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Abstract

Linearizability reduces the complexity of building correct

applications. However, there is a tradeoff between using lin-

earizability for geo-replicated storage and low tail latency.

Traditional approaches use consensus to implement lineariz-

able replicated state machines, but consensus is inefficient

for workloads composed mostly of reads and writes.

We present the design, implementation, and evaluation of

Gryff, a system that offers linearizability and low tail la-

tency by unifying consensus with shared registers. Gryff in-

troduces carstamps to correctly order reads and writes with-

out incurring unnecessary constraints that are required when

ordering stronger synchronization primitives. Our evaluation

shows that Gryff’s combination of an optimized shared reg-

ister protocol with EPaxos allows it to provide lower service-

level latency than EPaxos or MultiPaxos due to its much

lower tail latency for reads.

1 Introduction

Large-scale web applications rely on replication to provide

fault-tolerant storage. Increasingly, developers are turning to

linearizable [32] storage systems because they reduce the

complexity of implementing correct applications [2, 13, 17].

Recent systems from both academia [27, 35, 40, 52, 53, 57]

and industry [6, 11, 14, 17, 23] demonstrate this trend.

Traditionally, linearizable storage systems for geo-

replicated settings are built using state machine replication

via consensus [33, 36, 37, 38, 45, 47, 50, 51]. These pro-

tocols are safe under the asynchronous network conditions

that are common in wide-area networks. Furthermore, they

provide the abstraction of a shared command log, which al-

lows for the implementation of arbitrary deterministic state

machines. Strong synchronization primitives, such as read-

modify-write operations (rmws), can thus be used in appli-

cations built on top of these systems, further easing the pro-

gramming burden on developers.

Linearizability for geo-replicated storage, however, comes

with a tradeoff between strong guarantees and low latency.

At least one communication delay between replicas is nec-

essary to maintain a legal total order of operations [41], and

in the wide-area, this communication incurs a considerable

latency cost even in the best case. The tradeoff is starker for

tail latency, where adverse conditions such as network de-

lays, slow or failed replicas, and concurrent operations fur-

ther delay responses to clients.

Tail latency is of particular importance for large-scale web

applications, where end-user requests for high-level applica-

tion objects fan-out into hundreds of sub-requests to storage

services [18]. For example, when a user loads a page in a so-

cial networking service, an application server typically needs

to invoke and wait for the completion of dozens of requests

to replicas before returning the page to the client [2]. Only

once the client receives the page can it begin loading addi-

tional assets and rendering the page. Thus, the median la-

tency experienced by the end-user depends on the maximum

of tens or hundreds of operations, which is dictated by the

tail of the latency distribution.

Consensus protocols demonstrate the tradeoff between

strong guarantees and low tail latency. Fundamentally, no

protocol can solve consensus and guarantee termination in

an asynchronous system with failures [24]. In practice, this

impossibility result manifests as performance inefficiencies,

such as serializing operations through a designated leader or

delaying concurrent operations. In geo-replicated settings at

scale, these inefficiencies impact tail latency.

In contrast, shared register protocols can implement lin-

earizable shared registers, which support simple reads and

writes, and guarantee termination in asynchronous systems

with failures [5]. This translates to favorable tail latency for

real protocols: shared register protocols are typically lead-

erless and often do not delay reads or writes, even if there

are concurrent operations. The reads and writes provided

by shared registers are the dominant types of operations in

large-scale web applications [9]. Yet, shared registers are

fundamentally too weak to directly implement strong syn-

chronization primitives like rmws [31]. To resolve this trade-

off, the solution is to combine the strong synchronization

provided by consensus with the favorable read/write tail la-

tency of shared registers in a single protocol.

The idea of unifying consensus and shared registers is

not new [8]. However, the only previous attempt of which

we are aware is incorrect because it does not safely handle

certain interleavings of operations. Our key insight is that

protocol-level mechanisms for enforcing the interaction be-

tween rmws and reads/writes are difficult to reason about,

which can lead to subtle safety violations. Instead, we argue

the interaction be enforced at a deeper level, in the ordering

mechanism itself, to simplify reasoning about correctness.

We introduce consensus-after-register timestamps, or



carstamps, a novel ordering mechanism for distributed stor-

age to leverage this insight. Carstamps allow writes and

rmws to concurrently modify the same state without seri-

alizing through a leader or incurring additional round trips.

Reads use carstamps to determine consistent values without

interposing on concurrent updates.

Gryff is our system that implements this ordering mech-

anism to achieve unification.1 It is the first such system to

be proven correct, implemented, and empirically evaluated.

Gryff combines a multi-writer variant [43] of the ABD [5]

protocol for reads and writes with EPaxos [47] for rmws.

In addition to the challenges associated with unifying these

protocols, we introduce an optimization to further rein in tail

latency by reducing the frequency of reads taking multiple

wide-area round trips.

We implemented Gryff in the same framework as

EPaxos [47] and MultiPaxos [36] and evaluated its perfor-

mance in a geo-replicated setting. Our evaluation shows that

Gryff reduces the tradeoff between linearizability and low

tail latency for workloads representative of large-scale web

applications [10, 16, 17]. For moderate contention work-

loads, Gryff reduces p99 read latency to ∼56% of EPaxos,

but has ∼2x higher write latency. This tradeoff allows Gryff

to reduce service-level p50 latency to ∼60% of EPaxos

for large-scale web applications whose requests fan-out into

many storage-level requests.

In summary, the contributions of this paper include:

• A novel ordering mechanism, carstamps, that enables effi-

cient unification of consensus with shared registers. (§3)

• The Gryff design that combines a shared register protocol

with EPaxos to provide reads, writes, and rmws. (§4, §5)

• The implementation and evaluation of Gryff, which

demonstrates its latency improvements. (§6)

2 Consensus vs. Shared Registers

This section covers preliminaries and then compares and

contrasts consensus and shared register protocols. It looks

at the interfaces they support, the ordering constraints they

impose, and the ordering mechanisms they use.

Model and Preliminaries. We study systems comprised of

a set P of m processes that communicate with each other over

point-to-point message channels. Processes may fail accord-

ing to the crash failure model: a failed process ceases exe-

cuting instructions and its failure is not detectable by other

processes. The system is asynchronous such that there is no

upper bound on the time it takes for a message to be deliv-

ered and there is no bound on the relative speeds at which

processes execute instructions.

Linearizability is a correctness condition for a concurrent

object that requires (a) operations invoked by processes ac-

1A gryffin is a mythological hybrid creature that combines the power of

a lion with the speed of an eagle.

cessing the object appear to execute in some total order that

is consistent with the semantics of the object (i.e., that is le-

gal) and (b) the total order is consistent with the order that

operations happened in real time [32]. Linearizability is a lo-

cal property, meaning it holds for a collection of objects if

and only if it holds for each individual object.

For the remainder of this text, we consider linearizable

replication of a single object by omitting object identifiers;

it is straightforward to compose instances of such a system

to obtain a linearizable multi-object system.

2.1 State Machines and Consensus

State machine replication is the canonical approach to im-

plementing fault-tolerant services [56]. It provides a fault-

tolerant state machine that exposes the following interface:

• COMMAND(c(·)): atomically applies a deterministic com-

putation c(·) to the state machine and returns any outputs

Each command can include zero or more arguments, read

local state, perform deterministic computation, and produce

output. The state machine approach applies these commands

one by one starting from the same initial state to move repli-

cas through identical states. Thus, if some replicas fail, the

remaining replicas still have the state and can continue to

provide the service.

Applying commands in the same order on all replicas re-

quires an ordering mechanism that is stable, i.e., a replica

knows when a command’s position is fixed and it will never

receive an earlier command [56]. In asynchronous systems

where processes can fail, consensus protocols [33, 36, 37,

38, 45, 47, 50, 51] are used to agree on this stable ordering.

Figure 1a shows the stable ordering provided by consen-

sus protocols for state machine replication. Commands are

assigned positions in a log and a command becomes stable

once there are no empty slots preceding its own in the log.

2.2 Shared Registers and Their Protocols

A shared register has the following interface:

• READ(): returns the value of the register

• WRITE(v): updates the value of the register to v

Shared registers provide a simple interface with read and

write operations. They are less general than state machines as

they provably cannot be used to implement consensus [31].

Shared register protocols replicate shared registers across

multiple processes for fault tolerance [5, 22, 43].

Shared register protocols provide a linearizable ordering

of operations. That ordering does not have to be stable, how-

ever, because each write operation fully defines the state of

the object. Thus, a replica can safely apply a write w4 even

if it does not know about earlier writes. If an earlier write w3

ever does arrive, the replica simply ignores that write because

it already has the resulting state from applying w3 and then

w4. Figure 1b shows shared register ordering where there is

a total order of all writes (denoted by <) without stability.



op1 op2 op3 op4

(a) Ordering in consensus protocols. Operations op1, op2, and

op3 are stable, but op4 is not.

w1
< w2 < w3

< w4

(b) Ordering in shared register protocols. No writes are stable.

Figure 1: Comparison of ordering in consensus and

shared register protocols. Shared register protocols pro-

vide an unstable ordering where new writes can be in-

serted between writes that have already completed.

2.3 Shared Objects and Their Ordering

A shared object exposes the following interface:

• READ(): returns the value of the object

• WRITE(v): updates the value of the object to v

• RMW( f (·)): atomically reads the value v, updates the

value to f (v), and returns v

The abstraction of a shared object captures an intuitive pro-

gramming model that is used in real-world systems [12, 15,

23, 44, 54, 55]. Most operations read or write data, but rmws

support stronger primitives to synchronize concurrent ac-

cesses to data. For example, a conditional write can be im-

plemented with a rmw by using a function f (·) that returns

the new value to be written only if some condition is met.

Shared objects and state machines are equivalent in that

an instance of one can be used to implement the other [31].

However, the difference is that shared objects expose a more

restrictive interface for directly reading and writing state,

as do shared registers. These simpler operations can be im-

plemented more efficiently because their semantics impose

fewer ordering constraints.

Yet, neither the stable ordering of state machine replica-

tion nor the unstable total ordering of shared register proto-

cols is a good fit for shared objects. A stable order, on the

one hand, over constrains how reads and writes are ordered

and results in less efficient protocols. On the other hand, an

unstable total order under constrains how rmws are ordered

and results in an incorrect protocol.

Figure 2 demonstrates these different constraints. Con-

sider the execution in Figure 2a where two processes, p2 and

p3, write concurrently. Linearizability stipulates that w2 and

w3 be ordered after w1 because they are invoked after w1

completes in real time. However, there is no stipulation for

how w2 and w3 are ordered with respect to each other be-

cause the result of a write does not depend on preceding op-

erations. Both w1→ w2→ w3 and w1→ w3→ w2 are valid.

Now consider the execution in Figure 2b involving a rmw.

Process p2 writes while p3 concurrently executes a rmw. The

base update of a rmw is the operation that writes the value

that the rmw reads. Assume that w1 is the base update of

(a) w2 and w3 may be

arbitrarily ordered.

(b) if rmw reads w1, it

must be before w2.

Figure 2: Solid arrows are real time ordering constraints.

Dashed arrows are operation semantic constraints.

rmw. Then, not only does rmw need to be ordered after w1,

but no other write may be ordered between w1 and rmw. This

additional constraint ensures legality because the semantics

of a rmw requires that it must appear to atomically read and

update the object based on the value read. Thus, only w1→
rmw→ w2 is a valid order.

3 Carstamps for Correct Ordering

Consensus-after-register timestamps, or carstamps, precisely

capture the ordering constraints of shared objects. They pro-

vide the necessary stable order for rmws and the more ef-

ficient unstable order for reads and writes. This section de-

scribes the requirements of a precise ordering mechanism for

shared objects and then describes carstamps.

3.1 Precise Ordering for Shared Objects

An ordering mechanism is an injective function g : X → Y

from a set X of writes and rmws to a totally ordered set

(Y,<Y ). A mechanism g produces a total order <g on X :

for all x1,x2 ∈ X , x1 <g x2 if and only if g(x1)<Y g(x2).

Typically, replication protocols augment an ordering

mechanism with protocol-level logic to enforce real time and

legality constraints on the total order given by the ordering

mechanism to provide linearizability. While the logic for en-

forcing real time constraints is often straightforward, legality

constraints can be more complex.

