to adaptively give tighter confidence intervals for low-variance queries (as
e.g., the worst-case bounds of Feldman and Steinke [2017a,b] are able to). For instance, in
Figure 4 (left), we show that in the presence of low-variance queries, using Lemma 3.1 for
HoldoutTol (plot labelled “GnC Check:MGF”) results in a significantly better performance
for GnC Gauss as compared to using Lemma C.9 (plot labelled “GnC Check:Chern”). We
fix 7,8 = 0.05, and set ¢;(D) = 0.9 for ¢ > 1. We can see that as the dataset size grows,
using Lemma 3.1 provides an improvement of almost 2 orders of magnitude in terms of
the number of queries k answered. This is due to Lemma 3.1 providing tighter holdout
tolerances 73, for low-variance queries (with guesses close to 0 or 1), compared to those
obtained via Lemma C.9 (agnostic to the query variance). Thus, we use Lemma 3.1 for
HoldoutTol in all experiments with GnC below. Note that the worst-case bounds for the
Gaussian don’t promise a coverage of 1 — 3 even for k = 1 in the considered parameter ranges.
This is representative of a general phenomenon: switching to GnC-based bounds instead of
worst-case bounds is often the difference between obtaining useful vs. vacuous guarantees.

Performance at high confidence levels: The bounds we prove for the Gaussian mecha-
nism, which are the best known worst-case bounds for the considered sample size regime,
have a substantially sub-optimal dependence on the coverage parameter 3 : 1/1/3. On the
other hand, sample splitting (and the bounds from Dwork et al. [2015d], Bassily et al. [2016]
which are asymptotically optimal but vacuous at small sample sizes) have a much better
dependence on § : 1In (1/28). Since the coverage bounds of GnC are strategy-dependent, the
dependence of 7 on § is not clear a priori. In Figure 4 (right), we show the performance of
GnC Gauss (labelled “GnC”) when g € {0.05,0.005}. We see that reducing 8 by a factor
of 10 has a negligible effect on GnC’s performance. Note that this is the case even though
the guesses are provided by the Gaussian, for which we do not have non-vacuous bounds
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Figure 4: Left: Gain in performance for GnC Gauss by using Lemma 3.1 for HoldoutT ol
(“GnC Check:MGF”), as compared to using Lemma C.9 (“GnC Check:Chern”). Right:
Performance of GnC Gauss (“GnC”), and the best Gaussian bounds (“Bnd”), for g €
{0.05,0.005}.

with a mild dependence on S in the considered parameter range (see the worst-case bounds,
plotted as “Bnd”) — even though we might conjecture that such bounds exist. This gives
an illustration of how GnC can correct deficiencies in our worst-case theory: conjectured
improvements to the theory can be made rigorous with GnC’s certified confidence intervals.

GnC with different guess mechanisms: GnC is designed to be modular, enabling it to
take advantage of arbitrarily complex mechanisms to make guesses. Here, we compare the
performance of two such mechanisms for making guesses, namely the Gaussian mechanism,
and Thresholdout. In Figure 5 (left), we first plot the number of queries answered by the
Gaussian (“Gauss Emp”) and Thresholdout (“Thresh Emp”) mechanisms, respectively, until
the maximum empirical error of the query answers exceeds 7 = 0.1. It is evident that
Thresholdout, which uses an internal holdout set to answer queries that likely overfit to its
training set, provides better performance than the Gaussian mechanism. In fact, we see that
for n > 5000, while Thresholdout is always able to answer 40,000 queries (the maximum
number of queries we tried in our experiments), the Gaussian mechanism isn’t able to do so
even for the largest data set size we consider. Note that the “empirical” plots are generally
un-knowable in practice, since we do not have access to the underlying distributions. But
they serve as upper bounds for the best performance a mechanism can provide.

Next, we fix § = 0.05, and plot the performance of GnC Gauss and GnC Thresh. We see
that even though GnC Thresh has noticeably higher variance, it provides performance that
is close to two orders of magnitude larger than GnC Gauss when n > 8000. Moreover, for
n > 8000, it is interesting to see GnC Thresh gaurantees (7, 3)-accuracy for our strategy
while consistently beating even the empirical performance of the Gaussian. We note that
the best bounds for both the Gaussian and Thresholdout mechanisms alone (not used as
part of GnC) do not provide any non-trivial guarantees in the considered parameter ranges.

Responsive widths that track the empirical error: The GnC framework is designed to
certify guesses which represent both a point estimate and a desired confidence interval width
for each query. Rather than having fixed confidence interval widths, this framework also
provides the flexibility to incorporate guess mechanisms that provide increased interval widths
as failures accumulate within GnC. This allows GnC to be able to re-use the holdout set in
perpetuity, and answer an infinite number of queries (albeit with confidence widths that might
grow to be vacuous). In Figure 5 (right), we fix n = 30000, 8 = 0.05, 77 = 0.06, and plot the
performance of GnC Gauss such that the guessed confidence width 7,41 = min (1.47;,0.17)
if the “check” for query ¢; results in a failure, otherwise 7,41 = 7. For comparison, we
also plot the actual maximum empirical error encountered by the answers provided by GnC
(“GnC Gauss Emp”). It corresponds to the maximum empirical error of the answers of the
Gaussian mechanism that is used as a guess mechanism within GnC, unless the check for a
query results in a failure (which occurs 4 times in 40000 queries), in which case the error
corresponds to the discretized answer on the holdout. We see that the statistically valid
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Figure 5: Left: Performance of GnC with Gaussian (“GnC Gauss”), and Thresholdout (“GnC
Thresh”) mechanisms, together with their empirical error. Right: The accuracy of GnC
with Gaussian guesses provides “responsive” confidence interval widths that closely track the
empirical error incurred by the guesses of the Gaussian mechanism (“GnC Gauss Emp”).

accuracy guaranteed by GnC is “responsive” to the empirical error of the realized answers
produced by the GnC, and is almost always within a factor of 2 of the actual error.
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A  Omitted Definitions

Here, we present the definitions that were omitted from the main body due to space
constraints.

