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Abstract

Many graph problems can be solved using ordered parallel
graph algorithms that achieve significant speedup over their
unordered counterparts by reducing redundant work. This
paper introduces a new priority-based extension to Graphlt,
a domain-specific language for writing graph applications,
to simplify writing high-performance parallel ordered graph
algorithms. The extension enables vertices to be processed
in a dynamic order while hiding low-level implementation
details from the user. We extend the compiler with new
program analyses, transformations, and code generation to
produce fast implementations of ordered parallel graph algo-
rithms. We also introduce bucket fusion, a new performance
optimization that fuses together different rounds of ordered
algorithms to reduce synchronization overhead, resulting in
1.2x-3% speedup over the fastest existing ordered algorithm
implementations on road networks with large diameters.
With the extension, Graphlt achieves up to 3X speedup on six
ordered graph algorithms over state-of-the-art frameworks
and hand-optimized implementations (Julienne, Galois, and
GAPBS) that support ordered algorithms.

CCS Concepts - Mathematics of computing — Graph
algorithms; « Software and its engineering — Parallel
programming languages; Domain specific languages.
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1 Introduction

Many important graph problems can be implemented using
either ordered or unordered parallel algorithms. Ordered algo-
rithms process active vertices following a dynamic priority-
based ordering, potentially reducing redundant work. By
contrast, unordered algorithms process active vertices in an
arbitrary order, improving parallelism while potentially per-
forming a significant amount of redundant work. In practice,
optimized ordered graph algorithms are up to two orders of
magnitude faster than the unordered versions [7, 16, 22, 23],
as shown in Figure 1. For example, computing single-source
shortest paths (SSSP) on graphs with non-negative edge
weights can be implemented either using the Bellman-Ford
algorithm [8] (an unordered algorithm) or the A-stepping
algorithm [32] (an ordered algorithm).! Bellman-Ford up-
dates the shortest path distances to all active vertices on
every iteration. On the other hand, A-stepping reduces the
number of vertices that need to be processed every iteration
by updating path distances to vertices that are closer to the
source vertex first, before processing vertices farther away.
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Figure 1. Speedup of ordered algorithms for single-source short-
est path and k-core over the corresponding unordered algorithms
implemented in our framework on a 24-core machine.

Writing high-performance ordered graph algorithms is
challenging for users who are not experts in performance op-
timization. Existing frameworks that support ordered graph
algorithms [7, 16, 35] require users to be familiar with C/C++
data structures, atomic synchronizations, bitvector manipu-
lations, and other performance optimizations. For example,

!In this paper, we define A-stepping as an ordered algorithm, in contrast to
previous work [22] which defines A-stepping as an unordered algorithm.
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1 constexpr uintE TOP_BIT = ((uintE)INT_E_MAX) + 1;

2 constexpr uintE VAL_MASK = INT_E_MAX;

3 struct Visit_F {

4 array_imap<uintE> dists;

Visit_F(array_imap<uintE>& _dists) : dists(_dists) { }

inline Maybe<uintE> updateAtomic(uintE& s, uintE& d, intE& w) {
uintE oval = dists.s[d];

9 uintE dist = oval | TOP_BIT;

10 uintE n_dist = (dists.s[s] | TOP_BIT) + w;

1 if (n_dist < dist) {

12 if (!(oval & TOP_BIT) && CAS(&(dists[d]), oval, n_dist)) {
13 return Maybe<uintE>(oval);}

14 writeMin(&(dists[d]), n_dist);}

15 return Maybe<uintE>();}

16 inline bool cond(const uintE& d) const { return true; }};

Figure 2. Part of Julienne’s A-stepping edge update function, cor-
responding to Lines 7-10 of Fig. 3 in Graphlt’s A-stepping.

1 element Vertex end

2 element Edge end

3 const edges : edgeset{Edge}(Vertex,Vertex, int)=load(argv[1]);
4 const dist : vector{Vertex}(int) = INT_MAX;

5 const pq: priority_queue{Vertex}(int);

6

7 func updateEdge(src : Vertex, dst : Vertex, weight : int)
8 var new_dist : int = dist[src] + weight;

9 pq.updatePriorityMin(dst, dist[dst], new_dist);

10 end

11

12 func main()

13 var start_vertex : int = atoi(argv[2]);

14 dist[start_vertex] = 0;

15 pg = new priority_queue

16 {Vertex}(int)(true, "lower_first", dist, start_vertex);
17 while (pqg.finished() == false)

18 var bucket : vertexset{Vertex} = pq.dequeueReadySet();
19 #s1# edges.from(bucket) .applyUpdatePriority(updateEdge);
20 delete bucket;

21 end

22 end

Figure 3. Graphlt algorithm for A-stepping for SSSP. Priority-based
data structures and operators are highlighted in red.

Figure 2 shows a snippet of a user-defined function for A-
stepping in Julienne [16], a state-of-the-art framework for
ordered graph algorithms. The code involves atomics and
low-level C/C++ operations.

We propose a new priority-based extension to Graphlt
that simplifies writing parallel ordered graph algorithms.
Graphlt separates algorithm specifications from performance
optimization strategies. The user specifies the high-level al-
gorithm with the algorithm language and uses a separate
scheduling language to configure different performance opti-
mizations. The algorithm language extension introduces a set
of priority-based data structures and operators to maintain
execution ordering while hiding low-level details such as syn-
chronization, deduplication, and data structures to maintain
ordering of execution. Figure 3 shows the implementation
of A-stepping using the priority-based extension which de-
queues vertices with the lowest priority and updates their
neighbors’ distances in each round of the while loop. The
while loop terminates when all the vertices’” distances are
finalized. The algorithm uses an abstract priority queue data
structure, pqg (Line 5), and the operators updatePriorityMin
(Line 9) and dequeueReadySet (Line 18) to maintain priorities.
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The priority-based extension uses a bucketing data struc-
ture [7, 16] to maintain the execution ordering. Each bucket
stores active vertices of the same priority, and the buck-
ets are sorted in priority order. The program processes one
bucket at a time in priority order and dynamically moves
active vertices to new buckets when their priorities change.
Updates to the bucket structure can be implemented using
either an eager bucket update [7] approach or a lazy bucket
update [16] approach. With eager bucket updates, buckets
are immediately updated when the priorities of active ver-
tices change. Lazy bucketing buffers the updates and later
performs a single bucket update per vertex. Existing frame-
works supporting ordered parallel graph algorithms only
support one of the two bucketing strategies described above.
However, using a suboptimal bucketing strategy can result
in more than 10x slowdown, as we show later. Eager and lazy
bucketing implementations use different data structures and
parallelization schemes, making it difficult to combine both
approaches within a single framework.