Protocol-level Legality. For example, consider the Active

Quorum Systems (AQS) protocol [7, 8]. AQS is the only

prior protocol of which we are aware that attempts to com-

bine consensus and shared registers and it does so with an un-

stable ordering mechanism. This allows for executions where

a rmw rmw with base update u is ordered such that there ex-

ists a y ∈ Y with g(u)<Y y <Y g(rmw). This can result in an

illegal total order when a write w is concurrent with rmw be-

cause w may be assigned g(w) = y. AQS contains no logic at

the protocol-level to prevent this subtle scenario. We discuss

such an execution in detail in Appendix C and describe how

there does not exist a linearizable order of all operations.



w1
< w2 < w3

< w4

rmw1 rmw3 rmw6 rmw7

rmw2 rmw4

rmw5

rmw8

Figure 3: Unified ordering provided by carstamps for

writes and rmws. Writes are unstably ordered while

rmws are stably ordered with their base updates.

Ordering-level Legality. Our key insight is that the legal-

ity constraints of linearizability can be encoded in the or-

dering mechanism itself. An ordering mechanism that does

this must ensure that for all rmw ∈ X such that u is the

base update of rmw, g(u) <Y g(rmw) and g(u) is a cover

of g(rmw). This means that there is no y ∈ Y such that

g(u) <Y y <Y g(rmw). With such an ordering mechanism,

there is no need for protocol-level logic to prevent other

writes in X from being assigned an illegal position in the

total order between g(u) and g(rmw).

3.2 Carstamps

Our solution which leverages this insight is called carstamps.

A carstamp is a triple cs = (ts, id,rmwc) with three fields:

a logical timestamp ts, a process identifier id, and a rmw

counter rmwc. The logical timestamp and process identifier

can be used by a write protocol to form an unstable order of

writes. A rmw rmw with base update u whose carstamp is csu

is assigned a carstamp csrmw = (csu.ts,csu.id,csu.rmwc+1).
The fields encode ordering constraints between operations

via a lexicographical comparison such that cs1 < cs2 if and

only if cs1.ts < cs2.ts or cs1.ts = cs2.ts and cs1.id < cs2.id or

cs1.ts = cs2.ts and cs1.id = cs2.id and cs1.rmwc < cs2.rmwc.

By incrementing the lowest order field of the carstamp,

each carstamp assigned to a base update of a rmw is guar-

anteed to cover its rmw. This stable ordering of rmws with

their base updates is visualized in Figure 3. Writes are as-

signed to carstamps in the first row as part of an increasing

unstable order. RMWs are assigned to carstamps in the col-

umn to which their base update belongs immediately below

their base update.

Consider the example from Figure 2b and assume that

w1 is assigned carstamp csw1
= (1,1,0) by p1. Then, since

rmw reads w1, it will be assigned carstamp csrmw = (1,1,1).
Based on the lexicographical ordering of carstamps, there

does not exist a carstamp cs such that csw1
< cs < csrmw,

so w2 cannot be arbitrarily re-ordered between w1 and rmw.

4 Gryff Protocol

Gryff unifies shared registers with consensus using

carstamps. It implements a linearizable shared object (§2)

that tolerates the failure of up to f out of n = 2 f +1 replicas.

We divide its description into three components. First, we

provide additional background including the shared register

protocol and consensus protocol upon which its read, write,

and rmw protocols are built (§4.1). Second, we describe

how Gryff adapts these protocols with carstamps (§4.2,§4.3).

Third, we describe an optimization to the base Gryff protocol

that improves read latency in geo-replicated settings (§5).

In addition, in Appendix B we prove Gryff implements a

shared object with linearizability. Appendix B also proves

read/write wait-freedom—every read or write invoked by

a correct process eventually completes—and rmw wait-

freedom with partial synchrony—if there is a point in time

after which the system is synchronous, every rmw invoked

by a correct process eventually completes.

4.1 Background

Section 2 provides background on our model, linearizabil-

ity, and state machines and shared registers in general. This

subsection adds useful definitions and then describes the

two specific protocols that Gryff adapts, a multi-writer vari-

ant [43] of ABD [5] and EPaxos [47].

Definitions. A subset of processes R ⊆ P are replicas that

store the value of the object. We assume reliable message de-

livery, which can be implemented on top of unreliable mes-

sage channels via retransmission and deduplication.

Replicas are often deployed across a wide-area network

such that inter-replica message delivery latency is on the or-

der of tens of milliseconds. This is commonly done so that

replica or network failures correlated by geographic region

do not immediately cause the system to become unavailable.

We say that a process p is co-located with a replica r if the

message delivery latency between p and r is much less than

the minimum inter-replica latency. Client processes running

applications are typically co-located with a single replica, for

example, within the same datacenter.

A quorum system Q ⊆P(R) over R is a set of subsets of

R with the quorum intersection property: for all Q1,Q2 ∈Q,

Q1∩Q2 6= /0. We use quorum both to mean a set of replicas in

a particular quorum system and the size of such a set. Gryff

can use any quorum system, but for liveness with up to f

replica failures, we assume the use of the majority quorum

system Qmaj such that ∀Q ∈Qmaj. |Q|= f +1.

A coordinator is a process that executes a read, write, or

rmw protocol when it receives such an operation from an

application. In shared register protocols, the coordinators are

typically the client processes on which the application is run-

ning. In consensus protocols, the coordinators are typically

one of the replicas to which client processes forward their re-

quests. We assume all processes possess a unique identifier



that can be used when coordinating an operation to distin-

guish the coordinator from other processes.

Multi-Writer ABD. The multi-writer variant [43] of

ABD [5] is a shared register protocol that requires two phases

for both reads and writes. To provide a linearizable order of

reads and writes, it associates a tag t = (ts, id) with each

write where ts is a logical timestamp and id is the identi-

fier of the coordinator. Writes are ordered lexicographically

by their tags. Each replica stores a value v and an associated

tag t.

Reads and writes have two phases. A read begins with the

coordinator reading the current tag and value from a quorum.

Once it receives these, it determines the value that will be re-

turned by the read by choosing the value associated with the

maximum tag from the tags returned in the quorum. Then,

the coordinator propagates this maximum tag and value to

a quorum and waits for acknowledgments. We say that a

replica applies a value v′ and tag t ′ when it overwrites its

v and t with v′ and t ′ if t ′ > t. After a replica receives the

propagated tag and value, it applies them and sends an ac-

knowledgment to the coordinator.

A coordinator for a write follows a similar two-phase pro-

tocol, except instead of propagating the maximum tag tmax

and associated value received in the first phase, it generates

a new tag t = (tmax.ts+ 1, id) to associate with the value to

be written where id is the identifier of the coordinator. In the

second phase, the coordinator propagates this new tag and

value to a quorum and waits for acknowledgments.

EPaxos EPaxos [47] is a consensus protocol that provides

optimal commit latency in the wide-area. It has three phases

in failure-free executions: PreAccept, Accept, and Commit.

If a command commits on the fast path, the coordinator re-

turns to the client after the PreAccept phase and skips the

Accept phase. Otherwise, the command commits on the slow

path after the Accept phase. Commands that do not read state

complete at the beginning of the Commit phase; commands

that do read state complete after a single replica, typically

the coordinator, executes the command to obtain the returned

state. The purpose of the PreAccept and Accept phases is to

establish the dependencies for a command, or the set of com-

mands that must be executed before the current command.

The purpose of the Commit phase is for the coordinator to

notify the other replicas of the agreed-upon dependencies.

PreAccept phase. The coordinator of a command con-

structs the preliminary dependency set consisting of all other

commands of which the coordinator is aware that interfere

(i.e., access the same state machine state) with it. It sends the

command and its dependencies to a fast quorum of replicas.

When replicas receive the proposed dependencies, they up-

date them with any interfering commands of which they are

aware that are not already in the set and respond to the coor-

dinator with the possibly updated dependencies. If the leader

receives a fast quorum of responses that all contain the same

dependencies, it proceeds to the Commit phase.

v - value of shared object

cs - carstamp of shared object

prev - value and carstamp generated by the previously

executed rmw

i - next unused instance number

cmds - two-dimensional array of instances indexed by

replica id and instance number each containing:

cmd - command to be executed

deps - instances whose commands must be exe-

cuted before this one

seq - approximate sequence number of command

used to break cycles in dependency graph

base - possible base update for rmw

status - status of instance

Figure 4: State at each replica.

Accept phase. Otherwise, the coordinator continues to the

Accept phase where it builds the final dependencies for the

command by taking the union of all the dependencies that it

received in the PreAccept phase. It sends these to a quorum

and waits for a quorum of acknowledgments before commit-

ting. Regardless of whether the command is committed after

the first or second phase, once it is committed, a quorum

store the same dependency set for the command.

Execution. Dependency sets for distinct commands de-

fine a dependency graph over all interfering commands. The

EPaxos execution algorithm, separate from the commit pro-

tocol, executes all commands in the deterministic order spec-

ified by the graph. Cycles may exist in the graph, in which

case a total order is determined by a secondary attribute

called an approximate sequence number. We refer the reader

to the EPaxos paper for more details [47].

4.2 Read & Write Protocols

The read and write protocols are based on multi-writer ABD.

Figure 4 summarizes the state that is maintained at each

replica. Algorithms 1 and 2 show the pseudocode for the co-

ordinators and replicas. The key difference from multi-writer

ABD is that replicas maintain a carstamp associated with the

current value of the shared object instead of a tag so that

rmws are properly ordered with respect to reads and writes.

Reads. We make the same observation as Georgiou et al.

[26] that the second phase in the read protocol of multi-writer

ABD is redundant when a quorum already store the value

and associated carstamp chosen in the first phase. In such

cases, the coordinator may immediately complete the read

(Line 6 of Algorithm 1). Otherwise, it continues as normal

to the second phase in order to propagate the observed value

and carstamp to a quorum.

Writes. When generating a carstamp after the first phase

of a write, the coordinator chooses the ts and id fields as



Algorithm 1: Read and write coordinator protocols.

1 procedure Coordinator::READ() at p ∈ P

2 send Read1 to all r ∈ R

3 wait to receive Read1Reply(vr,csr) from all

r ∈ Q ∈Q

4 csmax←maxr∈Q csr

5 v← vr : csr = csmax

6 if ∀r ∈ Q : csr = csmax then

7 return v

8 send Read2(v,csmax) to all r ∈ R

9 wait to receive Read2Reply from all r ∈ Q′ ∈Q

10 return v

11 procedure Coordinator::WRITE(v) at p ∈ P

12 send Write1 to all r ∈ R

13 wait to receive Write1Reply(csr) from all r ∈Q ∈Q

14 csmax←maxr∈Q csr

15 cs← (csmax.ts+1, id,0)
16 send Write2(v,cs) to all r ∈ R

17 wait to receive Write2Reply from all r ∈ Q′ ∈Q

in multi-writer ABD. The rmwc field is reset to 0 (Line 15

of Algorithm 1). While not strictly necessary, this curbs the

growth of the rmwc field in practical implementations.

4.3 Read-Modify-Write Protocol

Gryff’s rmw protocol uses EPaxos to stably order rmws as

commands in the dependency graph. Figure 4 summarizes

the replica state. Algorithms 3 and 4 show the pseudocode

for a rmw coordinator and replica message handling exclud-

ing the recovery procedure. Appendix B includes the pseu-

docode for the recovery procedure. The highlighted portions

of the pseudocode show the changes from canonical EPaxos.

We denote by Icmd the set of commands of which the local

replica is aware that interfere with cmd.

We make three high-level modifications to canonical

EPaxos in order to unify its stable ordering with the unstable

ordering of Gryff’s read and write protocols.

1. A base update attribute, base, is decided by the replicas

during the same process that establishes the dependencies

and the approximate sequence number for a rmw.

2. A rmw completes after a quorum execute it.

3. When a rmw executes, it chooses its base update from

between its base attribute and the result of the previously

executed rmw prev. The result of the executed rmw is ap-

plied to the value and carstamp of the executing replica.

The first change adapts EPaxos to work with the unstable

order of writes by fixing the write upon which it will oper-

ate. The second change adapts it to work with reads that by-

pass its execution protocol and directly read state. The third

change ensures that concurrent rmws that choose the same

Algorithm 2: Read and write replica protocols.

1 when replica r ∈ R receives a message m from p ∈ P do

2 case m = Read1 do

3 send Read1Reply(v,cs) to p

4 case m = Read2(v′,cs′) do

5 APPLY(v′,cs′)
6 send Read2Reply to p

7 case m = Write1 do

8 send Write1Reply(cs) to p

9 case m = Write2(v′,cs′) do

10 APPLY(v′,cs′)
11 send Write2Reply to p

12 procedure Replica::APPLY(v′,cs′)
13 if cs′ > cs then

14 cs← cs′

15 v← v′

initial base update are stably ordered using the ordering and

execution protocols of EPaxos. We next discuss each of these

changes in more detail.