A.1 Confidence Interval Preliminaries

In our implementation, we are comparing the true average ¢(D) to the answer a, which will be

the true answer on the sample with additional noise to ensure each query is stably answered.

We then use the following string of inequalities to find the width 7 of the confidence interval.
Pr(|¢(D) — a| = 7] < Pr[|¢(D) — ¢(X)| + [¢(X) — a| = 7]

< Pr(|6(D) — 6(X)| > 7/2] + Pr[|(X) — a] > /2] (1)

Population Accuracy Sample Accuracy

We will then use this connection to get a bound in terms of the accuracy on the sample and the
error in the empirical average to the true mean. Many of the results in this line of work use a
transfer theorem which states that if a query is selected via a private method, then the query
evaluated on the sample is close to the true population answer, thus providing a bound on
population accuracy. However, we also need to control the sample accuracy which is affected
by the amount of noise that is added to ensure stability. We then seek a balance between the
two terms, where too much noise will give terrible sample accuracy but great accuracy on the
population — due to the noise making the choice of query essentially independent of the data
—and too little noise makes for great sample accuracy but bad accuracy to the population.
We will consider Gaussian noise, and use the composition theorems to determine the scale of
noise to add to achieve a target accuracy after k adaptively selected statistical queries.

Given the size of our dataset n, number of adaptively chosen statistical queries k, and
confidence level 1 — 3, we want to find what confidence width T ensures M = (My, -+, My)
is (7, B)-accurate with respect to the population when each algorithm M; adds either Laplace
or Gaussian noise to the answers computed on the sample with some yet to be determined
variance. To bound the sample accuracy, we can use the following theorem that gives the
accuracy guarantees of the Gaussian mechanism.

Theorem A.1. If{Z; :i € [k]} vr N(0,02) then for B € (0,1] we have:

Pr {|ZZ-\ > a\/21n(2/ﬂ)} <B = Prl|dielk] st |Z|> m/zln(zk/ﬁ)} <B. (2

11



A.2 Stability Measures

It turns out that privacy preserving algorithms give strong stability guarantees which allows
for the rich theory of differential privacy to extend to adaptive data analysis [Dwork et al.,
2015d,a, Bassily et al., 2016, Rogers et al., 2016]. In order to define these privacy notions,
we define two datasets X = (z1,--- ,2p,), X' = (24, -+ ,2],) € X" to be neighboring if they
differ in at most one entry, i.e. there is some i € [n] where x; # xi, but z; = z; for all j #i.
We first define differential privacy.

Definition A.2 (Differential Privacy [Dwork et al., 2006b,a]). A randomized algorithm (or
mechanism) M : X™ — Y is (¢, §)-differentially private (DP) if for all neighboring datasets
X and X’ and each outcome S C Y, we have Pr[M(X) € S| < ePr[(M(X') € S]+ 6. If
0 =0, we simply say M is e-DP or pure DP. Otherwise for § > 0, we say approzimate DP.

We then give a more recent notion of privacy, called concentrated differential privacy (CDP),
which can be thought of as being “in between" pure and approximate DP. In order to define
CDP, we define the privacy loss random variable which quantifies how much the output
distributions of an algorithm on two neighboring datasets can differ.

Definition A.3 (Privacy Loss). Let M : X" — Y be a randomized algorithm. For

neighboring datasets X, X’ € X", let Z(y) =1In (%). We then define the privacy

loss variable PrivLoss (M(X)||M(X")) to have the same distribution as Z(M(X)).

Note that if we can bound the privacy loss random variable with certainty over all neighboring
datasets, then the algorithm is pure DP. Otherwise, if we can bound the privacy loss with
high probability then it is approximate DP (see Kasiviswanathan and Smith [2014] for a
more detailed discussion on this connection).

We can now define zero concentrated differential privacy (zCDP), given by Bun and Steinke
[2016a] (Note that Dwork and Rothblum [2016] initially gave a definition of CDP which Bun
and Steinke [2016a] then modified).

Definition A.4 (zCDP). An algorithm M : X™ — ) is p-zero concentrated differentially
private (zCDP), if for all neighboring datasets X, X’ € X™ and all A > 0 we have

E [exp (A (PrivLoss (M(X)||[M(X")) — p))] < &7

We then give the Laplace and Gaussian mechanism for statistical queries.

Theorem A.5. Let ¢ : X — [0,1] be a statistical query and X € X™. The Laplace
mechanism Myap : X™ — R is the following Myap(X) = 237" | ¢(x;) + Lap (L), which is
e-DP. Further, the Gaussian mechanism Mgauss : X — R is the following Mgauss(X) =
LS G(z)+ N (0 L ) which is p-2CDP.

) Zpn?

We now give the advanced composition theorem for k-fold adaptive composition.