With the priority-based extension, programmers can switch
between lazy and eager bucket update strategies and com-
bine bucketing optimizations with other optimizations using
the scheduling language. The compiler leverages program
analyses and transformations to generate efficient code for
different optimizations. The separation of algorithm and
schedule also enables us to build an autotuner for Graphlt
that can automatically find high-performance combinations
of optimizations for a given ordered algorithm and graph.

Bucketing incurs high synchronization overheads, slow-
ing down algorithms that spend most of their time on bucket
operations. We introduce a new performance optimization,
bucket fusion, which drastically reduces synchronization
overheads. In an ordered algorithm, a bucket can be pro-
cessed in multiple rounds under a bulk synchronous pro-
cessing execution model. In every round, the current bucket
is emptied and vertices whose priority are updated to the
current bucket’s priority are added to the bucket. The algo-
rithm moves on to the next bucket when no more vertices are
added to the current bucket. The key idea of bucket fusion is
to fuse consecutive rounds that process the same bucket. Using
bucket fusion in Graphlt results in 1.2X-3X speedup on road
networks with large diameters over existing work.

We implement the priority-based model as a language and
compiler extension to Graphlt [52]%, a domain-specific lan-
guage for writing high-performance graph algorithms. With
the extension, Graphlt achieves up to 3X speedup on six
ordered graph algorithms (A-stepping based single-source
shortest paths (SSSP), A-stepping based point-to-point short-
est path (PPSP), weighted BFS (WBFS), A* search, k-core de-
composition, and approximate set cover (SetCover)) over the
fastest state-of-the-art frameworks that support ordered al-
gorithms (Julienne [16] and Galois [35]) and hand-optimized

Zhttps://github.com/Graphlt-DSL/graphit
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Figure 4. A heatmap of slowdowns of three frameworks compared
to the fastest of all frameworks for SSSP, PPSP, k-core, and SetCover.
Lower numbers (green) are better, with a value of 1 being the fastest.
Gray means that an algorithm is not supported. TW and L] are
Twitter, and LiveJournal graphs with random weights between 1
and 1000. RD is the RoadUSA graph with original weights.

implementations (GAPBS [7]). Figure 4 shows that Graphlt

is up to 16.9x and 1.94x faster than Julienne and Galois on

the four selected algorithms and supports more algorithms

than Galois. Using Graphlt also reduces the lines of code

compared to existing frameworks and libraries by up to 4x.
The contributions of this paper are as follows.

e An analysis of the performance tradeoffs between eager
and lazy bucket update optimizations (Sections 3 and 6).

e A novel performance optimization for the eager bucket
update approach, bucket fusion (Sections 3 and 6).

e A new priority-based programming model in Graphlt
that simplifies the programming of ordered graph algo-
rithms and makes it easy to switch between and combine
different optimizations (Section 4).

e Compiler extensions that leverage program analyses, pro-
gram transformations, and code generation to produce
efficient implementations with different combinations of
optimization strategies (Section 5).

e A comprehensive evaluation of Graphlt that shows that it
is up to 3X faster than state-of-the-art graph frameworks
on six ordered graph algorithms (Section 6). Graphlt
also significantly reduces the lines of code compared to
existing frameworks and libraries.

2 Preliminaries

We first define ordered graph processing used throughout
this paper. Each vertex has a priority p,,. Initially, the users
can explicitly initialize priorities of vertices, with the default
priority being a null value, 0. These priorities change dynam-
ically throughout the execution. However, the priorities can
only change monotonically, that is they can only be increased,
or only be decreased. We say that a vertex is finalized if its
priority can no longer be updated. The vertices are processed
and finalized based on the sorted priority ordering. By de-
fault, the ordered execution will stop when all vertices with
non-null priority values are finalized. Alternatively, the user
can define a customized stop condition, for example to halt
once a certain vertex has been finalized.

CGO 20, February 22-26, 2020, San Diego, CA, USA

1 Dist= {oo, ..., 00}

2 procedure SSSP wiTH A-STEPPING(Graph G, A, startV)
3 B = new LazyBucket(Dist, A, startV);

4 Dist[startV] = 0

5 while —empty B do

6 minBucket = B.getMinBucket()

7

8

9

> Length |V | array

buffer = new BucketUpdateBuffer();
parallel for src : minBucket do
for e : G.getOutEdge[src] do

10 Dist[e.dst] = min(Dist[e.dst], Dist[src] + e.weight)
11 buffer.syncAppend(e.dst, | Dist[e.dst]/A |)

12 buffer = buffer.reduceBucketUpdates();

13 B.bulkUpdateBuckets(buffer);

Figure 5. A-stepping for single-source shortest paths (SSSP) with
the lazy bucket update approach.

We define priority coarsening as an optimization to coarsen
the priority value of the vertex to p,, by dividing the original
priority by a coarsening factor A such that p;, = [p,,/A]. The
optimization is inspired by A-stepping for SSSP, and enables
greater parallelism at the cost of losing some algorithmic
work-efficiency. Priority coarsening is used in algorithms
that tolerate some priority inversions, such as A* search,
SSSP, and PPSP, but not in k-core and SetCover.

3 Performance Optimizations for Ordered
Graph Algorithms

We use A-stepping for single-source shortest paths (SSSP)
as a running example to illustrate the performance tradeoffs
between the lazy and eager bucket update approaches, and
to introduce our new bucket fusion optimization.

3.1 Lazy Bucket Update

We first consider using the lazy bucket update approach for
the A-stepping algorithm, with pseudocode shown in Fig-
ure 5. The algorithm constructs a bucketing data structure
in Line 3, which groups the vertices into buckets according
to their priority. It then repeatedly extracts the bucket with
the minimum priority (Line 6), and finishes the computation
once all of the buckets have been processed (Lines 5-13). To
process a bucket, the algorithm iterates over each vertex in
the bucket, and updates the priority of its outgoing neigh-
bor destination vertices by updating the neighbor’s distance
(Line 10). With priority coarsening, the algorithm computes
the new priority by dividing the distance by the coarsening
factor, A. The corresponding bucket update (the vertex and
its updated priority) is added to a buffer with a synchronized
append (Line 11). The syncAppend can be implemented us-
ing atomic operations, or with a prefix sum to avoid atomics.
The buffer is later reduced so that each vertex will only have
one final bucket update (Line 12). Finally, the buckets are
updated in bulk with bulkUpdateBuckets (Line 13).