Base Attribute. The base attribute associated with a rmw

represents a possible base update on which the rmw will exe-

cute. Initially, the coordinator sets this to what it believes are

the current value and carstamp of the shared object (Line 6

of Algorithm 3). When a replica receives a PreAccept mes-

sage, it merges what it believes is the correct base update

with the base update proposed by the coordinator (Line 5 of

Algorithm 4). The fast path condition remains essentially un-

changed: the coordinator commits the command if it receives

PreAcceptOK responses from a fast quorum indicating that

all replicas in the quorum agree on the attributes for the com-

mand. Otherwise, the coordinator merges all attributes it has

received in the PreAccept phase and sends out the final at-

tributes in the Accept phase.

Quorum Execute. In canonical EPaxos, a rmw completes

after a single replica executes it because reads are executed

through the same consensus protocol. Since Gryff’s read pro-

tocol circumvents consensus and reads the state of the shared

object directly from a quorum, a rmw must be executed at a

quorum so that it is visible to reads that come after it in real

time. This guarantees the rmw will be visible to future reads

by the quorum intersection property.

Execution. The algorithm for determining the execution or-

der of commands is unchanged from canonical EPaxos. The

EXECUTE procedure in Algorithm 4 is called when a rmw

rmw in the dependency graph committed at position (i, j) in

the cmds array is ready to be executed.

In the procedure, the final base update for rmw is chosen

to be the value and carstamp pair with the larger carstamp



Algorithm 3: RMW coordinator protocol.

1 procedure Coordinator::RMW( f (·)) at c ∈ R
PreAccept Phase:

2 i← i+1

3 cmd← f (·)
4 seq← 1+max({cmds[ j][k].seq|( j,k) ∈ Icmd}∪{0})
5 deps← Icmd

6 base← (v,cs)
7 cmds[id][i]← (cmd,seq,deps,base,pre-accepted)
8 send PreAccept(cmd,seq,deps,base, id, i) to all

r ∈ F \{c} where F ∈F

9 wait to receive PreAcceptOK(seq′r,deps′r,base′r)
from all r ∈ F \{c}

10 if ∀r1,r2 ∈ F \{c} : seq′r1
= seq′r2

∧deps′r1
=

deps′r2
∧ base′r1

= base′r2
then

11 deps,seq,base← deps′r,seq′r,base′r: r ∈ F \{c}
12 goto Commit Phase

Accept Phase:

13 deps←∪r∈F depsr

14 seq←maxr∈F seqr

15 base← baser : ∀r′ ∈ F.baser.cs≥ baser′ .cs

16 cmds[id][i]← (cmd,seq,deps,base,accepted)
17 send Accept(cmd,seq,deps,base, id, i) to all

r ∈ Q\{c} where Q ∈Q

18 wait to receive AcceptOK from all r ∈ Q\{c}
Commit Phase:

19 cmds[id][i]← (cmd,seq,deps,base,committed)
20 send Commit(cmd,seq,deps,base, id, i) to all

r ∈ R\{c}
21 wait to receive Executed(v) from all r ∈ Q′ ∈Q

22 return v

between the result prev of the previously executed rmw and

the base attribute of rmw (Line 15 of Algorithm 4). The prev

variable is the most recent state of the shared object produced

by the execution of a rmw whereas the base attribute is the

most recent state of the shared object that the coordinator ob-

served after rmw was invoked. In the absence of concurrent

updates, these states are equivalent, so it is safe for the rmw

to choose the state as the base update.

However, when rmws are concurrent, prev may be more

recent than the base attribute of rmw because concurrent

rmws were ordered and executed before rmw. In such cases,

rmw must remain consistent with the stable order of rmws

provided by EPaxos by executing on the most recent state.

The resulting value and carstamp of rmw are decided by

executing the modify function f (·) on the value of the base

update and incrementing the rmwc of the carstamp of the

chosen base update. The replica finishes by applying the new

value and carstamp and notifying the coordinator that the

rmw has been executed.

Algorithm 4: RMW replica protocol.

1 when replica r ∈ R receives a message m from c ∈ R do

2 case m = PreAccept(cmd,seq,deps,base, idc, i) do

3 seq′←max({seq}∪{1+ cmds[ j][k].seq|( j,k) ∈
Icmd}

4 deps′← deps∪ Icmd

5 base′← if cs > base.cs then (v,cs) else base

6 cmds[idc][i]←
(cmd,seq′,deps′,base′,pre-accepted)

7 send PreAcceptOK(seq′,deps′,base′) to c

8 case m = Accept(cmd,seq,deps,base, idc, i) do

9 cmds[idc][i]← (cmd,seq′,deps′,base′,accepted)
10 send AcceptOK to c

11 case m = Commit(cmd,seq,deps,base, idc, i) do

12 cmds[idc][i]←
(cmd,seq′,deps′,base′,committed)

13 procedure Replica::EXECUTE( j,k)
14 base← cmds[ j][k].base

15 if cmds[ j][k].base.cs < prev.cs then

16 base← prev

17 v′← cmds[ j][k].cmd(base.v)
18 cs′← (base.cs.ts,base.cs.id,base.cs.rmwc+1)
19 prev← (v′,cs′)
20 APPLY(v′,cs′)
21 send Executed(base.v) to replica j

5 Proxying Reads

The base Gryff read protocol, as described in the previous

section, provides reads with single round-trip time latency

from the coordinator to the nearest quorum including itself

(1 RTT) when there are no concurrent updates. Otherwise,

reads have at most 2 RTT latency. We discuss how read la-

tency can be further improved in deployments across wide-

area networks.

Because the round-trip time to the replica that is co-

located with a client process is negligible relative to the inter-

replica latency, replicas can coordinate reads for their co-

located clients and utilize their local state in the read coor-

dinator protocol to terminate after 1 RTT more often. When

using this optimization, we say that the coordinating replica

is a proxy for the client process’s read.

Propagating Extra Data in Read Phase 1. The proxy

includes in the Read1 messages its current value v and

carstamp cs. Upon receiving a Read1 message with this ad-

ditional information, a replica applies the value and carstamp

before returning its current value and carstamp. This has the

effect of ensuring every replica that receives the Read1 mes-

sages will have a carstamp (and associated value) at least as

large as the carstamp at the proxy when the read was invoked.



When this is the most recent carstamp for the shared ob-

ject, the read is guaranteed to terminate after 1 RTT. This is

because every Read1Reply that the coordinator receives will

contain this most recent carstamp and associated value.

Updating the Proxy’s Data. The proxy also applies the val-

ues and carstamps that it receives in Read1Reply messages as

it receives them and before it makes the decision of whether

or not to complete the read after the first phase. If every reply

contains the same carstamp, then the read completes after 1

RTT even if the carstamp at the proxy when the read was in-

voked is smaller than the carstamp contained in every reply.

Given our assumption that each quorum contains f + 1

replicas, these two modifications ensure that reads coordi-

nated by a proxy r only take 2 RTT during normal operation

when there is a concurrent update that arrives at the f nearest

replicas to r in an order that interleaves with the Read1 mes-

sages from r. Algorithm 7 in Appendix B describes the read

proxy changes to base Gryff in pseudocode. Appendix B also

contains a brief argument for why the read proxy optimiza-

tion maintains the correctness of base Gryff.

Always Fast Reads When n = 3. This optimization in-

creases the likelihood that a read completes in 1 RTT because

the proxy replica is privy to more information—i.e., the num-

ber of replicas that contain the same value and carstamp—

than a client process. Moreover, it allows Gryff to always

provide 1 RTT reads when n = 3 since the proxy and any

single other replica comprise a quorum. This optimization is,

in some sense, the dual of the optimization that EPaxos [47]

uses to always provide 1 RTT writes when n = 3. In both

cases, the coordinator and the other replica in the quorum

adopt each other’s state so that the quorum always has the

same state at the end of the first phase.

6 Evaluation

Gryff unifies consensus with shared registers to avoid the

overhead of consensus for reads and writes. To quantify the

benefits and drawbacks of this approach for storing data in

geo-replicated, large-scale web applications, we ask:

• Do Gryff’s shared register read and write protocols reduce

read tail latency relative to the state-of-the-art? (§6.3)

• How do the read/write/rmw latency and throughput of

Gryff compare to state-of-the-art protocols? (§6.4,§6.5)

• Does Gryff improve the median service-level latency for

large scale web applications? (§6.6)

We find that, for workloads with moderate contention,

Gryff reduces p99 read latency to ∼56% of EPaxos, but has

∼2x higher write latency. This tradeoff allows Gryff to re-

duce service-level p50 latency to∼60% of EPaxos for large-

scale web applications whose requests fan-out into many

storage-level requests. Gryff and EPaxos each achieve a

slightly higher maximum throughput than MultiPaxos due

to their leaderless structure.

CA VA IR OR JP

CA 0.2

VA 72.0 0.2

IR 151.0 88.0 0.2

OR 59.0 93.0 145.0 0.2

JP 113.0 162.0 220.0 121.0 0.2

Figure 5: Round trip latencies in ms between nodes in

emulated geographic regions.

6.1 Baselines and Implementation

We evaluate Gryff against MultiPaxos and EPaxos. Multi-

Paxos [36], VR [50], Raft [51] and other protocols with

leader-based architectures are used in commercial sys-

tems to provide linearizable replicated storage [14, 17, 23,

52]. While leader-based protocols have drawbacks in geo-

replicated settings, their extensive use in real systems pro-

vides a practical measuring stick. EPaxos [47] is the state-

of-the-art for geo-replicated storage.

We implemented Gryff in Go using the framework of

EPaxos to facilitate apples-to-apples comparisons between

protocols. Our implementation is a multi-object storage sys-

tem that uses the protocols as described in this paper with the

addition of object identifiers to messages and state. Our code

and experiment scripts are available online [29]. We use the

existing implementation of MultiPaxos in the framework for

our experiments. All of our experiments use the thrifty opti-

mization for EPaxos, MultiPaxos, and Gryff. We use the read

proxy optimization for Gryff.

6.2 Experimental Setup

Testbed. We run our experiments on the Emulab

testbed [61] using pc3000 nodes. These node types

have 1 Dual-Core 3GHz CPU, 2GB RAM, and 1Gbps links

to all other nodes. For three replica latency experiments,

we emulate replicas in California (CA), Virginia (VA), and

Ireland (IR). In five replica latency experiments, we add

replicas in Oregon (OR) and Japan (JP). In all experiments,

we place the MultiPaxos leader in CA.

We emulate wide-area network latencies using Linux’s

Traffic Control (tc) to add delays to outgoing packets on

all nodes. Table 5 shows the configured round-trip times be-

tween nodes in different regions. We choose these numbers

because they are the typical round-trip times between the

corresponding Amazon EC2 availability regions.

Clients. For all experiments, we use 16 clients co-located

with each replica. This number of clients provides enough

load on the evaluated protocols to observe the effects of con-

current operations from many clients, but only moderately

saturates the system. We avoid full saturation in order to iso-

late the protocol mechanisms that affect tail latency from

hardware and software limitations at various levels in our

stack. Clients perform operations in a closed loop.
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Figure 6: Gryff’s reads always complete in 1 RTT when n = 3. 99th percentile read latency is between 0ms and 115ms

lower than EPaxos and 134ms lower than MultiPaxos.

Measurement. Each experiment is run for 180 seconds and

we exclude results from the first 15 seconds and last 15 sec-

onds to avoid artifacts from start-up and cool-down. The la-

tency for an individual operation is measured as the time be-

tween when a client invokes the operation and when it is no-

tified of the operation’s completion.

Conflicting Operations. When two operations target the

same object in a storage system, we say the operations con-

flict. We use conflict percentage as a parameter in our work-

loads to control the percentage of operations from each client

that target the same key. Workloads are highly skewed if and

only if their conflict percentage is high.

6.3 Tail Latency

Gryff is designed to reduce the latency cost of linearizability

for large scale web applications. Tail latency is of particular

importance for these applications because end-user requests

for high-level application objects typically fan-out into hun-

dreds of sub-requests to storage services [2, 18]. The object

can only be returned to the end-user once all of these sub-

requests complete, so the median latency experienced by the

end-user is dictated by the tail of the latency distribution for

operations to these storage services.