Theorem A.6 (Dwork et al. [2010],Kairouz et al. [2017]). The class of € -DP algorithms is
(e,8)-DP under k-fold adaptive composition where § > 0 and

€= (Zf';—l) €'k +€'+/2kIn(1/5) (3)

We will also use the following results from zCDP.
Theorem A.7 (Bun and Steinke [2016a]). The class of p-zCDP algorithms is kp-zCDP
under k-fold adaptive composition. Further if M is e-DP then M is €2 /2-2CDP and if M is

p-2CDP then M is (p+ 2y/pln(/7p/0),8)-DP for any 6 > 0.

Another notion of stability that we will use is mutual information (in nats) between two
random variables: the input X and output M(X).

Definition A.8 (Mutual Information). Consider two random variables X and Y and let
Z(xz,y) = In (%). We then denote the mutual information as I (X;Y) =
E [Z(X,Y)], where the expectation is taken over the joint distribution of (X,Y).

12



A.3 Monitor Argument

For the population accuracy term in (1), we will use the monitor argument from Bassily
et al. [2016]. Roughly, this analysis allows us to obtain a bound on the population accuracy
over k rounds of interaction between adversary A and algorithm M by only considering
the difference |¢(X) — ¢(D)| for the two stage interaction where ¢ is chosen by A based on
outcome M(X). We present the monitor Wp[M, A] in Algorithm 2.

Algorithm 2 Monitor Wp[M, A](X)

Require: X € A"
We simulate M(X) and A interacting. We write ¢1,-- -, ¢r € Qg¢ as the queries chosen
by A and write ay,- - ,ar € R as the corresponding answers of M.
Let j* = argmax;c [¢;(D) — aj] .

Ensure: ¢;-

Since our stability definitions are closed under post-processing, we can substitute the monitor
Wp[M, A] as our post-processing function f in the above theorem. We then get the following
result.

Corollary A.9. Let M = (My,--- , My), where each M; may be adaptively chosen, satisfy
any stability condition that is closed under post-processing. For each i € [k|, let ¢; be the
statistical query chosen by adversary A based on answers a; = M;(X),Vj € [i — 1], and let

¢ be any function of (a1, -+ ,ax). Then, we have

P (D) —ai|>7| < P D) - ¢(X)| >7/2|+ P (X)) — ai| > /2
Pr {gré?;flw JmalzT) < Pro[[6(D) - o(X)[ 2 7/2]+ Pr [ggﬁaﬁ( ) —ail > 7/
X~D" G M(X) X~D"

Proof. From the monitor in Algorithm 2 and the fact that M is closed under post-processing,
we have

P (D) — a;| > — P (D) — aq«| >
P [msle®) —alz e = P @) -l 2
X~D" ¢ jx —Wnp[M,A](X)
< P [|¢=(D) — ¢ (X)|| = 7/2]
6+ < Wp [MA(X)
+ o [|6j+(X) — aj«|| = 7/2]

b= Wp[M,A|(X)

< Pr. [0(D) = 6(X)] = 7/2

F=M(X)

+ P (X)) —ag| > 7/2
Pr grel?ﬁ\qﬁ( ) —ail =7/
X~D"

O

We can then use the above corollary to obtain an accuracy guarantee by union bounding
over the sample accuracy for all k rounds of interaction and then bounding the population
error for a single adaptively chosen statistical query.

B Omitted Confidence Interval Bounds

Here we present the bounds derived via prior work, provide a comparison of our bounds for
the Gaussian mechanism (Theorem 2.1) with prior work.
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B.1 Confidence Bounds from Dwork et al. [2015a]

We start by deriving confidence bounds using results from Dwork et al. [2015a], which uses
the following transfer theorem (see Theorem 10 in Dwork et al. [2015a]).

Theorem B.1. If M is (¢,6)-DP where ¢ + M(X) and 7 > /% 1n(4/8), € < 7/4 and
§ = exp <M>, then Pr[|¢p(D) — ¢(X)| > 7] < 5.

T

We pair this together with the accuracy from either the Gaussian mechanism or the Laplace
mechanism along with Corollary A.9 to get the following result

Theorem B.2. Given confidence level 1 — 3 and using the Laplace or Gaussian mechanism
for each algorithm M;, then (My,--- , My) is (tV), B)-accurate.

e Laplace Mechanism: We define (1) to be the solution to the following program

min T
s.t. T>2 % In(8/3)
> 21n(2k/B)

’

for e >0

e Gaussian Mechanism: We define 7(1) to be the solution to the following program

min T

s.t. T>2 4;8 In(8/8)

1 1
r 2 o /S mak/g)

In 16
T > 8pk + { | 256pk (ln mpk + b )
p

for p>0

To bound the sample accuracy, we will use the following lemma that gives the accuracy

guarantees of Laplace mechanism.
iid.