The lazy bucket update approach can be very efficient
when a vertex changes buckets multiple times within a round.
The lazy approach buffers the bucket updates, and makes
a single insertion to the final bucket. Furthermore, the lazy
approach can be combined with other optimizations such
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1 Dist= {co, ..., 00}
2 procedure SSSP wiTH A-STEPPING(Graph G, A, startV)
B = new ThreadLocalBuckets(Dist, A, startV);
for threadID : threads do
B.append(new LocalBucket());

3
4
5
6 Dist[startV] = 0
7
8
9

> Length |V| array

while —empty B do
minBucket = B.getGlobalMinBucket()
parallel for threadID : threads do

10 for src : minBucket.getVertices(threadID) do

11 for e : G.getOutEdge[src] do

12 Dist[e.dst] = min(Dist[e.dst], Dist[src] + e.weight)
13 B(threadID].updateBucket(e.dst, | Dist[e.dst]/A )

Figure 6. A-stepping for SSSP with the eager bucket update ap-
proach.

as histogram-based reduction on priority updates to fur-
ther reduce runtime overheads. However, the lazy approach
adds additional runtime overhead from maintaining a buffer
(Line 7), and performing reductions on the buffer (Line 12)
at the end of each round. These overheads can incur a sig-
nificant cost in cases where there are only a few updates per
round (e.g., in SSSP on large diameter road networks).

3.2 Eager Bucket Update

Another approach for implementing A-stepping is to use
an eager bucket update approach (shown in Figure 6) that
directly updates the bucket of a vertex when its priority
changes. The algorithm is naturally implemented using thread-
local buckets, which are updated in parallel across different
threads (Line 9). Each thread works on a disjoint subset of
vertices in the current bucket (Line 10). Using thread-local
buckets avoids atomic synchronization overheads on bucket
updates (Lines 3 and 12-13). To extract the next bucket, the al-
gorithm first identifies the smallest priority across all threads
and then has each thread copy over its local bucket of that
priority to a global minBucket (Line 8). If a thread does not
have a local bucket of the next smallest priority, then it will
skip the copying process. Copying local buckets into a global
bucket helps redistribute the work among threads for better
load balancing.

Compared to the lazy bucket update approach, the eager
approach saves instructions and one global synchronization
needed for reducing bucket updates in the buffer (Figure 5,
Line 12). However, it potentially needs to perform multiple
bucket updates per vertex in each round.

3.3 Eager Bucket Fusion Optimization

A major challenge in bucketing is that a large number of
buckets need to be processed, resulting in thousands or even
tens of thousands of processing rounds. Since each round
requires at least one global synchronization, reducing the
number of rounds while maintaining priority ordering can
significantly reduce synchronization overhead.

Often in practice, many consecutive rounds process a
bucket of the same priority. For example, in A-stepping, the
priorities of vertices that are higher than the current priority
can be lowered by edge relaxations to the current priority
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1 Dist= {oo, ..., 00}
2 procedure SSSP wiTH A-STEPPING(Graph G, A, startV)
B = new ThreadLocalBuckets(Dist, A, startV);
for threadID : threads do
B.append(new LocalBucket());

3
4
5
6 Dist[startV] = 0
7
8
9

> Length |V | array

while —empty B do
minBucket = B.getMinBucket()
parallel for threadID : threads do

10 for src : minBucket.getVertices(threadID) do

11 for e : G.getOutEdge[src] do

12 Dist[e.dst] = min(Dist[e.dst], Dist[src] + e.weight)

13 B(threadID].updateBucket(e.dst, | Dist[e.dst]/A])

14 while B[threadID].currentLocalBucket() is not empty do

15 currentLocalBucket = B[threadID].currentLocalBucket()

16 if currentLocalBucket.size() < threshold then

17 for src : currentLocalBucket do

18 for e : G.getOutEdge[src] do

19 Dist[e.dst] = min(Dist[e.dst], Dist[src] + e.weight)
20 B(threadID].updateBucket(e.dst, | Dist[e.dst]/A])
21 else break

Figure 7. A-stepping for single-source shortest paths with the eager
bucket update approach and the bucket fusion optimization.

in a single round. As a result, the same priority bucket may
be processed again in the next round. The process repeats
until no new vertices are added to the current bucket. This
pattern is common in ordered graph algorithms that use
priority coarsening. We observe that rounds processing the
same bucket can be fused without violating priority ordering.

Based on this observation, we propose a novel bucket fu-
sion optimization for the eager bucket update approach that
allows a thread to execute the next round processing the cur-
rent bucket without synchronizing with other threads. We
illustrate bucket fusion using the A-stepping algorithm in
Figure 7. The same optimization can be applied in other appli-
cations, such as wBFS, A* search and point-to-point shortest
path. This algorithm extends the eager bucket update algo-
rithm (Figure 6) by adding a while loop inside each local
thread (Figure 7, Line 14). The while loop executes if the cur-
rent local bucket is non-empty. If the current local bucket’s
size is below a certain threshold, the algorithm immediately
processes the current bucket without synchronizing with
other threads (Figure 7, Line 16). If the current local bucket
is large, it will be copied over to the global bucket and dis-
tributed across other threads. The threshold is important
to avoid creating straggler threads that process too many
vertices, leading to load imbalance. The bucket processing
logic in the while loop (Figure 7, Lines 17-20) is the same
as the original processing logic (Figure 7, Lines 10-13). This
optimization is hard to apply for the lazy approach since a
global synchronization is needed before bucket updates.

Bucket fusion is particularly useful for road networks
where multiple rounds frequently process the same bucket.
For example, bucket fusion reduces the number of rounds by
more than 30X for SSSP on the RoadUSA graph, leading to
more than 3X speedup by significantly reducing the amount
of global synchronization (details in Section 6).
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Table 1. Algorithm language extensions in Graphlt.

Edgeset Apply Operator Return Description
Type
applyUpdatePriority(func f) none Applies f(src, dst) to every edge. The f function updates priorities of vertices.