6.3.1 Varying Conflict Percentage

To understand the read tail latency of Gryff and the base-

lines, we use a variant of the YCSB-B [16] workload that

contains 94.5% reads, 4.5% writes, and 1.0% rmws. We ex-

amine a read-heavy distribution of operations because most

large-scale web applications are read-heavy. For example,

more than 99.7% of operations are reads in Google’s adver-

tising backend, F1 [17], 99.8% of operations in Facebook’s

TAO system are reads [10], and 3 out of 5 of YCSB’s core

workloads contain over 95% reads [16].
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Figure 7: Gryff reduces p99 read latency between 1ms

and 44ms relative to EPaxos and 134ms relative to Mul-

tiPaxos for varying write percentages. EPaxos’ p99 write

latency is 89ms lower than Gryff’s p99 write latency re-

gardless of write percentage and conflicts.

Figure 6a shows the results for three different conflict per-

centages with n = 3. In each sub-figure, a log-scale CDF up

to p99.99 is shown below the normal-scale CDF.

1 RTT Reads for Gryff. For n = 3 replicas, Gryff always

completes reads in 1 RTT due to the read proxy optimiza-

tion (§5). Figure 6 shows that clients in each region receive

responses to their read requests after 1 RTT to the nearest

quorum regardless of conflict percentage. Clients in CA are

closest to the replicas in CA and VA and vice versa for clients

in VA. This results in 66% of the reads completing in the

round-trip time between CA and VA (72ms). Clients in IR
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Figure 8: Gryff’s writes take 2 RTT, which is always more than EPaxos when n = 3. MultiPaxos writes can be faster or

slower than Gryff depending on client location and geographic setup.
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Figure 9: Gryff trades off worse write latency for better read and rmw latency relative to EPaxos when n = 5.

are closest to the replicas in IR and VA, so 33% of the reads

complete in the round-trip time between IR and VA (88ms).

Execution Dependencies Delay EPaxos. EPaxos always

commits in 1 RTT for n = 3. However, a read cannot com-

plete until a replica executes it and a replica can only exe-

cute it after receiving and executing its dependencies. This

increases latency when a locally committed read has depen-

dencies on operations that have not yet arrived at the local

replica from other replicas. As shown in Figure 6a, these de-

lays do not affect the p99 read latency of EPaxos when there

are few conflicts. However, the log-scale CDF shows that a

small number of reads are, in fact, delayed.

MultiPaxos has Client-dependent Stable Latency. The

MultiPaxos leader can always commit and execute opera-

tions in 1 RTT to the nearest quorum. However, clients must

also incur a 1 RTT delay to the leader. For clients co-located

with the leader (in CA), this delay is negligible, so the la-

tency experienced by these clients with MultiPaxos is less

than or equal to the latency experienced with the other pro-

tocols. This is demonstrated in the 33rd percentile latencies

in Figure 6. For clients not co-located with the leader, the

latency is roughly 2 RTT.

Gryff improves 99th percentile read latency between 0ms

and 115ms relative to EPaxos for low and high conflict per-

centages and 134ms relative to MultiPaxos.

6.3.2 Varying Write Percentage

While Gryff’s read tail latency is low for read-heavy work-

loads, we also quantify the tail latency under balanced and

write-heavy workloads. To do so, we fix the conflict percent-

age at 2% and measure the 99th percentile latency of read

and write operations for workloads containing 1% rmws and

varying ratios of reads and writes. We vary the write percent-

age from 9.5% to 89.5% and the read percentage from 89.5%

to 9.5%. Figure 7 shows the results for n = 3 replicas.

Gryff and MultiPaxos Unaffected. The write percentage

does not affect Gryff’s write latency because its write pro-

tocol arbitrarily orders concurrent writes. Similarly, Multi-

Paxos commits writes through the same path regardless of

conflicting operations.

EPaxos Reads Slowdown. With increasing write percent-

age, the chance that a read obtains a dependency increases

even with a fixed conflict percentage (Figure 7a). Unlike

reads, writes do not need to be executed before they com-

plete, so they still complete as soon as they are committed.

This only takes 1 RTT in EPaxos when n = 3. EPaxos domi-

nates Gryff and MultiPaxos for p99 write latency.

Five Replica Varying Write Ratio. We run the same work-

load with n = 5 and show the results in Figure 12 in Ap-

pendix A. Gryff can no longer always complete reads in 1

RTT, but due to the low conflict percentage it still achieves

a p99 read latency of 1 RTT regardless of write percentage.

EPaxos can no longer always commit in 1 RTT. This espe-

cially impacts EPaxos’ p99 write latency, which becomes ap-

proximately the same as Gryff (290ms).

6.4 Read/Write/RMW Latency

We also quantify the latency distributions of write and rmws

in Gryff relative to that of the baselines. For these experi-

ments, we use a variant of the YCSB-A workload with 49.5%
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Figure 10: Gryff’s throughput at saturation is within

7.5% of EPaxos and is higher than MultiPaxos.

reads, 49.5% writes, and 1.0% rmws with 25% conflicts. The

balance between reads and writes allows us to observe the ef-

fects that interleavings of operations with different semantics

have on the performance of the evaluated protocols. Simi-

larly, the high conflict percentage reveals performance when

concurrent operations to the same object interleave.

Figure 8 shows the cumulative distribution functions of the

latencies for each operation type for n = 3 replicas. Figure 9

shows the same for n = 5.

1 RTT Reads for Gryff. For n > 3, Gryff often completes

reads in 1 RTT, but sometimes takes 2 RTT. Figure 9a

demonstrates this behavior as the tail surpasses the 1 RTT

latency for any region.

EPaxos Writes are Fast, Reads are Slower. EPaxos dom-

inates Gryff and MultiPaxos for write latency because it al-

ways commits in a single round trip for n= 3 (Figure 8b) and

often commits in a single round trip for n = 5 (Figure 9b).

As discussed in Section 6.3.1, reads cannot complete until

they are executed, so when there are more replicas and more

concurrent writes, EPaxos’ read latency increases due to the

increased likelihood that reads acquire dependencies on up-

dates from other regions.

2 RTT Writes for Gryff. Writes in Gryff takes 2 RTT to

complete. Figure 8b demonstrates the gap between EPaxos

and Gryff for n= 3. When n> 3 replicas (Figure 9b), EPaxos

still typically completes writes faster than Gryff because it

only takes 2 RTT when conflicting concurrent operations ar-

rive at replicas in the intersections of their fast quorums in

different orders.

Less Blocking for RMWs in Gryff. Gryff achieves 2 RTT

rmws when there are no conflicts and 3 RTT when there

are. While Gryff must still block the execution of rmws un-

til all dependencies have been received and executed, Gryff

experiences significantly less blocking than EPaxos. This is

because EPaxos needs to have dependencies on writes, but

Gryff’s rmw protocol does not.

EPaxos dominates Gryff for write latency. For n = 3, the

p50 write latency of Gryff is 72ms higher and the p99 write

latency is 89ms higher than EPaxos.
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Figure 11: Gryff improves service-level p50 latency when

the expected tail-at-scale request contains many reads.

6.5 Throughput

We measure median latency at varying levels of load in a

local-area cluster. Again, we use the variant of YCSB-A with

49.5% reads, 49.5% writes, and 1.0% rmws with 25% con-

flicts. Figure 10 shows the results for n = 3. We find that

Gryff’s throughput at saturation is about 11,600 ops/s, within

7.5% of EPaxos. This is also about 1,200 ops/s higher than

the maximum throughput of MultiPaxos. Like EPaxos, Gryff

does not require a single replica to be involved in the execu-

tion of every operation, so it achieves better scalability and

load-balancing than leader-based protocols.

Gryff Scales Better. We run the same workload with n = 5

and show the results in Figure 13 in Appendix A. Gryff’s

maximum throughput is higher than EPaxos because EPaxos

can no longer always commit on the fast path. Each oper-

ation that commits on the slow path on EPaxos requires an

additional quorum of messages and replies, which causes the

system to more quickly saturate.

6.6 Tail at Scale

Our primary experiments show that Gryff improves read la-

tency relative to our baselines. However, p50 write and p50

rmw latency are lower in EPaxos for n = 3. For other parts

of the distributions and for MultiPaxos, the latency trade-

off is not comparable. To understand how these tradeoffs

with EPaxos and MultiPaxos affect the performance of large-

scale web applications whose structure resembles the com-

mon structure discussed in Section 6.3, we ran experiments

that emulate end-user requests.

We emulate the request pattern of an application preparing

a high-level object for an end-user. The object is composed

of m sub-requests to the storage system that are drawn from a

fixed distribution of reads, writes, and rmws. For example, in

order to display a profile page in a social network, dozens of

requests to the storage systems that store profile information

must be initiated simultaneously [10]. The latency of one of

these tail at scale requests is the maximum latency of all

of its sub-requests. Thus, the median latency of tail at scale

requests depends on the tail latency of the sub-requests.

The large-scale web applications whose workloads we

emulate are typically read-heavy (§6.3). Moreover, they are

often highly skewed. Facebook engineers report that a small



set of objects account for a large fraction of total read and

write operations in the social graph [2]. This experiment uses

a 99%/0.9%/0.1% read/write/rmw workload with 25% con-

flicts. We vary the number of sub-requests m from 1 to 105

in increments of 15. Figure 11 summarizes the results.

Fast Reads Improve Median End-to-end Latency. Gryff’s

median latency is lower than that of EPaxos and MultiPaxos

when fewer than half of the tail at scale requests are expected

to contain a write or rmw operation. Compared to EPaxos’

p50 latency, Gryff’s is up to 57ms lower for n = 3.

Five Replica Tail-at-scale. We run the same workload with

n = 5 and show the results in Figure 14 in Appendix A. All

protocols follow trends similar to the n = 3 case. However,

Gryff cannot always complete reads in 1 RTT, so the longer

tail of the read latency distribution causes the median latency

of these tail at scale requests to increase at a smaller num-

ber of sub-requests. Similarly, EPaxos can no longer always

commit in 1 RTT, so its tail latency is 2 RTTs plus the delay

from blocking for dependencies.

7 Related Work

We review related work in geo-replicated storage systems

and combining consensus with shared registers.

EPaxos. EPaxos [47] is the state-of-the-art for linearizable

replication in geo-replicated settings. Our evaluation shows

that EPaxos dominates Gryff for blind write latency. On the

other hand, Gryff dominates EPaxos for read latency and its

rmw latency ranges from higher to lower as the contention

in the workload increases. This tradeoff is possible because

Gryff only uses consensus for operations that require it.

Read Leases. Read leases allow clients to read replicated

state from leaseholders by requiring updates to the replicated

state be acknowledged by the leaseholders before complet-

ing [28, 49]. While this enables reads that need only com-

municate with a single replica, it sacrifices write availabil-

ity when a leaseholder fails until the lease expires. Further-

more, to implement read leases safely, clocks at each process

must have bounded skew, which is not satisfied by current

commodity clocks [25]. Given these difficult availability and

safety tradeoffs, we do not consider read leases in the context

of Gryff or the baseline systems, but we believe they can be

adapted to Gryff’s write and rmw protocols.

Other Linearizable Protocols. Paxos [36], VR [50], Fast

Paxos [38], Generalized Paxos [37], Mencius [45], Raft [51],

Flexible Paxos [33], CAESAR [4], and SD Paxos [62] are

consensus protocols that are used to implement linearizable

replicated storage systems by ensuring the Agreement prop-

erty for state machine replication [56]. Other systems, such

as Sinfonia [1] and Zookeeper [34], use similarly expen-

sive coordination protocols (2PC and atomic broadcast re-

spectively) to provide strong consistency. CURP [53], Chain

Replication [59], and other primary-backup protocols [3]

achieve good performance when failures are detectable.

Gryff guarantees linearizability in systems with undetectable

failures for reads, writes, and rmws and only incurs expen-

sive coordination overhead when needed.

ABD [5] provides linearizable reads and writes with guar-

anteed termination in asynchronous settings. Subsequent

work has established the conditions under which linearizable

shared register protocols can provide fast—i.e., complete in

1 RTT—reads [20] or writes [22]. Gryff maintains the per-

formance benefits of these protocols for reads and writes

and incorporates rmws for when application developers need

stronger synchronization primitives.

Weaker Semantics for Lower Latency. Other geo-

replicated systems eschew strong consistency for weaker

consistency models that support lower latency operations.

PNUTS [15] provides per-timeline sequential consistency,

OCCULT [46], COPS [42], and GentleRain [19] pro-

vide causal consistency. ABD-Reg [60] provides regular-

ity. Moreover, some systems provide hybrid consistency:

Pileus [58], Gemini [39], and ICG [30] allow some oper-

ations to be strongly consistent and other operations to be

weakly consistent. Gryff provides linearizability to free de-

velopers from reasoning about complex consistency models.