Lemma B.3. If{Y; :i € [k]} "~ Lap(b), then for 5 € (0,1] we have:
Pr(|Y;] > In(1/8)b] < B = Pr[Ji € [k] s.t. |Yi] > ln(k/B)b] < . (4)

Proof of Theorem B.2. We will focus on the Laplace mechanism part first, so that we add
Lap (nle,) noise to each answer. After k adaptively selected queries, the entire sequence of

noisy answers is (¢,0)-DP where

e=ke .S -1 +¢€ - \/2kIn(1/6).

e +1

We then want to bound the two terms in (1). To bound the sample accuracy, we then use
(4) so that

2
™= = In(2k/p)
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For the population accuracy, we need to apply Theorem B.1, which requires us to have the
following, where we take a union bound over all selected statistical queries:

0 = exp (—81n(16/5)> and 7 > max{Z Zf]ng,&}.
T

We then write € in terms of § to get:

€1 In(1
e, +4€/' kn( 6/5)
e’ +1 T

We are then left to pick ¢ > 0 to obtain the smallest value of 7.

e =ke -

When can then follow a similar argument when we add Gaussian noise with variance PTErE

The only modification we make is using Theorem A.7 to get a composed DP algorithm with
parameters in terms of p, and the accuracy guarantee in (2). O

B.2 Confidence Bounds from Bassily et al. [2016]

We now go through the argument of Bassily et al. [2016] to improve the constants as much as
we can via their analysis to get a decent confidence bound on k adaptively chosen statistical
queries. This requires presenting their monitoring, which is similar to the monitor presented
in Algorithm 2 but takes as input several independent datasets. We first present the result.

Theorem B.4. Given confidence level 1 — 3 and using the Laplace or Gaussian mechanism
for each algorithm M;, then (My,--- , My) is (1?, 8)-accurate.

e Laplace Mechanism: We define 7(2) to be the following quantity:

In X
;1 inf {ew—1+25 {1J+ n/%}’
1—(1—5)LEJ <o Bl em

5¢(0,1)

where Y = (Z€,+1> -e'k+e'1/2kln%

e Gaussian Mechanism: We define 7 to be the following quantity:

Ink
! inf {ef—1+26| L] 4y e ,
p>0, 8 n2p

1—-(1-0) {%J 5€(0,1)
where £ = kp + 24 [kpln (';Tp>

In order to prove this result, we begin with a technical lemma which considers an algorithm
W that takes as input a collection of s samples and outputs both an index in [s] and a
statistical query, where we denote Qgq as the set of all statistical queries ¢ : X — [0,1] and
their negation.

Lemma B.5 ([Bassily et al., 2016]). Let W : (X™)° — Qgq x [s] be (e,6)-DP. If X =
(XMoo X)) ~ (D) then

E #(D) — ¢(X<t>)} <e—1+s0

X, (¢,t)=W(X)

We then define what we will call the extended monitor in Algorithm 3.

We then present a series of lemmas that leads to an accuracy bound from Bassily et al.
[2016].

Lemma B.6 ([Bassily et al., 2016]). For each €,6 > 0, if M is (¢,0)-DP for k adaptively
chosen queries from Qgq, then for every data distribution D and analyst A, the monitor

Wp[M, A] is (e,0)-DP.
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Algorithm 3 Extended Monitor Wp[M, A](X)
Require: X = (XM ... X&) e (xn)s

for t € [s] do
We simulate M(X(t)) and A interacting. We write ¢¢ 1, -, drx € Qs as the queries
chosen by A and write a1, - ,a:r € R as the corresponding answers of M.

Let (j,1%) = argmax e se(s) |91, (D) — ar ]
if Qg j* — ¢t*7j* (D) > 0 then ¢ ¢t*,j*
else ¢ < —¢¢= ;-

Ensure: (¢*,t*)

Lemma B.7 ([Bassily et al., 2016]). If M fails to be (7, 5)-accurate, then ¢*(D) —a* >0,
where a* is the answer to ¢* during the simulation (A can determine a* from output (¢*,t*))
and
_ Pr l¢"(DP) —a*|>7]>1-(1-7)"
X~(D")*,
(¢",t")=Wp[M,A|(X)

The following result is not stated exactly the same as in Bassily et al. [2016], but it follows
the same analysis. We just do not simplify the expressions in the inequalities.

Lemma B.8. If M is (7', 8')-accurate on the sample but not (7, 3)-accurate for the popula-
tion, then

CE oot (XO)]|2r- -8 - (7 +2s8).
X~ (D),
(¢",6)=Wp [M,A|(X)

We now put everything together to get our result.

Proof of Theorem B.4. We ultimately want a contradiction between the result given in
Lemma B.5 and Lemma B.8. Thus, we want to find the parameter values that minimizes 7
but satisfies the following inequality

T(1—=(1-=05)°%) —(7"+2s8") > e —1+s6. (5)

We first analyze the case when we add noise Lap (-1) to each query answer on the sample

to preserve ¢’-DP of each query and then use advanced composition Theorem A.G to get a

bound on e. )
€ -1
€= (e )e'k+e’\/2kln(1/6) _

e +1

In(k/8")

e'n

Further, we obtain (7', 8’)-accuracy on the sample, where for 5’ > 0 we have 7/ =
We then plug these values into (5) to get the following bound on 7

1 B’ / P
T > _
(1 a )S) ” +2sB" +e 1+ 50

We then choose some of the parameters to be the same as in Bassily et al. [2016], like
s=|1/B] and B’ = 26. We then want to find the best parameters €, that makes the right
hand side as small as possible. Thus, the best confidence width 7 that we can get with this
approach is the following

k
1—(1—ﬁ)|_EJ ¢'>0, B e'n

6€(0,1)
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Using the same analysis but with Gaussian noise added to each statistical query answer with
variance 5+ (so that M is pk-zCDP), we get the following confidence width 7,

2pn?