Priority Queue Operators

new priority_queue(
bool allow_priority coarsening,
string priority_direction,
vector priority_vector,
Vertex optional_start_vertex)

priority_queue

The constructor for the priority queue. It specifies whether priority coarsen-
ing is allowed or not, higher or lower priority gets executed first, the vector
that is used to compute the priority values, and an optional start vertex.
A lower_first priority direction specifies that lower priority values are
executed first, whereas a higher_first indicates higher priority values are
executed first.

pq.dequeueReadySet () vertexset Returns a bucket with all the vertices that are currently ready to be pro-
cessed.

pg.finished() bool Checks if there is any bucket left to process.

pg.finishedVertex(Vertex v) bool Checks if a vertex’s priority is finalized (finished processing).

pg.getCurrentPriority() priority_type  Returns the priority of the current bucket.

pg.updatePriorityMin(Vertex v, ValT new_val) void Decreases the value of the priority of the specified vertex v to the new_val.

pg.updatePriorityMax(Vertex v, ValT new_val) void Increases the value of the priority of the specified vertex v to the new_val.

pg.updatePrioritySum(Vertex v, ValT sum_diff, void Adds sum_diff to the priority of the Vertex v. The user can specify an optional

ValType min_threshold)

minimum threshold so that the priority will not go below the threshold.

4 Programming Model

The new priority-based extension follows the design of Graphlt
and separates the algorithm specification from the perfor-
mance optimizations, similar to Halide [38] and Tiramisu [6].
The user writes a high-level algorithm using the algorithm
language and specifies optimization strategies using the
scheduling language. The extension introduces a set of priority-
based data structures and operators to Graphlt to maintain
execution order in the algorithm language and adds support
for bucketing optimizations in the scheduling language.

4.1 Algorithm Language

The algorithm language exposes opportunities for eager
bucket update, eager update with bucket fusion, lazy bucket
update, and other optimizations. The high-level operators
hide low-level implementation details such as atomic syn-
chronization, deduplication, bucket updates, and priority
coarsening. The algorithm language shares the vertex and
edge sets, and operators that apply user-defined functions
on the sets with the Graphlt algorithm language.

The new priority-based extension proposes high-level pri-
ority queue-based abstractions to switch between thread-
local and global buckets. The extension to Graphlt also in-
troduces priority update operators to hide the bucket update
mechanisms, and provides a new edgeset apply operator,
applyUpdatePriority. The priority-based data structures and
operators are shown in Table 1.

Figure 3 shows an example of A-stepping for SSSP. Graphlt
works on vertex and edge sets. The algorithm specification
first sets up the edgeset data structures (Lines 1-3), and sets
the distances to all the vertices in dist to INT_MAX to rep-
resent oo (Line 4). It declares the global priority queue, pg, on
Line 5. This priority queue can be referenced in user-defined
functions and the main function. The user then defines a
function, updateEdge, that processes each edge (Lines 7-10).

In updateEdge, the user computes a new distance value, and
then updates the priority of the destination vertex using the
updatePriorityMin operator defined in Table 1. In other algo-
rithms, such as k-core, the user can use updatePrioritySum
when the priority is decremented or incremented by a given
value. The updatePrioritySum can detect if the change to the
priority is a constant, and use this fact to perform more opti-
mizations. The priority update operators, updatePriorityMin
and updatePrioritySum, hide bucket update operations, al-
lowing the compiler to generate different code for lazy and
eager bucket update strategies.

Programmers use the constructor of the priority queue
(Lines 15-16) to specify algorithmic information, such as the
priority ordering, support for priority coarsening, and the
direction that priorities change (documented in Table 1). The
abstract priority queue hides low-level bucket implementa-
tion details and provides a mapping between vertex data
and their priorities. The user specifies a priority_vector
that stores the vertex data values used for computing pri-
orities. In SSSP, we use the dist vector and the coarsening
parameter (A specified using the scheduling language) to
perform priority coarsening. The while loop (Line 17) pro-
cesses vertices from a bucket until all buckets are finished
processing. In each iteration of the while loop, a new bucket
is extracted with dequeueReadySet (Line 18). The edgeset op-
erator on Line 19 uses the from operator to keep only the
edges that come out of the vertices in the bucket. Then it
uses applyUpdatePriority to apply the updateEdge function
to outgoing edges of the bucket. Label (#s1#) is later used by
the scheduling language to configure optimization strategies.

4.2 Scheduling Language

The scheduling language allows users to specify different
optimization strategies without changing the algorithm. We
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Table 2. Scheduling functions for applyUpdatePriority operators. Default options are in bold.

Apply Scheduling Functions Descriptions

configApplyPriorityUpdate(label,config);

Config options: eager_with_fusion, eager_no_fusion, lazy_constant_sum, and lazy.

configApplyPriorityUpdateDelta(label,config);

Configures the A parameter for coarsening the priority range.

configBucketFusionThreshold(label, config);

Configures the threshold for the bucket fusion optimization.

configNumBuckets(label,config);

Configures the number of buckets that are materialized for the lazy bucket update approach.

17 0oo
18 while (pqg.finished() == false)

19 var bucket : vertexsubset = pq.dequeueReadySet();

20 #s1# edges.from(bucket) .applyUpdatePriority(updateEdge);
21 delete bucket;

22 end

25 schedule:

26 program->configApplyPriorityUpdate("s1", "lazy")
27 —->configApplyPriorityUpdateDelta("s1", "4")
28 ->configApplyDirection("s1", "SparsePush")

29 ->configApplyParallelization("s1","dynamic-vertex-parallel");

Figure 8. Graphlt scheduling specification for A-stepping.

extend the scheduling language of Graphlt with new com-
mands to enable switching between eager and lazy bucket
update strategies. Users can also tune other parameters, such
as the coarsening factor for priority coarsening. The sched-
uling API extensions are shown in Table 2.

Figure 8 shows a set of schedules for A-stepping. Graphlt
uses labels (#1abel#) to identify the algorithm language state-
ments for which the scheduling language commands are
applied. The programmer adds the label s1 to the edge-
set applyUpdatePriority statement. After the schedule key-
word, the programmer calls the scheduling functions. The
configApplyPriorityUpdate function allows the program-
mer to use the lazy bucket update optimization. The program-
mer can use the original Graphlt scheduling language to con-
figure the direction of edge traversal (configApplyDirection)
and the load balance strategies (configApplyParallelization).
Direction optimizations can be combined with lazy priority
update schedules. configApplyUpdateDelta is used to set the
delta for priority coarsening.