Consensus and Shared Registers. Active Quorum Systems

(AQS) [7, 8], to our knowledge, was the first attempt to com-

bine consensus with shared registers. We found that AQS

allows for non-linearizable executions because its ordering

mechanism is unstable for rmws (Appendix C). In contrast,

Gryff uses carstamps to stably order rmws with their base

updates while allowing for efficient reads and writes with an

unstable order. In addition, Gryff is implemented and empir-

ically evaluated.

Cassandra [44] provides reads and writes with tunable

consistency and implements a compare-and-swap for appli-

cations that occasionally need stronger synchronization. Un-

like Gryff, Cassandra’s reads and writes are not linearizable

by default and its compare-and-swap is not consistent when

operating on data also accessed via reads and writes.

8 Conclusion

Gryff unifies consensus and shared registers with carstamps.

This reduces latency by avoiding the cost of consensus for

the common case of reads and writes. Our evaluation shows

that the reduction in latency for individual operations re-

duces the median service-level latency to ∼60% of EPaxos

for large-scale web applications.
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A Additional Experiments

This appendix contains figures for experiments run with n =
5 replicas. Discussions of these results are in the main body

of the paper in Section 6.

B Proof of Correctness

The proof of correctness for Gryff is presented in five parts.

First, we define our model and introduce definitions (§B.1).

Second, we describe the remainder of the rmw protocol

(§B.2). Third, we prove safety for the base protocol (§B.3).
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Figure 12: Gryff has better p99 read latency for n = 5 be-

cause, even though reads sometimes complete in 2 RTT,

enough still complete in 1 RTT that the p99 latency is

determined by 2 RTT in a region (CA) where the near-

est quorum are relatively close (72ms per RTT). EPaxos

cannot always commit reads or writes in 1 RTT, so its

latency increases relative to n = 3.

Fourth, we prove liveness for the base protocol (§B.4). Fifth,

we argue that the read proxy optimization maintains the de-

sired correctness properties (§B.5).

B.1 Preliminaries

We introduce the system model (§B.1.1) and define a shared

object (§B.1.2).

B.1.1 Model

The system is comprised of a set P of processes {p1, ..., pm}.
A subset R ⊆ P of processes are replicas {r1, ...,rn}. Pro-

cesses communicate with each other over point-to-point

message channels. We assume reliable message delivery.

This abstraction can be implemented on top of unreliable

message channels that guarantee eventual delivery via re-

transmission and deduplication.

Processes may fail according to the crash failure model: a

failed process ceases executing instructions and its failure

is not detectable by other processes. The system is asyn-

chronous such that there is no upper bound on the time it

takes for a message to be delivered and there is no bound on

relative speeds at which processes execute instructions.

Processes are state machines that deterministically transi-

tion between states when an event occurs. A process interacts

with its environment via a set of objects O. The process may



 0

 4

 8

 12

 16

 0  4000  8000  12000

p
5
0
 L

a
te

n
c
y
 (

m
s
)

Throughput (ops/s)

Gryff EPaxos MultiPaxos

Figure 13: Gryff’s throughput at saturation is higher

than both EPaxos and MultiPaxos when n = 5.
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Figure 14: For n = 5, the difference in service-level p50

latency is larger because reads in EPaxos suffer from

more blocking with more replicas and clients executing

operations.

receive an operation op for an object via an invocation event

inv(op). The process indicates the result of the operation by

generating a response event resp(op). Internal events are the

modification of local state at a process, the sending or re-

ceipt of a message, and the failure of process. We denote the

process associated with an event e by process(e).

An execution is an infinite sequence of events generated

when the processes run a distributed algorithm. A partial

execution is a finite prefix of some execution. A process is

correct in an execution if there are infinite number of events

associated with it. Otherwise, the process is faulty. Given a

set of processes P and an execution e, we denote the set of

correct processes in P by alive(e,P), and the set of faulty

processes in P by faulty(e,P).

We borrow histories and related definitions from Herlihy

and Wing [32]. A history h of an execution e is an infinite

sequence of operation invocation and response events in the

same order as they appear in e. A history may also be defined

with respect to a partial execution e′; such a history is a finite

sequence. A subhistory of a history h is a subsequence of the

events of h.

We denote by ops(h) the set of all operations whose invo-

cations appear in h. An invocation is pending in a history if

no matching response follows the invocation. If h is a history,

complete(h) is the maximal subsequence of h consisting only

of invocations and matching responses. A history h is com-

plete if it contains no pending invocations.

A history h is sequential if (1) the first event of h is an

invocation and (2) each invocation, except possibly the last,

is immediately followed by a matching response and each

response is immediately followed by an invocation.

A process subhistory, h|i, of a history h is the subsequence

of all events in h which occurred at pi. An object subhistory

h/o is similarly defined for an object o ∈ O. Two histories h

and h′ are equivalent if ∀1 ≤ i ≤ m.h|i = h′|i. A history h is

well-formed if ∀1 ≤ i ≤ m.h|i is sequential. We assume all

histories are well-formed.

A set S of histories is prefix-closed if, whenever h is in S,

every prefix of h is also in S. A single-object history is one

in which all events are associated with the same object. A

sequential specification for an object o∈O is a prefix-closed

set of single-object sequential histories for o. A sequential

history h is legal if ∀o ∈ O.h/o belongs to the sequential

specification for o.

A history induces an irreflexive partial order on ops(h),
denoted <h, as op1 <h op2 if and only if resp(op1) <
inv(op2) in h.

A quorum system Q ⊆P(R) over R is a set of subsets of

R with the quorum intersection property: for all Q1,Q2 ∈Q,

Q1 ∩Q2 6= /0. We use quorum both to mean a set of replicas

in a particular quorum system and the size of such a set.

B.1.2 Shared Objects

A shared object is a data type that supports the following

operations:

• READ(): returns the value of the object

• WRITE(v): updates the value of the object to v

• RMW( f (·)): atomically reads the value v of the object,

updates the value to f (v), and returns v

We use reads(h), writes(h), and rmws(h) to denote the set

of all operations that are reads, writes, and rmws in ops(h) re-

spectively. We use updates(h) = writes(h)∪ rmws(h) to de-

note the set of operations which update the state of a shared

object in ops(h). We use observes(h) = reads(h)∪ rmws(h)
to denote the set of operations which observe the state of a

shared object in ops(h).

Definition B.1. (Shared Object Specification) A sequential

object subhistory h/o belongs to the sequential specification

of a shared object if for each op ∈ observes(h/o) such that

resp(op)∈ h/o, resp(op) contains the value of the latest pre-

ceding operation u∈ updates(h/o) or if there is no preceding

update, then resp(op) contains the initial value of o.

B.2 Recovery for RMW Protocol

Algorithms 5 and 6 show the modifications to the basic

EPaxos recovery protocol. In addition to the replica state

in Figure 4, each replica also maintains epoch, the current

epoch used in generating ballot numbers, and b, the highest

ballot number seen in the current epoch. Each instance in the



Algorithm 5: Recovery coordinator protocol for rmws.

1 when replica r ∈ R suspects replica c ∈ R failed while

committing instance j do

2 ballot← (epoch,(b+1), idr)
3 send Prepare(ballot, idc, j) to all r ∈ R

4 wait to receive

PrepareOK(cmdr,seqr,depsr,baser,statusr,ballotr)
from all r ∈ Q ∈Q

5 R←{(cmdr,seqr,depsr,baser,statusr) | ∀r
′ ∈ Q :

ballotr ≥ ballotr′}
6 if (cmd,seq,deps,base,committed) ∈R then

7 run Commit Phase for (cmd,seq,deps,base) at

(idc, j)

8 else if (cmd,seq,deps,base,accepted) ∈R then

9 run Accept Phase for (cmd,seq,deps,base) at

(idc, j)

10 else if ∃S⊆R :

(cmdc,seqc,depsc,basec,statusc) /∈ S)∧
(|S| ≥ ⌊ n

2
⌋)∧

(∀reply1,reply2 ∈ S.reply1 =
reply2∧ reply1.status = pre-accepted) then

11 run Accept Phase for

(cmdr,seqr,depsr,baser) ∈ S at (idc, j)

12 else if (cmd,seq,deps,base,pre-accepted) ∈R then

13 run PreAccept Phase for cmd at (idc, j), avoid

fast path

14 else

15 run PreAccept Phase for no-op at (idc, j),
avoid fast path

cmds array also contains a ballot number that is only used

during recovery.

Note that the only change Gryff makes is that the base

attribute is recovered along with the deps and seq attributes.

To support optimized EPaxos, similar changes must be made

to the optimized recovery protocol. We refer the reader to

the optimized recovery protocol description in the EPaxos

technical report [48] and our implementation of Gryff [29]

for more details.

B.3 Proof of Linearizability

More Definitions. A consistency condition is specified by

a particular set of schedules. Linearizability [32] is a strong

consistency condition that reduces the complexity of build-

ing correct applications.

Definition B.2 (Linearizability). A complete history h sat-

isfies linearizability if there exists a legal total order τ

of ops(h) such that ∀op1,op2 ∈ ops(h).op1 <h op2 =⇒
op1 <τ op2.

Algorithm 6: Recovery replica protocol for rmws.

1 when replica r ∈ R receives a message m from x ∈ R do

2 case m = Prepare(ballot, j,k) do

3 if ballot > cmds[ j][k].ballot then

4 cmds[ j][k].ballot = ballot

5 send PrepareOK(cmds[ j][k]) to x

6 else

7 send NACK to x

Given a particular consistency condition, we are interested

in whether a system enforces the condition for all possible

partial executions.

Definition B.3. The system provides consistency condition C

if, for every partial execution e of the system, the history h of

e can be extended to some history h′ such that complete(h′)
is in C.

Unless otherwise noted, the rest of this section considers

a complete history h produced by the distributed algorithm

specified in Algorithms 1, 2, 3, and 4 in the main body of the

paper and Algorithms 5 and 6 in this appendix.

The coordinator of a read or write is the invoking process.

For rmws, the coordinator is the replica that notifies the in-

voking process its rmws has been executed. We assume that

each u ∈ updates(h) writes a unique value.

Definition B.4. A complete operation op ∈ observes(h) ob-

serves an update u ∈ updates(h) if the value returned in

resp(op) was written by u.

Definition B.5. The carstamp csop assigned to a complete

operation op ∈ ops(h) is:

• If op ∈ writes(h), csop is the carstamp determined on

Line 15 of Algorithm 1.

• If op ∈ rmws(h), csop is the carstamp determined by

Property B.4.

• If op ∈ reads(h), csop is the carstamp csu assigned to

the update u that op observes.

Structure. We abstract the implementation details of the

rmw protocol into four sufficient properties. The proofs of

the subsequent lemmas and theorem assume that the rmw

protocol provides these properties. At the end of this subsec-

tion, we prove that Gryff’s rmw protocol does exactly this.

Property B.1. (Freshness) Every complete rmw ∈ rmws(h)
is assigned a carstamp such that ∀Q∈Q.csrmw >minr∈Q csr

where csr is the carstamp at r when rmw is invoked.

Property B.2. (Propagation) For every complete rmw ∈
rmws(h) there exists a Q ∈Q such that ∀r ∈ Q.csr ≥ csrmw

where csr is the carstamp at r when rmw completes.



Property B.3. (Uniqueness) For all complete rmw1,rmw2 ∈
rmws(h), csrmw1

6= csrmw2
.

Property B.4. (Assignment) Every complete rmw∈ rmws(h)
is assigned the carstamp csrmw = (csu.ts,csu.id,csu.rmwc+
1) where u is the update that rmw observes.

The linearizability proof follows a linear structure. We

first prove that the carstamps assigned to each operation re-

spect the real time order of h in Lemmas B.1-B.5. These

proofs leverage the quorum intersection property. Then, we

prove that a partial order on operations induced by their

carstamps respects both the real time order of h and the le-

gality condition for shared objects in Lemmas B.6-B.10. Fi-

nally, we connect these lemmas in Theorem B.1 to show that

a total order of this partial order satisfies linearizability.

Lemma B.1. After a replica r ∈ R executes the APPLY func-

tion with tuple (v,cs) and before it executes any other in-

struction, csr ≥ cs where csr is the carstamp at r.

Proof. By the condition on Line 13 of Algorithm 2.

Lemma B.2. ∀r ∈ R,csr monotonically increases where csr

is the carstamp at r.

Proof.

1. csr is only modified via the APPLY function.

PROOF: By the fact that, out of all of the replica pseu-

docode in Algorithms 2, 3, 4, 5, and 6, the APPLY func-

tion in Algorithm 2 is the only place that csr is assigned a

value.