B S
1-(1- )] 22,

2
6€(0,1) ﬁ

1 In £
inf S — 1426 {J + 25
n%p

B.3 Comparison of Theorem 2.1 with Prior Work

One can also get a high-probability bound on the sample accuracy of M(X) using Theorem
3 in Xu and Raginsky [2017], resulting in

S GO e B

_1_
’» 2pn?2

to the proof of Theorem 2.1. If the mutual information bound B = pkn > 1, then the first
term in the expression of the confidence width in Theorem 2.1 is less than the first term in
eq. (6). Furthermore, if B > %, then the first term dominates in the expression of the
confidence width in Theorem 2.1, thus making Theorem 2.1 result in a tighter bound for any
B € (0,1). For very small values of B, there exist sufficiently small 8 for which the result
obtained via Xu and Raginsky [2017] is better.

where i.i.d. Gaussian noise IV (O ) has been added to each query. The proof is similar

B.4 Confidence Bounds for Thresholdout (Dwork et al. [2015a])

Theorem B.9. If the Thresholdout mechanism M with noise scale o, and threshold T is
used for answering queries ¢;, i € [k], with reported answers ay,--- ,aj such that M uses
the holdout set of size h to answer at most B queries, then given confidence parameter 3,
Thresholdout is (T, 3 )-accurate, where

1 13 13
— . 2 = >, 2
T=4|3 (7 Y+t (1 +w)>

2B
min ) where W; ~ Lap(40),1 € [k] and Y; ~ Lap(20),j € [B].
min S , p(40), f p(20), j
€10,

Proof. Similar to the proof of Theorem 2.1, first we derive bounds on the mean squared
error (MSE) for answers to statistical queries produced by Thresholdout. We want to bound
the maximum MSE over all of the statistical queries, where the expectation is over the noise
added by the mechanism and the randomness of the adversary.

Theorem B.10. If the Thresholdout mechanism M with noise scale o, and threshold T is

used for answering queries ¢;, i € [k], with reported answers a1, --- ,aj such that M uses
the holdout set of size h to answer at most B queries, then we have
RN (TSN C)) o I LR Y L FR)
X~D", J J - 4h h ’

¢+ ~Wp [M,A](X)

2B _|p(1—

forv =E | (max W; + max Yj)z] +2T-E [max W; + max Y]] and £ = min (W),
1€[k] JE[B] i€[k] JE[B] A€(0,1)

where W; ~ Lap(40),i € [k] and Y; ~ Lap(20),j € [B].
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Proof. Let us denote the holdout set in M by X} and the remaining set as X;. Let O denote
the distribution Wp[M, A](X), where X ~ D™. We have:

E oy =60 = E [(a =6 (Xn) + 65+ (Xn) = ¢5+(D))?]

¢j* ¢>J*
.o [(aj+ — 3= (Xn)?*] + o Eo [(¢5+(Xn) = 65+ (D))?]
+2, [, Bl =0 (] | B (6 (0 =00

(7)

where the last inequality follows from the Cauchy-Schwarz inequality.

Now, define a set S;, which contains the indices of the queries answered via X;. We
know that for at most B queries ¢; € Sj, the output of M was a; = ¢; (X) + Z; where
Z; ~ Lap(c), whereas it was a; = ¢; (Xy) for at least k — B queries, ¢ € [k\ Sy]. Also, define
W; ~ Lap(40),i € [k] and Y; ~ Lap(20),j € Si,. Thus, for any j* € [k], we have:

- — 0y (00) < max { e 10n(X) = 640X a2}

< max max T—&—Y()—&—Wz,maXZ
LE[k\S;L]
j(3)€Sh

< max max T +Y; —I—Wz,maxZ
ze[k\SSh]
€5h

< T+ maxW; + max Y;
i€[k] J€[B]
Thus,

E - — - (Xn))?] <E|(T Y;
B o (05 = 95-(60)°) B |(7 4 max Wi + ma 2]

=T>+ R [(maxW + max Yj) ] +2T-E [maxW + max Y
i€[k] i€[B] i€[k] J€[B]

(8)

We bound the 2nd term in (7) as follows. For every i € Sy, there are two costs induced due
to privacy: the Sparse Vector component, and the noise addition to ¢;(X}). By the proof
of Lemma 23 in Dwork et al. [2015a], each individually provides a guarantee of (-, 0)-DP.
Using Theorem A.7, this translates to each providing a (ﬁ)-ZCDP guarantee. Since there

are at most B such instances of each, by Theorem A.7 we get that M is ( 5 h2) zCDP. Thus,
by Lemma C.6 we have

T(M(Xp); Xn) <

Proceeding similar to the proof of Theorem C.8, we use the sub-Gaussian parameter for
statistical queries in Lemma C.5 to obtain the following bound from Theorem C.2:

(6000 =00 = & [max {16,000 - 0:0)%)] <

X~D", |ieS — 4h
M, A

(9)

¢*o

Defining ¢ = E (max W; + max Y;) ] +2T-E [max W; + max Y] and combining Equa-
€[k] J€[B] i€[k] J€[B]

tions (7), (8), and (9), we get:

E [y —op D)) ST +u+ 4521 4)
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We can use the MSE bound from Theorem B.10, and Chebyshev’s inequality, to get the
statement of the theorem. O

C Omitted Results, and Proofs

In this section, we provide the results and detailed proofs that have been omitted from the
main body of the paper.

C.1 RMSE analysis for the single-adaptive query strategy

Theorem C.1. The output by the single-adaptive query strategy above results in the maximum
possible RMSE for an adaptively chosen statistical query when each sample in the dataset is
drawn uniformly at random from {—1,1}*T1 and M is the Naive Empirical Estimator, i.e.,
M provides the empirical correlation of each of the first k features with the (k + 1) feature.