Users can change the schedules to generate code with dif-
ferent combinations of optimizations as shown in Figure 9.
Figure 9(a) shows code generated by combining the lazy
bucket update strategy and other edge traversal optimiza-
tions from the Graphlt scheduling language. The scheduling
function configApplyDirection configures the data layout of
the frontier and direction of the edge traversal (SparsePush
means sparse frontier and push direction). Figure 9(b) shows
the code generated when we combine a different traversal
direction (DensePull) with the lazy bucketing strategy. Fig-
ure 9(c) shows code generated with the eager bucket update
strategy. Code generation is explained in Section 5.

5 Compiler Implementation

We demonstrate how the compiler generates code for dif-
ferent bucketing optimizations. The key challenges are in
how to insert low-level synchronization and deduplication
instructions, and how to combine bucket optimizations with

direction optimization and other optimizations in the origi-
nal Graphlt scheduling language. Furthermore, the compiler
has to perform global program transformations and code
generation to switch between lazy and eager approaches.

5.1 Lazy Bucket Update Schedules

To support the lazy bucket update approach, the compiler
applies program analyses and transformations on the user-
defined functions (UDFs). The compiler uses dependence
analysis on updatePriorityMin and updatePrioritySum to de-
termine if there are write-write conflicts and insert atomics
instructions as necessary (Figure 9(a) Line 20). Additionally,
the compiler needs to insert variables to track whether a
vertex’s priority has been updated or not (tracking_var in
Figure 9(a), Line 18). This variable is used in the generated
code to determine which vertices should be added to the
buffer outEdges (Figure 9(a), Line 21). Deduplication is en-
abled with a compare-and-swap (CAS) on deduplication flags
(Line 21) to ensure that each vertex is inserted into the out-
Edges only once. Deduplication is required for correctness
for applications such as k-core. Changing the schedules with
different traversal directions or frontier layout affects the
code generation for edge traversal and user-defined func-
tions (Figure 9(b)). In the DensePull traversal direction, no
atomics are needed for the destination nodes.

We built runtime libraries to manage the buffer and up-
date buckets. The compiler generates appropriate calls to the
library (getNextBucket, setupFrontier, and updateBuckets).
The setupFrontier API (Figure 9(a), Line 24) performs a pre-
fix sum on the outEdges buffer to compute the next frontier.
We use a lazy priority queue (declared in Figure 9(a), Line 2)
for storing active vertices based on their priorities. The lazy
bucketing is based on Julienne’s bucket data structures that
only materialize a few buckets, and keep vertices outside of
the current range in an overflow bucket [16]. We improve its
performance by redesigning the lazy priority queue interface.
Julienne’s original interface invokes a lambda function call
to compute the priority. The new priority-based extension
computes the priorities using a priority vector and A value
for priority coarsening, eliminating extra function calls.
Lazy with constant sum reduction. We also incorporated
a specialized histogram-based reduction optimization (first
proposed in Julienne [16]) to reduce priority updates with a
constant value each time. This optimization can be combined
with the lazy bucket update strategy to improve performance.
For k-core, since the priorities for each vertex always reduce
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int * dist = new intfnum_verts];
LazyPriorityQueue* pq;

int delta = 4;

WGraph* G = loadGraph(argv[1]);

//simplified snippets of the generated main function

dist[start_vertex] = 0;

pq = new LazyPriorityQueue(true, “lower”, dist, delta);
10| while (pq.finished(){

11| VertexSubset * frontier = getNextBucket(pq);

12| uint* outEdges = setupOutputBuffer(g, frontier);

13| uint* offsets = setupOutputBufferOffsets(g, frontier);
14| parallel_for (uint s : frontier.vert_array) {

O©CoO~NOOOA~WN =

int * dist = new int[num_verts];
LazyPriorityQueue* pqg;

int delta = 4;

WGraph* G = loadGraph(argv[1]);

//simplified snippets of the generated main function

dist[start_vertex] = 0;
pq = new LazyPriorityQueue(true, “lower”, dist, delta);
10| while (pg.finished(){

11] VertexSubset * frontier = getNextBucket(pq);

12| bool * next = newA(bool, g.num_nodes());

13| parallel_for (uint i = 0; i < numNodes; i++)
14| parallel_for (uint d=0; d < numNodes; d++

©COONOOU A~ WN =

next[i] = 0;
){
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int * dist = new intfnum_verts];
EagerPriorityQueue* pq;

int delta = 4;

WGraph* G = loadGraph(argv[1]);

//simplified snippets of the generated main function

dist[start_vertex] = 0;

frontier[0] = start_vertex;

10| pq = new EagerPriorityQueue(true, “lower”, dist, delta);
11 | uint* frontier = new uint[G.num_edges()];

12 | #pragma omp parallel

13|{ vector<vector<uint> > local_bins(0);

14| while (pqg.finished() {

CoONOOU A~ WN =

15| intj=0; 15| for(WNode s : G.getinNgh(d)){ 15 #pragma omp for nowait schedule(dynamic, 64)

16| uint offset = offsets]i; 16 if (frontier->bool_map_[s.v] ) { 16 for (size_t i = 0; i < frontier.size(); i++) {

17|  for(WNode d : G.getOutNgh(s)){ 17 bool tracking_var = false; 17 uint s = frontier{i];

18| bool tracking_var = false; 18 int new_dist = dist[s.v] + s.weight; 18 for (WNode d : G.getOutNgh(s)) {

19 int new_dist = dist[s.v] + d.weight; 19 If (new_dist < dist[d]){ 19 int new_dist = dist[s] + d.weight;

20 tracking_var = atomicWriteMin(&dist[d.v], new_dist); | 20 dist[d] = new_dist; 20 bool changed = atomicWriteMin(&dist[d.v],new_dist);

21 If (tracking_var && CAS(dedup_flags[d.v],0,1)){ 21 tracking_var = true;} 21 if (changed == false) {break;}}

22 outEdgesloffset + j] = d.v; 22 if (tracking_var ) {next[d] = 1;} 22 if (changed) {

23 } else { outEdges|offset + j] = UINT_MAX; } 23 23 size_t dest_bin = new_dist/delta;

241 24| VertexSubset* nextFrontier = setupFrontier(next); 24 if (dest_bin >= local_bins.size() {

25 1 25| updateBuckets(nextFrontier, pq, delta); 25 local_bins.resize(dest_bin+1);}

26| \VertexSubset* nextFrontier = setupFrontier(outEdges); | 26| ... 26 local_bins[dest_bin].push_back(d.v);