2. Q.E.D.

PROOF: By Lemma B.1 and 1.

Lemma B.3. If an operation op ∈ ops(h) is complete, then

after resp(op) there exists a Q ∈Q such that ∀r ∈ Q.csr ≥
csop where csr is the carstamp at r.

Proof.

1. Let op be an operation in ops(h)
2. CASE: op ∈ writes(h)

2.1. Let Q∈Q be the quorum from which the coordinator

of op receives Write2Reply messages.

PROOF: By the hypothesis that op is complete and the

requirement that the coordinator of op waits to receive

Write2Reply messages from a quorum before complet-

ing op (Line 17 of Algorithm 1).

2.2. Each r ∈ Q received a Write2 message for op con-

taining (v,csop) where v is the value written by op.

PROOF: By 2.1 and that a replica sends a Write2Reply

message for op to the coordinator of op only if it re-

ceives a Write2 message for op containing (v,csop).

2.3. Each r ∈ Q applied (v,csop) before sending a

Write2Reply message for op.

PROOF: By 2.1, 2.2, and the requirement that a replica

sends a Write2Reply message after it applies the tuple it

received in a Write2 message (Line 10 of Algorithm 2).

2.4. Q.E.D.

By Lemma B.1, Lemma B.2, and 2.3.

3. CASE: op ∈ reads(h)

3.1. CASE: op completed after Read Phase 1 (Line 7 of

Algorithm 1).

3.1.1. Let Q ∈Q be the quorum from which the coor-

dinator of op receives Read1Reply messages.

PROOF: By the hypothesis that op is complete and

the requirement that the coordinator of op waits to

receive Read1Reply messages from a quorum before

completing op (Line 3 of Algorithm 1).

3.1.2. When each r ∈ Q sent their Read1Reply mes-

sage, csr = csop where csr is the carstamp at r.

PROOF: By 3.1.1, Definition B.5, the case 3.1 as-

sumption, and the fast read condition (Line 6 of Al-

gorithm 1).

3.1.3. Q.E.D.

PROOF: By Lemma B.2 and 3.1.2.

3.2. CASE: op completed after Read Phase 2 (Line 10 of

Algorithm 1).

3.2.1. Let Q ∈Q be the quorum from which the coor-

dinator of op receives Read2Reply messages.

PROOF: By the hypothesis that op is complete, the

case 3.2 assumption, and the requirement that the

coordinator of op waits to receive Read2Reply mes-

sages from a quorum before completing op in Read

Phase 2 (Line 9 of Algorithm 1).

3.2.2. Each r∈Q received a Read2 message for op con-

taining (v,csop) where v is the value written by

op.

PROOF: By 3.2.1 and that a replica sends a

Read2Reply message for op to the coordinator of op

only if it receives a Read2 message for op containing

(v,csop).

3.2.3. Each r ∈ Q applied (v,csop) before sending a

Read2Reply message.

PROOF: By 3.2.1, 3.2.2, and the requirement that a

replica sends a Read2Reply message after it applies



the tuple it received in a Read2 message (Line 5 of

Algorithm 2).

3.2.4. Q.E.D.

By Lemma B.1, Lemma B.2, and 3.2.3.

4. CASE: op ∈ rmws(h)

PROOF: By Property B.2.

5. Q.E.D.

PROOF: By 1, 2, 3, and 4.

Lemma B.4. For all operations op ∈ ops(h) and updates

u ∈ updates(h), op <h u =⇒ csop < csu.

Proof.

1. Let Qop ∈Q be a quorum such that ∀r ∈ Qop.csr ≥ csop

where csr is the carstamp at r when u is invoked.

PROOF: By the hypothesis that op completed before u was

invoked and Lemma B.3.

2. Let u be an update in updates(h).
3. CASE: u ∈ writes(h)

3.1. Let Qu ∈Q be the quorum from which the coordina-

tor of u receives Write1Reply messages and csmax be

the largest carstamp contained in these messages.

PROOF: By the hypothesis that u is complete and the

requirement that the coordinator of u waits to receive

Write1Reply messages from a quorum before complet-

ing u (Line 13 of Algorithm 1).

3.2. Let r ∈ Qop∩Qu be a replica.

PROOF: By 1, 3.1, and the Quorum Intersection prop-

erty.

3.3. op completed before r received a Write1 message for

u.

PROOF: By the hypothesis that op completed before u

was invoked and 3.2.

3.4. The Write1Reply message that r sent for u contains a

carstamp csr ≥ csop.

PROOF: By 1 and 3.3.

3.5. The coordinator for u assigns u the carstamp csu =
(csmax.ts+1, id,0) where csmax ≥ csr and id is the id

of the coordinator for u.

PROOF: By 3.1 and the assignment of a carstamp to u

(Lines 14 and 15 of Algorithm 1).

3.6. Q.E.D.

PROOF: By 3.4, and 3.5.

4. CASE: u ∈ rmws(h)

PROOF: By 1 and Property B.1.

5. Q.E.D.

PROOF: By 2, 3, and 4.

Lemma B.5. For all operations op ∈ ops(h) and reads ρ ∈
reads(h), op <h ρ =⇒ csop ≤ csρ .

Proof.

1. Let u be the update that ρ observes.

PROOF: By the hypothesis that ρ is complete and Defini-

tion B.4.

2. CASE: u = op

2.1. csρ = csu = csop

PROOF: By the assumption of case 2, 1, and Defini-

tion B.5.

2.2. Q.E.D.

PROOF: By 2.1.

3. CASE: u 6= op

3.1. Let Qop ∈Q be a quorum such that ∀r ∈ Qop.csr ≥
csop where csr is the carstamp at r when ρ is invoked.

PROOF: By the hypothesis that op completed before ρ

was invoked and Lemma B.3.

3.2. Let Qρ ∈Q be the quorum from which the coordina-

tor of ρ receives Read1Reply messages and csmax be

the largest carstamp contained in these messages.

PROOF: By the hypothesis that ρ is complete and the

requirement that the coordinator of ρ waits to receive

Read1Reply messages from a quorum before complet-

ing ρ (Line 3 of Algorithm 1).

3.3. Let r ∈ Qop∩Qρ be a replica.

PROOF: By 3.1, 3.2, and the Quorum Intersection prop-

erty.

3.4. op completed before r received a Read1 message for

ρ .

PROOF: By the hypothesis that op completed before u

was invoked and 3.3.

3.5. The Read1Reply message that r sent for ρ contains a

carstamp csr ≥ csop.

PROOF: By 3.1 and 3.4.

3.6. The coordinator for ρ chooses u to be the update cor-

responding to csmax.



PROOF: By 3.2 and the selection of an update to observe

for ρ (Lines 4 and 5 of Algorithm 1).

3.7. Q.E.D.

PROOF: By 3.5 and 3.6.

4. Q.E.D.

PROOF: By 1, 2, and 3.

We define the relation <ψ on ops(h) as follows:

• ∀op1,op2 ∈ ops(h).csop1
< csop2

=⇒ op1 <ψ op2.

• ∀ρ ∈ reads(h) such that ρ observes an update u ∈
updates(h), u <ψ r. ∀u′ ∈ updates(h) such that u <ψ u′,

r <ψ u′.

• ∀ρ1,ρ2 ∈ reads(h) such that ρ1 and ρ2 observe the same

update u, inv(ρ1)< inv(ρ2) =⇒ ρ1 <ψ ρ2.

• ∀op1,op2,op3 ∈ ops(h).op1 <ψ op2∧op2 <ψ op3 =⇒
op1 <ψ op3.

Less formally, <ψ orders operations by their carstamps and

inserts reads in between the updates that the reads observe

and subsequent updates.

Lemma B.6. For all u1,u2 ∈ updates(h), u1 <h u2 =⇒
u1 <ψ u2.

Proof.

1. csu1
< csu2

.

PROOF: By the hypothesis that u1 <h u2 and Lemma B.4.

2. Q.E.D.

PROOF: By 1 and the definition of <ψ .

Lemma B.7. For all u ∈ updates(h) and ρ ∈ reads(h), u <h

ρ =⇒ u <ψ ρ .

Proof.

1. csu ≤ csρ .

PROOF: By the hypothesis that u <h ρ and Lemma B.5.

2. CASE: csu < csρ .

PROOF: By the definition of <ψ .

3. CASE: csu = csρ .

3.1. ρ observes u

PROOF: By the assumption of case 3 and Definition B.4.

3.2. Q.E.D.

PROOF: By 3.1 and the definition of <ψ .

4. Q.E.D.

PROOF: By 1, 2, and 3.

Lemma B.8. For all ρ ∈ reads(h) and u ∈ updates(h), ρ <h

u =⇒ ρ <ψ u.

Proof.

1. csρ < csu.

PROOF: By the hypothesis that ρ <h u and Lemma B.4.

2. Q.E.D.

PROOF: By 1 and the definition of <ψ .

Lemma B.9. For all ρ1,ρ2 ∈ reads(h), ρ1 <h ρ2 =⇒ ρ1 <ψ

ρ2.

Proof.

1. csρ1
≤ csρ2

.

PROOF: By the hypothesis that ρ1 <h ρ2 and Lemma B.5.

2. CASE: csρ1
< csρ2

PROOF: By the definition of <ψ .

3. CASE: csρ1
= csρ2

3.1. resp(ρ1)< inv(ρ2)

PROOF: By the hypothesis that ρ1 <h ρ2.

3.2. inv(ρ1)< inv(ρ2)

PROOF: By 3.1.

3.3. Q.E.D.

PROOF: By 3.2 and the definition of <ψ .

4. Q.E.D.

PROOF: By 1, 2, and 3.

Lemma B.10. If τ is a topological sort of <ψ , τ is a legal

total order of ops(h).

Proof.

1. Let op∈ observes(h) be an operation that observes an up-

date u ∈ updates(h).

PROOF: By the hypothesis that op is completed.

2. CASE: op ∈ reads(h).

2.1. There is no u′ such that u <ψ u′ <ψ op.

PROOF: By the assumption of case 2 and the definition

of <ψ .

2.2. There is no u′ such that u <τ u′ <τ op.



PROOF: By the hypothesis thatτ is a topological sort of

<ψ and 2.1.

2.3. Q.E.D.

PROOF: By 2.2, the definition of legal, and Defini-

tion B.1.

3. CASE: op ∈ rmws(h).

3.1. csop = (csu.ts,csu.id,csu.rmwc+1).

PROOF: By Property B.4.

3.2. SUFFICES ASSUME: ∃u′ ∈ updates(h) with

carstamp csu′ such that

u <ψ u′ <ψ op.

PROVE: False.

3.2.1. csu < csu′ < csop.

PROOF: By assumption 3.2 and the definition of <ψ .

3.2.2. CASE: csu.ts < csu′ .ts

3.2.2.1. csop.ts < csu′ .ts.

PROOF: By the assumption of case 3.2.2 and 3.1.

3.2.2.2. Q.E.D.

PROOF: By 3.2.2.1 and 3.2.1.

3.2.3. CASE: csu.ts = csu′ .ts and csu.id < csu′ .id.

3.2.3.1. csop.ts = csu′ .ts and csop.id < csu′ .id.

PROOF: By the assumption of case 3.2.3 and 3.1.

3.2.3.2. Q.E.D.

PROOF: By 3.2.3.1 and 3.2.1.

3.2.4. CASE: csu.ts = csu′ .ts, csu.id = csu′ .id, and

csu.rmwc < csu′ .rmwc.

3.2.4.1. csop.ts = csu′ .ts and csop.id = csu′ .id.

PROOF: By the assumption of case 3.2.4 and 3.1.

3.2.4.2. csop.rmwc = csu.rmwc+1≤ csu′ .rmwc.

PROOF: By the assumption of case 3.2.4 and 3.1

and that the rmwc component of a carstamp is a

natural number.

3.2.4.3. CASE: u′ ∈ writes(h)

3.2.4.3.1. csu′ .rmwc = 0

PROOF: By the assignment of a carstamp to u′

(Lines 14 and 15 of Algorithm 1).

3.2.4.3.2. Q.E.D.

PROOF: By 3.2.4.3.1 and 3.2.4.2.

3.2.4.4. CASE: u′ ∈ rmws(h)

3.2.4.4.1. csop.rmwc 6= csu′ .rmwc.

PROOF: By 3.2.4.1 and Property B.3.

3.2.4.4.2. csop.rmwc < csu′ .rmwc.

PROOF: By 3.2.4.4.1 and 3.2.4.2.

3.2.4.4.3. Q.E.D.

PROOF: By 3.2.4.1, 3.2.4.4.2, and 3.2.1.