Proof. Consider a dataset X € X", where X is the uniform distribution over {—1,1}¥+1,

We will denote the j" element of x; € X by x;(j), for j € [k + 1]. Now, Vj € [k], we have
that:

. {Hx(y‘»

xz(k + 1)} _1+Pr (x(j) = x(k+1)) —Pr(x(j) #x(k+1))
X 2

2 Y

LPr(e()=ak+1) =a; and  Pra() £ o(k+1) =1-aq

Now,

1 [ P (@(k+1) =1 Ajepy 2(4) = ;) | _ [ Frx (z(k+1) = 1A (Njemz(d) = j))
Prx (z(k+1) = =1| Ajey z(j) = ;) Prx (z(k+1) = =1 A (Ajez(j) xj)

Prx (z(k+1) = -1 Az(j) = z;)

I H Prx (z(k+1) =1Az(j) —x] )

. Pry (a(k + 1) = 2())
= H(Prm(mn# ‘>>

Cik] z(j))
_ a \") _ N
=In H(l_%) —Z(xj lnl—aj
JE[K] JEIK]

<1 < PrX(z(k+1):1\AjE[k]a:(j):zj) "
sign | In

PrX(z(k+1):71|/\,ve[k]z(j):a:j)
Thus, ¢pt1(z) = 5

As a result, the adaptive query @11 in Algorithm 5 (setting input S = {k + 1}) corresponds
to a naive Bayes classifier of z(k 4 1), and given that X is the uniform distribution over
{—1,1}**1 this is the best possible classifier for z(k+1). This results answer ay 1 achieving
the maximum possible deviation from the answer on the population, which is 0.5 as X

is uniformly distributed over {—1,1}**!. Thus, aj;; results in the maximum possible
RMSE. 0

C.2 Proof of Theorem 2.1

Rather than use the stated result in Russo and Zou [2016], we use a modified “corrected”
version and provide a proof for it here. The result stated here and the one in Russo and Zou
[2016] are incomparable.

Theorem C.2. Let Q, be the class of queries ¢ : X™ — R such that $(X) — ¢(D™) is
o-subgaussian where X ~ D". If M : X™ — Q, is a randomized mapping from datasets to
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queries such that I (M(X); X) < B then

)2 . (2B-In(1-))
CE. 00 = o@M)] <o” - min (A>
o M(X)

In order to prove the theorem, we need the following results.

Lemma C.3 (Russo and Zou [2015], Gray [1990]). Given two probability measures P and
Q defined on a common measurable space and assuming that P is absolutely continuous with
respect to @, then

Dk [P||Q] = sip {]IE [X] - logg [exp(X)]}

Lemma C.4 (Russo and Zou [2015]). If X is a zero-mean subgaussian random variable
with parameters o then

AX?2 1
E [exp < 5,2 >} < Vit YA e0,1)

Proof of Theorem C.2. Proceeding similar to the proof of Proposition 3.1 in Russo and Zou
[2015], we write ¢(X) = (¢(X) : ¢ € Q). We have:

T(M(X); X) > T (M(X); (X))

X (M =001 1.0 < 0

a,pEQq

- S m (Pr L ¢]> PrIM(X) = 6] Prg(X) = alM(X) = g]
a,pEQ s

> Y (Pf [45(;?[;(;‘('){(2’ = ‘“) Pr[M(X) = ¢ Pr[6(X) = al M(X) = g]
a,pEQ,

= 37 PrIM(X) = ] Dic [(6COIM(X) = )[16(X)] (10)
PEQ,

where the first inequality follows from post processing of mutual information, i.e. the data
processing inequality. Consider the function fy(x) = 525 (x — ¢(D"))? for A € [0,1). We have

202
Drr[(@(X)MX) = 9)ll6(X)] 2 B [f(d(X)IM(X) =¢]-In E - exp(fo(¢(X)))]
7 S~ M(X)
A . .
> 55 B L60X) = 6D IM(X) = 6] = n (m)

where the first and second inequalities follows from Lemmas C.3 and C.4, respectively.

Therefore, from eq. (10), we have

TMERX) 2 2 B (600 - 60 -1 ()
o~ M(X)
Rearranging terms, we have
B, [000-60?] < 22 (1030 410 (2 )




In order to apply this result, we need to know the subgaussian parameter for statistical
queries and the mutual information for private algorithms.

Lemma C.5. For statistical queries ¢ and X ~ D™, we have ¢(X) — ¢(D™) is 2\1/ﬁ-sub-
gaussian.

We also use the following bound on the mutual information for zZCDP mechanisms:

Lemma C.6 (Bun and Steinke [2016a]). If M : X" — Y is p-zCDP and X ~ D", then
1(M(X); X) < pn.

In order to prove Theorem C.8, we use the same monitor from Algorithm 2 in which there is
a single dataset as input to the monitor and it outputs the query whose answer had largest
error with the true query answer. We first need to show that the monitor has bounded mutual
information as long as M does, which follows from mutual information being preserved
under post-processing.

Lemma C.7. If I (X; M(X)) < B where X ~ D", then I (X; Wp[M, A](X)) < B.

Next, we derive bounds on the mean squared error (MSE) for answers to statistical queries
produced by the Gaussian mechanism. We want to bound the maximum MSE over all of the
statistical queries, where the expectation is over the noise added by the mechanism and the
randomness of the adversary.