27| updateBuckets(nextFrontier, pq, delta); 27|} 27 WY/ end of for frontier for loop

28| ... 28 28 ... //omitted:find next bucket

29(} 29l 29| #pragma omp barrier

30| ... 30| ...//omitted:copy local buckets to global bucket
31| #pragma omp barrier } // end of parallel region

() Lazy Bucket Update with Parallel SparsePush Traversal (o) | a7, Bucket Update with Parallel DensePull Traversal 32|

program->configApplyPriorityUpdate(“s1”, “lazy”)
->configApplyPriorityUpdateDelta(“s1”, 4)
->configApplyDirection(“s1“, SparsePush”)
->configApplyParallelization(“s1”, “dynamic-vertex-parallel”);

program->configApplyPriorityUpdate(“s1”, “lazy”)
->configApplyPriorityUpdateDelta(“s1”, 4)
->configApplyDirection(“s1*, DensePull”)
->configApplyParallelization(“s1”, “dynamic-vertex-parallel”); ->configApplyDirection(“s1*, SparsePush”)

(c) Eager Bucket Update with Parallel SparsePush Traversal
program->configApplyPriorityUpdate(“s1”, “eager”)
->configApplyPriorityUpdateDelta(“s1”, 4)

->configApplyParallelization(“s1”, “dynamic-vertex-parallel”);

Figure 9. Simplified generated C++ code for A-stepping for SSSP with different schedules. Changes in schedules for (b) and (c) compared to
(a) are highlighted in blue. Changes in the generated code are highlighted in purple background. parallel_for is translated to cilk_for or
#pragma omp parallel for. Struct WNode has two fields, v and weight. v stores the vertex ID and weight stores the edge weight.

1 func apply_f(src: Vertex, dst: Vertex)

2 var k: int = pg.get_current_priority();
3 pg.updatePrioritySum(dst, -1, k);

4 end

1 apply_f_transformed = [&] (uint vertex, uint count) {
2 int k = pg->get_current_priority();
3 int priority = pg->priority_vector[vertex];
4 if (priority > k) {
5 uint __new_pri = std::max(priority + (-1) * count, k);
6 pg->priority_vector[vertex] = __new_pri;
7 return wrap(vertex, pg->get_bucket(__new_pri));}}
Figure 10. The original (top) and transformed (bottom) user-

defined function for k-core using lazy with constant sum reduction.

by one at each update, we can optimize it further by keep-
ing track of only the number of updates with a histogram.
This way, we avoid contention on vertices that have a large
number of neighbors on the frontier.

To generate code for the histogram optimization, the com-
piler first analyzes the user-defined function to determine
whether the change to the priority of the vertex is a fixed
value and if it is a sum reduction (Figure 10 (top), Line 3).
The compiler ensures that there is only one priority update
operator in the user-defined function. It then extracts the
fixed value (-1), the minimum priority (k), and vertex identi-
fier (dst). In the transformed function (Figure 10 (bottom)),
an if statement and max operator are generated to check and
maintain the priority of the vertex. The applyUpdatePriority
operator gets the counts of updates to each vertex using a
histogram approach and supplies the vertex and count as
arguments to the transformed function (Figure 10 (bottom),
Line 1). The compiler copies all of the expressions used in

the priority update operator and the expressions that they
depend on in the transformed function.

5.2 Eager Bucket Update Schedules

The compiler uses program analysis to determine feasibility
of the transformation, transforms user-defined functions and
edge traversal code, and uses optimized runtime libraries to
generate efficient code for the eager bucket update approach.
The compiler analyzes the while loop (Figure 3, Lines 17—
21) to look for the pattern of an iterative priority update with
a termination criterion. The analysis checks that there is no
other use of the generated vertexset (bucket) except for the
applyUpdatePriority operator, ensuring correctness.
Once the analysis identifies the while loop and edge tra-
versal operator, the compiler replaces the while loop with an
ordered processing operator. The ordered processing opera-
tor uses an OpenMP parallel region (Figure 9(c), Lines 12-32)
to set up thread-local data structures, such as local_bins.
We built an optimized runtime library for the ordered pro-
cessing operator based on the A-stepping implementation
in GAPBS [7]. A global vertex frontier (Figure 9(c), Line 11)
keeps track of vertices of the next priority (the next bucket).
In each iteration of the while loop, the #pragma omp for
(Figure 9(c), Lines 15-16) distributes work among the threads.
After priorities and buckets are updated, each local thread
proposes its next bucket priority, and the smallest priority
across threads will be selected (omitted code on Figure 9(c),
Line 28). Once the next bucket priority is decided, each thread
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Table 3. Graphs used for experiments. The number of edges are
directed edges. Graphs are symmetrized for k-core and SetCover.

Type Dataset Num. Num. Symmetric
Verts Edges Num.Edges
Social Orkut (OK) [49] 3M 234 M 234 M
Graphs LiveJournal (L]) [14] 5M 69 M 85M
Twitter (TW) [27] 4aM 1469 M | 2405 M
Friendster (FT) [49] 125 M 3612M | 3612M
Web WebGraph (WB) [31] 101 M 2043 M 3880 M
Graph
Road Massachusetts (MA) [1] | 0.45M 1.2M 1.2M
Graphs Germany (GE) [1] 12M 32M 32M
RoadUSA (RD) [15] 24M 58 M 58 M

will copy vertices in its next local bucket to the global frontier
(Figure 9(c), Line 30)

Finally, the compiler transforms the user-defined functions
by appending the local buckets to the argument list and
inserting appropriate synchronization instructions. These
transformations allow priority update operators to directly
update thread-local buckets (Figure 9(c), Lines 23-26).
Bucket Fusion. The bucket fusion optimization adds an-
other while loop after end of the for-loop on Line 27 of Fig-
ure 9(c), and before finding the next bucket across threads on
Line 28. This inner while loop processes the current bucket in
the local priority queue (local_bins) if it is not empty and its
size is less than a threshold. In the inner while loop, vertices
are processed using the same transformed user-defined func-
tions as before. The size threshold improves load balancing,
as large buckets are distributed across different threads.

5.3 Autotuning

We built an autotuner on top of the extension to automati-
cally find high-performance schedules for a given algorithm
and graph. The autotuner is built using OpenTuner [5] and
stochastically searches through a large number of optimiza-
tion strategies generated with the scheduling language. It
uses an ensemble of search methods, such as the area under
curve bandit meta technique, to find good combinations of
optimizations within a reasonable amount of time.