3.2.4.5. Q.E.D.

PROOF: By 3.2.4.3 and 3.2.4.4.

3.3. Q.E.D.

PROOF: By 3.2, the definition of legal, and Defini-

tion B.1.

4. Q.E.D.

PROOF: By 1, 2, and 3.

Theorem B.1. The system implements a shared object with

linearizability.

Proof. Consider a partial execution e with history h. Let

h′ be h with a response for each pending operation in

updates(h) appended to h. Let h′′ = complete(h′).
1. Let op1 and op2 be operations in ops(h′′). We prove that

op1 <h op2 =⇒ op1 <ψ op2.

2. CASE: op1,op2 ∈ updates(h′′).

PROOF: By Lemma B.6.

3. CASE: op1 ∈ updates(h′′) and op2 ∈ reads(h′′).

PROOF: By Lemma B.7.

4. CASE: op1 ∈ reads(h′′) and op2 ∈ updates(h′′).

PROOF: By Lemma B.8.

5. CASE: op1,op2 ∈ reads(h′′).

PROOF: By Lemma B.9.

6. Let τ be a topological sort of <ψ on ops(h′′).
7. τ is a legal total order on ops(complete(h′)).

PROOF: By 6 and Lemma B.10.

8. Q.E.D.

PROOF: By 1, 2, 3, 4, 5, and 7.

RMW Properties. In order to prove that Gryff’s rmw pro-

tocol provides the aforementioned properties, we rely on the

correctness of EPaxos [48]. Because replicas act as coordi-

nators for a rmw invoked by other processes, the failure of

a replica during a rmw before the invoking process learns of

the result may cause the invoking process to submit its rmw

to another replica. Replicas must be able to recognize dupli-

cates, only execute the rmw once, and store the result until

the invoking process generates a response event.



This issue affects all protocols that rely on a subset of pro-

cesses to coordinate the execution of operations on behalf of

other processes. In Gryff, if a process learns that a pending

rmw has been executed by at least one replica, it must ensure

that a quorum have executed the rmw before completing it.

A replica can ensure this by sending Commit messages with

the appropriate attributes to all replicas. Replicas that receive

Commit messages for a rmw they have already executed can

immediately reply with an Executed message. For brevity,

we omit the duplicate execution check for a replica receiving

a rmw in Algorithm 3 and assume that if a replica has already

executed a rmw, it will skip to Line 20 of Algorithm 3.

We assume the use of the majority quorum system Qmaj

such that ∀Q∈Qmaj. |Q|= ⌊
n
2
⌋+1. This assumption implies

each quorum is a subset of a fast quorum and equivalent to a

slow quorum in canonical EPaxos.

Definition B.6. A command γ is committed at a replica r ∈
R if the cmds array at r contains an instance with γ as the

command and committed as the status.

Lemma B.11. The system provides Property B.1.
Proof. Let rmw be an operation in rmws(h) and Q ∈Q be a

quorum.

1. rmw committed with attributes that are the union of the

attributes computed by each r ∈ S where S⊇Q′ for some

Q′ ∈Q.

1.1. rmw commits with basic EPaxos or with optimized

EPaxos.

1.2. CASE: rmw commits with basic EPaxos.

PROOF: By Step 1.1 of the proof of Theorem 4 in the

EPaxos technical report, which states that rmw is com-

mitted with the union of attributes from ⌊ n
2
⌋+ 1 repli-

cas, and the assumption that the majority quorum sys-

tem Qmaj is used.

1.3. CASE: rmw commits with optimized EPaxos.

There are two sub-cases:

1.3.1. CASE: rmw commits without running the recov-

ery procedure.

PROOF: By 1.2 and that a fast quorum in optimized

EPaxos is larger than a majority quorum because this

case reduces to 1.2 with the fast quorum size reduced

from n−1.

1.3.2. CASE: rmw commits through the optimized re-

covery procedure.

1.3.2.1. CASE: rmw commits before step 7 of the

optimized recovery procedure, or af-

ter exiting one of the Else branches

in step 7.

PROOF: By Step 2.1 of Theorem 7 of the EPaxos

technical report, which states that rmw must have

been pre-accepted by a majority of replicas, and

the assumption that the majority quorum system

Qmaj is used.

1.3.2.2. CASE: rmw committed after exiting the op-

timized recovery procedure on the If

branch in step 7.

PROOF: By Step 2.2.2 of Theorem 7 of the EPaxos

technical report, which states that rmw must have

been pre-accepted by a majority of replicas, and

the assumption that the majority quorum system

Qmaj is used.

1.3.2.3. Q.E.D.

PROOF: By 1.3.2.1 and 1.3.2.2.

1.3.3. Q.E.D.

PROOF: By 1.3.1 and 1.3.2.

1.4. Q.E.D.

PROOF: By 1.1, 1.2, and 1.3.

2. The base attribute of rmw is chosen such that base.cs ≥
maxr∈S csr ≥ maxr∈Q′ csr where csr is the carstamp at r

when rmw is invoked.

2.1. rmw committed after the PreAccept Phase or the

Accept Phase. Note that the basic recovery proce-

dure and optimized recovery procedure always exit

by running the PreAccept, Accept, or Commit phase.

Each of these is reducible to committing after the

PreAccept phase or Accept phase.

2.2. CASE: rmw committed after the PreAccept Phase

(Line 12 of Algorithm 3).

2.2.1. When each r ∈ S sent their PreAcceptOK mes-

sage, csr = base.cs where csr is the carstamp at

r.

PROOF: By 1, the case 2.2 assumption, and the fast

path condition (Line 10 of Algorithm 3).

2.2.2. Q.E.D.

PROOF: By Lemma B.2 and 2.2.1.

2.3. CASE: rmw committed after the Accept Phase.

2.3.1. CASE: The Accept phase is run during normal

processing.

PROOF: By Lemma B.2 and the selection of base in

the Accept Phase (Line 15 of Algorithm 3).

2.3.2. CASE: The Accept phase is run during recovery

(either basic or optimized).

PROOF: By the fact that the recovery procedures exit

directly to the Accept phase only if rmw has previ-

ously been pre-accepted by a majority.

2.4. Q.E.D.



PROOF: By 2.1, 2.2, and 2.3.

3. base.cs≥minr∈Q csr.

PROOF: By 2 and the Quorum Intersection property

(maxr∈Q′ cs≥minr∈Q∩Q′ csr ≥mins∈Q′ csr).

4. csrmw > base.cs.

PROOF: By the generation of the carstamp of rmw

(Line 18 of Algorithm 4).

5. Q.E.D.

PROOF: By 3 and 4.

Lemma B.12. The system provides Property B.2.

Proof. Let rmw be an operation in rmws(h).
1. After rmw completes, ∃Q ∈Q such that each r ∈ Q has

executed rmw.

PROOF: By the hypothesis that rmw is complete and

the requirement that the coordinator only completes rmw

when it has received Executed messages from a quorum

(Line 21 of Algorithm 3).

2. Each r ∈ Q applied csrmw.

PROOF: By 1 and that a replica only sends an Executed

message for rmw if it has applied the carstamp and value

of rmw (Line 20 of Algorithm 3).

3. Q.E.D.

PROOF: By 2, Lemma B.1, and Lemma B.2.

Lemma B.13. The system provides Property B.3.

Proof. Let rmwa and rmwb be operations in rmws(h).
1. Either rmwa is executed before rmwb or vice versa.

PROOF: By Theorem 4 and Theorem 7 from the EPaxos

technical report, that the logic for determining the deps

and seq attributes of a command remains unchanged from

EPaxos, and that the logic for determining the execution

order of commands remains unchanged from EPaxos.

2. CASE: rmwa is executed before rmwb.

2.1. csrmwa < csrmwb
.

2.1.1. For any two interfering commands rmwa and

rmwb, there is a sequence of zero of more in-

terfering commands that are executed between

rmwa and rmwb. Let this sequence be rmwa =
rmw1, ...,rmwk = rmwb.

PROOF: By Theorem 4 and Theorem 7 from the

EPaxos technical report.

2.1.2. Proof by induction on the sequence

rmw1, ...,rmwk.

2.1.2.1. Base case: k = 2 (rmw2 immediately follows

rmw1).

2.1.2.1.1. prev.cs = csrmw1
.

PROOF: By the assumption of the base case

2.1.2.1 and that prev is only modified when a

rmw is executed (Line 19 of Algorithm 4).

2.1.2.1.2. csrmw2
> prev.cs.

PROOF: By the generation of csrmw2
to be larger

than prev at the time that rmw2 is executed

(Lines 15, 16, and 18 of Algorithm 4).

2.1.2.1.3. Q.E.D.

PROOF: By 2.1.2.1.1 and 2.1.2.1.2.

2.1.2.2. ASSUME: csrmw1
< csrmwi

.

PROVE: csrmw1
< csrmwi+1

.

2.1.2.2.1. prev.cs = csrmwi
.

PROOF: By the assumption that rmwi was the

last rmw to be executed and that prev is only

modified when a rmw is executed (Line 19 of

Algorithm 4).

2.1.2.2.2. csrmwi+1
> prev.cs

PROOF: By the generation of csrmwi+1
to be

larger than prev at the time that rmwi+1 is ex-

ecuted (Lines 15, 16, and 18 of Algorithm 4).

2.1.2.2.3. Q.E.D.

PROOF: By 2.1.2.2.1 and 2.1.2.2.2.

2.1.3. Q.E.D.

PROOF: By 2.1.1 and 2.1.2.

2.2. Q.E.D.

PROOF: By 2.1.

3. CASE: rmw2 is executed before rmw1.

PROOF: By symmetry with case 2.

4. Q.E.D.

PROOF: By 1, 2, and 3.

Lemma B.14. The system provides Property B.4.

Proof. Let rmw be an operation in rmws(h).
1. Let u ∈ updates(h) be the update that rmw observes.

PROOF: By the assumption that rmw is complete.

2. Let csu be the carstamp chosen on Lines 14 and 16 of

Algorithm 4.



PROOF: By 1 and Definition B.4.

3. Q.E.D.

PROOF: By 2, Definition B.5, and the generation of csrmw

(Line 18 of Algorithm 4).

Lemmas B.11, B.12, B.13, and B.14 imply that Gryff’s

rmw protocol satisfies the assumptions needed to prove The-

orem B.1.

B.4 Proof of Wait-Freedom

More Definitions. Wait-freedom is a strong liveness prop-

erty that guarantees a correct process can always make

progress regardless of concurrent operations invoked by

other processes.

Definition B.7. (Wait-Freedom) A subset S ⊆ ops(h) of op-

erations are wait-free in a history h with execution e if

∀op ∈ S.process(inv(op)) ∈ alive(e,P) =⇒ resp(op) ∈ h.

Unless otherwise noted, the rest of this section considers

an execution e with history h produced by the distributed

algorithm specified in Algorithms 1, 2, 3, and 4 in the main

body of the paper and Algorithms 5 and 6 in this appendix.

We assume that there are n= 2 f +1 replicas and that up to

f replicas may fail and any number of other processes may

fail in e. Thus, we assume the use of the majority quorum

system Qmaj such that ∀Q ∈Qmaj. |Q|= f +1.

Structure. We first prove that Gryff’s reads and writes are

wait-free in Theorems B.2 and B.3. To prove wait-freedom

for rmws, we discuss why the synchrony assumption must

be strengthened from asynchrony to partial synchrony. With

this stronger assumption, we restate the liveness property of

EPaxos and use this to prove that Gryff’s rmws are wait-free

in Theorem B.5.

Theorem B.2. The system provides read wait-freedom.

Proof. 1. Let op be an operation in reads(h).
2. The coordinator of op is correct.

PROOF: By the definition of a coordinator of a read and by

the hypothesis that process(inv(op)) ∈ alive(e,P).

3. |alive(e,R)| ≥ f +1

PROOF: By the assumption that at most f out of 2 f + 1

replicas can fail in any execution.

4. The coordinator sends a Read1 message for op to every

replica r ∈ R.

PROOF: By 2 and Line 2 of Algorithm 1.

5. Each r ∈ alive(e,R) delivers a Read1 message for op.

PROOF: By 4, the assumption that r ∈ alive(e,R), and the

assumption that the network guarantees eventual reliable

message delivery.

6. Each r ∈ alive(e,R) sends a Read1Reply message for op

to the coordinator.

PROOF: By 5, the assumption that r ∈ alive(e,R), and

that the message handler for a Read1 message contains

no blocking instructions or conditional branches (Algo-

rithm 2).

7. The coordinator delivers Read1Reply messages from a

quorum Q ∈Q.