E {maX (¢:(D) — ai)Q} <2 E {maX {(:(D) — ¢:(X))* + ($:(X) — ai)Q}]

X~D", | i€lk] X~D", | i€lk]
A,M A,M

—2.E [max (Gi(D) - 42| +2- B [maxzf] (11)
i€ (k] ZiNN(O,ﬁ) i€[k]
To bound E [maxie[k] (¢i(D) — ¢i(X ))2} , we obtain the following using the monitor argument

from Bassily et al. [2016] along with results from Russo and Zou [2016], Bun and Steinke
[2016a].
Theorem C.8. For parameter p > 0, the answers provided by the Gaussian mechanism

ai, -+ ,a against an adaptively selected sequence of queries satisfy:
E {malj{ (¢:(D) — ai)Q} < i - min (W\M) +2. E {makx Zf]
X~D", | i , i
oD el €lo,1) Zin (0.524-) L€l

Proof. We follow the same analysis for proving Theorem B.4 where we add Gaussian noise
with variance ﬁ to each query answer so that the algorithm M is p-zCDP, which (using

Lemma C.6 and the post-processing property of zZCDP) makes the mutual information bound
B = pkn. We then use Lemma C.7 and the sub-Gaussian parameter for statistical queries in
Lemma C.5 to obtain the following bound from Theorem C.2.

E - [@x)-em))] - max {(6:(X) - 6:(D))*}}

E
X~D", X~Dm M, A | ic[k]

¢ ~Wop [M,A](X)
1 . 2pkn —1In (1 — X)
— . min
~ 4n  xeo,1) A

We then combine this result with (11) to get the statement of the theorem. O

Proof of Theorem 2.1. We can bound the population accuracy in (1) using Equation (12)
and Chebyshev’s inequality to obtain the following high probability bound,

1 . 2pkn —In (1 —X)
P X)—o(D)| =27 < .
B 1) oD =7l < g Ale%r,ll)( A

P+ M(X)

We then use the result of Corollary A.9 to obtain our accuracy bound. O
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C.3 Proofs from Section 3
C.3.1 Proof of Theorem 3.2

We start by proving the validity for query responses output by GnC that correspond to the
responses provided by My, i.e., each query ¢; s.t. the output of GnC is (ag i, 7).

Lemma C.9. If the function HoldoutTol(5', ag,an) = \/M in GnC (Algorithm 1), then

2np

for each query ¢; s.t. the output of GnC' is (ag,;,7;), we have Pr(lag; — ¢:(D)| > 7;) < f;.

Proof. Consider a query ¢; for which the output of the GnC mechanism is (a4, 7;), and let
T = HoldoutTol(B;, ag,i,an:). Now, we have
Pr(lagi — ¢i(D)| > 1) < Pr(lag,; — anil + |ani — ¢:i(D)| > 7i)
= Pr(|ah,i — ¢Z(D)| > Th)

< Bi
where the equality follows since |ag; — an | < 7; — 74, and the last inequality follows from
applying the Chernoff bound for statistical queries. O

Lemma C.9 is agnostic to the guesses and holdout answers while computing the holdout
tolerance 7,. However, GnC can provide a better tolerance 73, in the presence of low-variance
queries. We state the guarantee in Lemma 3.1, and provide a proof for it in Appendix C.3.2.

Next, we provide the accuracy for the query answers output by GnC that correspond to
discretized empirical answers on the holdout. It is obtained by maximizing the discretization
parameter such that applying the Chernoff bound on the discretized answer satisfies the
required validity guarantee.

Lemma C.10. If failure f occurs in GnC (Algorithm 1) for query ¢; and the output
of GnC' is (Lah,iJ’ypTi)} since we have vy = [rgla/)gfy s.t. 20727 =N e < B, we have
Pr(|ag; — ¢:(D)| > 7;) < B;. Here, |y], denotes y discretized to multiples of ~

Proof of Theorem 3.2. Let an instance of the Guess and Check mechanism M encounter f
failures while providing responses to k queries {¢1, ..., ¢ }. We will consider the interaction
between an analyst A and the Guess and Check mechanism M to form a tree T', where the
nodes in T correspond to queries, and each branch of a node is a possible answer for the
corresponding query. We first note a property about the structure of 7"

Fact 1: For any query ¢y, if the check within M results in failure f’, then there are %f/
possible responses for ¢;. On the other hand, if the check doesn’t result in a failure, then

there is only 1 possible response for ¢;/, namely (ag i/, 7).

Next, notice that each node in T can be uniquely identified by the tuple t =
(G AR TP I3 S o N ,fyjf,}), where ¢’ is the depth of the node (also, the index of
the next query to be asked), f’ is the number of failures within M that have occurred in the
path from the root to node ¢, and for ¢ € [f'], the value j, denotes the query index of the
¢th failure on this path, whereas ;, is the corresponding discretization parameter that was
used to answer the query. We can now observe another property about the structure of 7"

Fact 2: For any i’ € [k], f' € [’/ — 1], there are (ilf_,l) Hée[f’] (i) nodes in T of type

(¢, f',;,;). This follows since there are (i,f_,l) possible ways that f’ failures can occur in

1’ — 1 queries, and from Fact 1 above, there are ,% possible responses for a failure occurring
e

at query index jg, £ € [f'].