6 Evaluation

We compare the performance of the new priority-based ex-
tension in Graphlt to state-of-the-art frameworks and ana-
lyze performance tradeoffs among different Graphlt sched-
ules. We use a dual-socket system with Intel Xeon E5-2695
v3 CPUs with 12 cores each for a total of 24 cores and 48
hyper-threads. The system has 128 GB of DDR3-1600 mem-
ory and 30 MB last level cache on each socket and runs with
Transparent Huge Pages (THP) enabled and Ubuntu 18.04.

Data Sets. Table 3 shows our input graphs and their sizes.
For k-core and SetCover, we symmetrize the input graphs.
For A-stepping based SSSP, wBFS, PPSP using A-stepping,
and A* search, we use the original directed versions of graphs
with integer edge weights. The RoadUSA (RD), Germany(GE)
and Massachusetts (MA) road graphs are used for the A*
search algorithm, as they have the longitude and latitude
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data for each vertex. GE and MA are constructed from data
downloaded from OpenStreetMap [1]. Weight distributions
used for experiments are described in the caption of Table 4.
Existing Frameworks. Galois v4 [35] uses approximate pri-
ority ordering with an ordered list abstraction for SSSP. We
implemented PPSP and A* search using the ordered list. To
the best of our knowledge and from communications with
the developers, strict priority-based ordering is currently
not supported for Galois. Galois does not provide implemen-
tations of wBFS, k-core and SetCover, which require strict
priority ordering. GAPBS [7] is a suite of C++ implemen-
tations of graph algorithms and uses eager bucket update
for SSSP. GAPBS does not provide implementations of k-
core and SetCover. We used Julienne [16] from early 2019.
The developers of Julienne have since incorporated the opti-
mized bucketing interface proposed in this paper in the latest
version. Graphlt [52] and Ligra [40] are two of the fastest un-
ordered graph frameworks. We used the best configurations
(e.g., priority coarsening factor A and the number of cores)
for the comparison frameworks. Schedules and parameters
used are in the artifact.

6.1 Applications

We evaluate the extension to Graphlt on SSSP with A-stepping,
weighted breadth-first search (wBFS), point-to-point short-
est path (PPSP), A* search, k-core decomposition (k-core),
and approximate set cover (SetCover).

SSSP and Weighted Breadth-First Search (wBFS). SSSP
with A-stepping solves the single-source shortest path prob-
lem as shown in Figure 5. In A-stepping, vertices are parti-
tioned into buckets with interval A according to their cur-
rent shortest distance. In each iteration, the smallest non-
empty bucket i which contains all vertices with distance
in [iA, (i + 1)A) is processed. wBFS is a special case of A-
stepping for graphs with positive integer edge weights, with
delta fixed to 1 [16]. We benchmarked wBFS on only the
social networks and web graphs with weights in the range
[1,1log n), following the convention in previous work [16].
Point-to-point Shortest Path (PPSP). Point-to-point short-
est path (PPSP) takes a graph G(V, E, w(E)), a source vertex
s € V, and a destination vertex d € V as inputs and computes
the shortest path between s and d. In our PPSP application,
we used the A-stepping algorithm with priority coarsening.
It terminates the program early when it enters iteration i
where iA is greater than or equal to the shortest distance
between s and d it has already found.

A* Search. The A* search algorithm finds the shortest path
between two points. The difference between A* search and A-
stepping is that, instead of using the current shortest distance
to a vertex as priority, A* search uses the estimated distance
of the shortest path that goes from the source to the target
vertex that passes through the current vertex as the priority.
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Table 4. Running time (seconds) of Graphlt with the priority-based extension and state-of-the-art frameworks. Graphlt, GAPBS, Galois,
and Julienne use ordered algorithms. Graphlt with no extension (unordered) and Ligra use unordered Bellman-Ford for SSSP, PPSP, wBFS,
and A* search, and unordered k-core. The fastest results are in bold. Graphs marked with 1 have weight distribution of [1, log n). Road
networks come with original weights. Other graphs have weight distribution between [1, 1000). — represents an algorithm not implemented
in a framework and x represents a run that did not finish due to timeout or out-of-memory error.

Algorithm SSSP PPSP wBES

Graph IJ OK TW FIT WB GE RD |IJ OK TW FT WB GE RD |IJ} OK Tw' FTT WB'
Graphlt with extension (ordered)[0.093 0.106 3.094 5.637 2.902 0.207 0.224 |0.043 0.061 2.597 4.063 2.473 0.049 0.045 |0.072 0.104 1.822 7.563 2.129
GAPBS 0.1 0.107 3547 6.094 3304 059 0765 [0.042 0.063 2707 4312 2.628 0.116 0.112 |[0.072 0.107 1.903 7.879 2.228
Galois 0.123 0.234 293 7996 3.005 0.244 0.276 [0.084 0.165 2.625 7.092 2.606 0.059 0.051 | - - - - -
Julienne 0.169 0334 4522  x 411 3.104 3.685 [0.104 0.16 4904 x 4107 1.836 0.687 |0.148 0.145 232 x 2813
“Graphlt (unordered) ~ ~ ]| 0.221 0.479 6.376 38.458 8521 90.524 122:374|0.221 0.479 6.376 38.458 8.521 90.524 122374| 0.12 0.198 2.519 21.77 3.659
Ligra (unordered) 0301 0.604 7.778  x X 94162 129.2 [0.301 0.604 7.778  x X 94162 1292 |0.164 0.257 3.054 x X
Algorithm k-core Approximate Set Cover A* search

Graph IJ] OK TW FI WB GE RD |IJ OK TW FI WB GE RD |MA GE RD

Graphlt with extension (ordered)|0.745 1.634 10.294 14.423 12.876 0.173 0.305 |0.494 0.564 5.299 11.499 7.57 0.545 0.859 [0.010 0.060 0.075

GAPBS - - - - - - - - - - - - - - 1003 0142 0.221

Galois - - - - - - - - - - - - - - 10078 0.066 0.083

Julienne 0752 162 105 146 131 0.184 0327 [0.703 0.868 6.89 13.2 107 0.66 1.03 [0.181 1551 4.876

“Graphlt (unordered) ~ ~ ~ ]| 6.131 8152 x 325286 x 0421 1757 | - - -~ = T T T =7 72 7|0456 90524 122374 ~
Ligra (unordered) 599 8.09 225102 324 x 0708 176 | - - - - - - - |0.832 94.162 129.2

Our A* search implementation is based on a related work [2]
and needs the longitude and latitude of the vertices.
k-core. A k-core of an undirected graph G(V, E) refers to
a maximal connected sub-graph of G where all vertices in
the sub-graph have induced-degree at least k. The k-core
problem takes an undirected graph G(V,E) as input and
for each u € V computes the maximum k-core that u is
contained in (this value is referred to as the coreness of the
vertex) using a peeling procedure [29].