PROOF: By 2, 3, 6, the assumption that the network guar-

antees eventual reliable message delivery, and the assump-

tion that the majority quorum system Qmaj is used.

8. CASE: ∀r ∈ Q.csr = csmax

PROOF: By 7, the assumption of the case and that the co-

ordinator generates resp(op) when this assumption holds

(Lines 6 and 7 of Algorithm 1).

9. CASE: ∃r ∈ Q : csr 6= csmax

9.1. The coordinator sends a Read2 message for op to ev-

ery replica r ∈ R.

PROOF: By 2, the assumption of the case, and Line 8 of

Algorithm 2.

9.2. Each r ∈ alive(e,R) delivers a Read2 message for op.

PROOF: By 9.1, the assumption that r ∈ alive(e,R), and

the assumption that the network guarantees eventual re-

liable message delivery.

9.3. Each r ∈ alive(e,R) sends a Read2Reply message for

op to the coordinator.

PROOF: By 9.2, the assumption that r ∈ alive(e,R), and

that the message handler for a Read2 message con-

tains no blocking instructions or conditional branches

on sending a reply (Algorithm 2).

9.4. The coordinator delivers Read2Reply messages from

a quorum Q ∈Q.

PROOF: By 2, 3, 9.3, the assumption that the network

guarantees eventual reliable message delivery, and the

assumption that the majority quorum system Qmaj is

used.

9.5. Q.E.D.

PROOF: By 7, 9.4, and the fact that the coordina-

tor generates a resp(op) after receiving a quorum of

Read2Reply messages (Line 10 of Algorithm 1).

10. Q.E.D.



PROOF: By 7, 8, and 9.

Theorem B.3. The system provides write wait-freedom.

Proof. 1. Let op be an operation in writes(h).
2. The coordinator of op is correct.

PROOF: By the definition of a coordinator of a write and

by the hypothesis that process(inv(op)) ∈ alive(e,P).

3. |alive(e,R)| ≥ f +1

PROOF: By the assumption that at most f out of 2 f + 1

replicas can fail in any execution.

4. The coordinator sends a Write1 message for op to every

replica r ∈ R.

PROOF: By 2 and Line 12 of Algorithm 2.

5. Each r ∈ alive(e,R) delivers a Write1 message for op.

PROOF: By 4, the assumption that r ∈ alive(e,R), and the

assumption that the network guarantees eventual reliable

message delivery.

6. Each r ∈ alive(e,R) sends a Write1Reply message for op

to the coordinator.

PROOF: By 5, the assumption that r ∈ alive(e,R), and

that the message handler for a Write1 message contains

no blocking instructions or conditional branches (Algo-

rithm 2).

7. The coordinator delivers Write1Reply messages from a

quorum Q ∈Q.

PROOF: By 2, 3, 6, the assumption that the network guar-

antees eventual reliable message delivery, and the assump-

tion that the majority quorum system Qmaj is used.

8. The coordinator sends a Write2 message for op to every

replica r ∈ R.

PROOF: By 2, 7, and Line 16 of Algorithm 2.

9. Each r ∈ alive(e,R) delivers a Write2 message for op.

PROOF: By 8, the assumption that r ∈ alive(e,R), and the

assumption that the network guarantees eventual reliable

message delivery.

10. Each r ∈ alive(e,R) sends a Write2Reply message for op

to the coordinator.

PROOF: By 9, the assumption that r ∈ alive(e,R), and that

the message handler for a Write2 message contains no

blocking instructions or conditional branches on sending

a reply (Algorithm 2).

11. The coordinator delivers Write2Reply messages from a

quorum Q ∈Q.

PROOF: By 2, 3, 10, the assumption that the network guar-

antees eventual reliable message delivery, and the assump-

tion that the majority quorum system Qmaj is used.

12. Q.E.D.

PROOF: By 11 and the fact that the coordinator generates

a resp(op) after receiving a quorum of Write2Reply mes-

sages (Algorithm 1).

Note that Theorems B.2 and B.3 rely on our weak net-

work assumption that messages are eventually delivered and

do not require any stronger assumptions about the synchrony

of the system. Eventual message delivery only precludes in-

finitely long partitions in the network, which is unlikely to

occur in any practical system.

RMW Wait-Freedom. The FLP impossibility result im-

plies that no consensus protocol can provide both safety

and liveness in asynchronous systems where processes can

fail [24]. Because rmw can solve consensus [31], this also

implies that no rmw protocol can provide both.

The rest of this section shows that Gryff’s rmw protocol

provides wait-freedom if we relax the system model from

asynchrony to partial synchrony [21]. In the partial syn-

chrony model, there are two bounds ∆ and Φ such that af-

ter some unknown point in time during an execution of the

system, all messages are delivered within ∆ time of when

they are sent and all correct processes take at most Φ time

between the execution of instructions.

As in the proof of linearizability, we rely on the correct-

ness of EPaxos in the partial synchrony model [48].

Theorem B.4. EPaxos guarantees with high probability that

every proposed command will eventually be committed by

every r ∈ alive(e,R) as long as messages eventually reach

their destination before their recipient times out.

Lemma B.15. With high probability, every r ∈ alive(e,R)
executes every rmw that commits.

Proof. Let r be a correct replica, rmw be an operation in

rmws(h), and D be the transitive closure of the set of de-

pendencies for rmw determined by the commit protocol.

1. With high probability, every rmw′ ∈ D eventually com-

mits at r.

PROOF: By Theorem B.4.

2. With high probability, every rmw′ ∈ D is executed at r.

Proof by generalized induction on D.

2.1. Base case: rmw0 ∈D is the first rmw committed in e.

PROOF: By the assumption that r is correct, the assump-

tion of the base case 2.1, and that the EPaxos execution



algorithm contains no blocking instructions for com-

mands with no dependencies.

2.2. ASSUME: For any rmw′′ ∈ D such that rmw′′ is be-

fore rmw′ in the EPaxos execution order,

rmw′′ is executed at r.

PROVE: rmw′ is executed at r

PROOF: By the assumption that r is correct, the induc-

tion hypothesis 2.2, and that the EPaxos execution al-

gorithm only blocks the execution of a command until

all of its dependencies have executed.

2.3. Q.E.D.

By 1, 2.1, and 2.2.

3. With high probability, after all rmw′ ∈ D have executed,

rmw will be executed.

3.1. CASE: rmw is in its own strongly connected compo-

nent in the dependency graph.

PROOF: By the execution order specified by the EPaxos

execution algorithm, which requires every dependency

of a command to be executed before the command is

executed.

3.2. CASE: rmw is in a cycle in the dependency graph.

PROOF: By the execution order specified by the EPaxos

execution algorithm, which requires that cycles be bro-

ken in order of seq, and the fact that rmw may be exe-

cuted before some of its dependencies within the same

cycle.

3.3. Q.E.D.

PROOF: By 3.1 and 3.2.

4. Q.E.D.

PROOF: By 2 and 3.

Theorem B.5. If there is a point in time after which the sys-

tem is synchronous with bounds ∆ and Φ, the system provides

rmw wait-freedom with high probability.

Proof. Let op be an operation in rmws(h).
1. |alive(e,R)| ≥ f +1

PROOF: By the assumption that at most f out of 2 f + 1

replicas can fail in any execution.

2. With high probability, every r ∈ alive(e,R) commits an

instance containing op.

PROOF: By the hypothesis that there is a finite time after

which all messages are delivered within ∆ time of when

they are sent and Theorem B.4.

3. With high probability, every r ∈ alive(e,R) executes op.

PROOF: By 2 and Lemma B.15.

4. With high probability, every r ∈ alive(e,R) sends an Exe-

cuted message for op to the coordinator.

By 3 and that there are no blocking instructions or con-

ditional branches on sending an Executed message in the

EXECUTE function.

5. With high probability, the coordinator delivers an Exe-

cuted message for op from a quorum Q ∈Q.

PROOF: By 1, 4, the assumption that the network guaran-

tees eventual reliable message delivery, and the assump-

tion that the majority quorum system Qmaj is used.

6. Q.E.D.

PROOF: By 5 and the fact that the coordinator generates a

resp(op) after receiving a quorum of Executed messages.

B.5 Read Proxy Correctness

Algorithm 7: The modified read coordinator protocol

and Read1 message handler for using the read proxy op-

timization.

1 procedure Coordinator::READ(v,cs) at p ∈ P

2 send Read1(v,cs) to all r ∈ R

3 wait to receive Read1Reply(vr,csr) from all

r ∈ Q ∈Q

4 for r ∈ Q do

5 APPLY(vr,csr)

6 csmax←maxr∈Q csr

7 v← vr : csr = csmax

8 if ∀r ∈ Q : csr = csmax then

9 return v

10 send Read2(v,csmax) to all r ∈ R

11 wait to receive Read2Reply from all r ∈ Q′ ∈Q

12 return v

13 when replica r ∈ R receives a message m from p ∈ P do

14 case m = Read1(v′,cs′) do

15 APPLY(v′,cs′)
16 send Read1Reply(v,cs) to p

The pseudocode for the read proxy optimization described

in Section 5 is in Algorithm 7. We briefly argue that the op-

timization does not change the correctness proofs.

The optimization changes the definition of the coordinator

of a read from the invoking process to the replica that no-

tifies the invoking process of the result of the read. Neither

the definition change nor the added logic for the optimiza-

tion affect the proof of linearizability because the value that

a read observes is still chosen to be the one associated with



the maximum carstamp on a quorum. Reads can be executed

multiple times without affecting the state of the shared ob-

ject, so it is safe for a client to timeout after a finite time t

and forward its read to another replica if it suspects the ini-

tial coordinator failed.

The proof of wait-freedom for reads remains the same, but

needs a small clarification in the proof of Step 2. Since at

most f replicas can fail, a client will eventually forward its

read to a correct replica that will complete the read coordina-

tor protocol. This will happen after at most f · t time, which

is finite.

C Non-Linearizable AQS Execution

AQS [8] attempts to exploit the same observation that Gryff

does about the relationship between shared register and con-

sensus protocols to improve performance under the Byzan-

tine failure model. In Figure 15, we demonstrate an explicit

execution of AQS that exhibits non-linearizable behavior.

Here, process p1 first issues and completes w1 with ts =
(1,1) that is seen by all replicas (Figure 15.1). After this

write has completed, process p2 begins w2 and sees w1 with

ts = (1,1), so it chooses ts = (2,2) for w2 (Figure 15.2).

This write then pauses, and process p3 issues rmw3 to pri-

mary s4. The primary gathers state from all replicas and picks

base state = 〈w1, ts= (1,1)〉 (Figure 15.3). The primary then

generates an updated state vl based on w1 and sends PRE-

PREPARE messages to all replicas. These messages are ac-

cepted by all replicas because w1 is the most recent state

they have observed (Figure 15.4). All replicas then broad-

cast PREPARE messages to all other replicas, and the mes-

sages are received and accepted. All replicas then broadcast

COMMIT messages (Figure 15.5) and rmw3 pauses. Process

p2 now finishes w2 by sending out a second round of mes-

sages with ts = (2,2), and all replicas accept and apply this

write (Figure 15.6). Shortly after, replicas receive COMMIT

messages from all other replicas for rmw3, forming a commit

certificate. All replicas generate tsl = succ(ts = (1,1),s4) =
(2,4) and apply rmw3 (Figure 15.7). Process p4 now issues

a read ρ4, and the read completes in one round, returning

ts = (2,4) from rmw3 (Figure 15.8).

There is no legal total order for this execution because

rmw3 must follow w1 with no writes in between because

rmw3 picks base state = 〈w1, ts = (1,1)〉. Thus, rmw3 must

be ordered before w2. We also must have ρ4 ordered after

both rmw3 and w2 because it begins in real time after both

operations have finished. The read ρ4 sees rmw3, so rmw3

must be ordered after w2. Thus, there is no legal total order

of operations and linearizability is not satisfied.
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Figure 15: Labeled numbers represent the following

events: 1. p1 issues and completes w1 with ts = (1,1).
2. p2 issues w2 and gets back ts = (1,1); the process

then picks ts = (2,2) for w2. 3. The primary s4 picks

base state = 〈w1, ts = (1,1)〉. 4. All replicas accept PRE-

PREPARE messages because w1 is the most recent state

observed. 5. All replicas broadcast COMMIT messages

to all other replicas. 6. All replicas apply w2 because

ts = (2,2)> ts = (1,1). 7. All replicas apply rmw3 because

ts = (2,4)> ts = (2,2). 8. p4 issues and completes ρ4 in 1

round, returning rmw3 with ts = (2,4).
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