Now, we have
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Pr(3i e [k]: |¢:i(D) — a;] > 7) < Pr(|¢+(D) — at| > 7¢)

> Y Pr(6e(D) —ay| > mlt)

=1 {j1,--, jf’}{'le aaaa 'ij/}

Z
e

V'/ e i
1]{]1’ Jf’}{"/]la 7'YJf/} i’ f "le

I
'M

Sy y ¥ oy e

i E[k f’e[l/ 1] {-717 jf/} {7]17 7'YJf/} ( ) HZE (’YJZ)

=B D cra-| DY ep || <BD 1B

i’ €[k] freli—1] i’ €[k]

where the second equality follows from Lemma 3.1, Lemma C.10, and substituting the values
of B; in Algorithm 1; the last equality follows from Fact 2 above; and the last two inequalities
follow since > j>0¢ < 1 Thus, we have simultaneous coverage 1 — 3 for the Guess and
Check mechanism M. 0O

Lemma C.9 is agnostic to the guesses and holdout answers while computing the holdout
tolerance 7,. However, GnC can provide a better tolerance 73, in the presence of low-variance
queries. We provide a proof for it below.

C.3.2 Proof of Lemma 3.1

Lemma 3.1 uses the MGF of the binomial distribution to approximate the probabilities of
deviation of the holdout’s empirical answer from the true population mean (instead of, say,
optimizing parameters in a large deviation bound). This is exact when the query only takes
values in {0, 1}. To prove the lemma, we start by first proving the dominance of the binomial
MGF.

Lemma C.11. Let X1, Xs, ..., X, be i.i.d. random variables in [0, 1], distributed according
to D, and let p=E [X;]. Let S =>"" | X;, and B ~ B(n, i) be a binomial random variable.
Then, we have:

E [eAB]

Pr(S >t) < mi
AR

Proof. Consider some A > 0. We have
E[¢*] = (E [ez\xl])"
< (E (X1 e+ (1— X)) 60])n - (1 FE[X)] (e — 1))

=(1+ (e — 1))n
=E [e*P] (13)

n

where the first equality follows since X7, Xo, ..., X, are i.i.d., and the last equality represents
the MGF of the binomial distribution.

Now, we get:

E [6)‘5} E [eAB]
Pr(S>t)="Pr (e’\s > e)‘t) < o < ox
E {BXB}
< VRO T e
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where the first inequality follows from the Chernoff bound, and the second inequality follows
from Equation (13). O

Proof of Lemma 3.1. Consider a query ¢; for which the output of the GnC mechanism is
(ag,i, 7). Let 7, = HoldoutTol(B;,aq,i,an,;). For proving Pr(lag, — ¢:(D)| > ) < f;, it
suffices to show that if |a,; — ¢(D)| > 7;, then

Bi
1 S a T < i
PO S CRETHESSENES- 0
¢i(D)=ag,;—Ti
and sup Pr (ap;<agi+7—1)< b (15)
D s.t. Xp~Dmn TS T2

bi (D):ag,i +7i

When a4, > ap;, we only require inequality 14 to hold. Let B ~ B(n, ) be a binomial
random variable. We have:

E [e)\B] AB ,
P = ") < min ————~ = i {ln (]E[E ])—An(u+7— )}
Dt Xiobm (ans 2 p+7) < NS0 ern(urr) - Sap ¢
6:(D)=p
E[e]  (+pe-1)"

= ebnurr) T eln(p+r’) (16)

_ . In (E[e*B])=An(u+r)} pet
where £ = arg r)\n>118 e{1n (B[*7]) }, e, meT D
follows from Lemma C.11 by setting ¢ = (u + 7')n, and the last equality follows from the
MGF of the binomial distribution. Thus, we get that inequality 14 holds.

= p+ 7'. Here, the first inequality

Similarly, when a4 ; < as;, we only require inequality 15 to hold. Let ' = 1 — p, and
B’ ~ B(n, ). Therefore, we get

(1 + (e - 1))n

sup Pr (ap;<p—7)= sup Pr (ap;>p' +7)<

Dst. Xa~Dmh Dst. Xnp~Dlh et'n(p'+7")
¢:(D)=p #i(D)=p'
A (B[ ) =an(w 7)) . 1! . .
where /' = arg r)fuge{ n (B[e*]) —AnG+r )}, ie., m = 1’ + 7'. Here, the inequality
>

follows from inequality 16. Thus, we get that inequality 15 holds.
O
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D Omitted Pseudocodes

Algorithm 4 Thresholdout (Dwork et al. [2015a])

Require: train size ¢, threshold T, noise scale o
Randomly partition dataset X into a training set X; containing ¢ samples, and a holdout
set Xp, containing h =n —t samples
Initialize T' < T' + Lap(20)
for each query ¢ do R
if |¢(Xn) — ¢(Xt)| > T + Lap(4o) then
T < T + Lap(20)
Output ¢(Xp,) + Lap(o)
else
Output ¢(Xy)

Algorithm 5 A custom adaptive analyst strategy for random data

Require: Mechanism M with a hidden dataset X € {—1,1}"*(*+1) set S C [k+1] denoting
the indices of adaptive queries®
Define j + 1, and success < True
while j < k and success = True do
if j € S then

> (26)mn ajl)) +1

sign(

ielj— . 1 ify >0

Define ¢;(x) = R 2 , where sign(y) = { 1 ;tlyle_ ise
- TWIS

else
Define ¢;(z) = 71+x(j)'2m(k+1)
Give ¢; to M, and receive a; € [0,1] U L from M
if a; = L then
success = False
else
j—j5+1

SFor the single-adaptive query strategy used in the plots in Figure 2, we set S = {k + 1}. For
the quadratic-adaptive strategy used in the plots in Section 3, weset S={i:1<i<kand 3 €
Ns.t. £ <iand £ = i}.
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