Approximate Set Cover. The set cover problem takes as
input a universe U containing a set of ground elements, a
collection of sets F s.t. Ufg}'f = U, and a cost function
¢ : ¥ — R,. The problem is to find the cheapest collection
of sets A C F that covers U, i.e. Use ga = U. In this paper,
we implement the unweighted version of the problem, where
¢ : ¥ — 1, but the algorithm used easily generalizes to the
weighted case [16]. The algorithm at a high-level works by
bucketing the sets based on their cost per element, i.e., the
ratio of the number of uncovered elements they cover to
their cost. At each step, a nearly-independent subset of sets
from the highest bucket (sets with the best cost per element)
are chosen, removed, and the remaining sets are reinserted
into a bucket corresponding to their new cost per element.
We refer to the following papers by Blelloch et al. [10, 11]
for algorithmic details and a survey of related work.

6.2 Comparisons with other Frameworks

Table 4 shows the execution times of Graphlt with the new
priority-based extension and other frameworks. Graphlt out-
performs the next fastest of Julienne, Galois, GAPBS, Graphlt,
and Ligra by up to 3% and is no more than 6% slower than the
fastest. Graphlt is up to 16.8X% faster than Julienne, 7.8% faster
than Galois, and 3.5x faster than hand-optimized GAPBS.
Compared to unordered frameworks, Graphlt without the
priority-based extension (unordered) and Ligra, Graphlt with
the extension achieves speedups between 1.67X to more than

600% due to improved algorithm efficiency. The times for
SSSP and wBES are averaged over 10 starting vertices. The
times for PPSP and A* search are averaged over 10 source-
destination pairs. We chose start and end points to have a
balanced selection of different distances.

Graphlt with the priority extension has the fastest SSSP
performance on six out of the seven input graphs. Julienne
uses significantly more instruction than Graphlt (up to 16.4x
instructions than Graphlt). On every iteration, Julienne com-
putes an out-degree sum for the vertices on the frontier to
use the direction optimization, which adds significant run-
time overhead. Graphlt avoids this overhead by disabling
the direction optimization with the scheduling language.
Julienne also uses lazy bucket update that generates extra
instructions to buffer the bucket updates whereas Graphlt
saves instructions by using eager bucket update. Graphlt is
faster than GAPBS because of the bucket fusion optimization
that allows Graphlt to process more vertices in each round
and use fewer rounds (details are shown in Table 6). The
optimization is especially effective for road networks, where
synchronization overhead is a significant performance bot-
tleneck. Galois achieves good performances on SSSP because
it does not have as much overhead from global synchroniza-
tion needed to enforce strict priority. However, it is slower
than Graphlt on most graphs because approximate priority
ordering sacrifices some work-efficiency.

Graphlt with the priority extension is the fastest on most
of the graphs for PPSP, wBFS, and A* search, which use a
variant of the A-stepping algorithm with priority coarsening.
Both Graphlt and GAPBS use eager bucket update for these
algorithms. Graphlt outperforms GAPBS because of bucket
fusion. Galois is often slower than Graphlt due to lower work-
efficiency with the approximate priority ordering. Julienne
uses lazy bucket update and is slower than Graphlt due to
the runtime overheads of the lazy approach.

PPSP and A* search are faster than SSSP as they only
run until the distance to the destination vertex is finalized.
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Table 5. Line counts of SSSP, PPSP, A* search, k-core, and SetCover
for Graphlt, GAPBS, Galois, and Julienne. The missing numbers
correspond to a framework not providing an algorithm.

Graphlt with | GAPBS | Galois | Julienne
extension
SSSp 28 77 90 65
PPSP 24 80 99 103
A* 74 105 139 84
KCore 24 - - 35
SetCover | 70 - - 72

A* search is sometimes slower than PPSP because of addi-
tional random memory accesses and computation needed
for estimating distances to the destination.

For k-core and SetCover, the extended Graphlt runs faster
than Julienne because the optimized lazy bucketing interface
uses the priority vector to compute the priorities of each
vertex. Julienne uses a user-defined function to compute the
priority every time, resulting in function call overheads and
redundant computations. Galois does not provide ordered
algorithms for k-core and SetCover, which require strict
priority and synchronizations after processing each priority.
Delta Selection for Priority Coarsening. The best A value
for each algorithm depends on the size and the structure of
the graph. The best A values for social networks (ranging
from 1 to 100) are much smaller than deltas for road net-
works with large diameters (ranging from 2'* to 2!7). Social
networks need only a small A value because they have ample
parallelism with large frontiers and work-efficiency is more
important. Road networks need larger A values for more
parallelism. We also tuned the A values for the comparison
frameworks to provide the best performance.

Autotuning. The autotuner for Graphlt is able to automati-
cally find schedules that performed within 5% of the hand-
tuned schedules used for Table 4. For most graphs, the au-
totuner can find a high-performance schedule within 300s
after trying 30-40 schedules (including tuning integer param-
eters) in a large space of about 10° schedules. The autotuning
process finished within 5000 seconds for the largest graphs.
Users can specify a time limit to reduce autotuning time.
Line Count Comparisons. Table 5 shows the line counts of
the five graph algorithms implemented in four frameworks.
GAPBS, Galois, and Julienne all require the programmer to
take care of implementation details such as atomic synchro-
nization and deduplication. Graphlt uses the compiler to
automatically generate these instructions. For A* search and
SetCover, Graphlt needs to use long extern functions that
significantly increases the line counts.

6.3 Scalability Analysis

We analyze the scalability of different frameworks in Fig-
ure 11 for SSSP on social and road networks. The social
networks (TW and FT) have very small diameters and large
numbers of vertices. As a result, they have a lot of parallelism
in each bucket, and all three frameworks scale reasonably
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Figure 11. Scalability of different frameworks on SSSP.

Table 6. Running times and number of rounds reductions with the
bucket fusion optimization on SSSP using A-stepping.

Datasets with Fusion without Fusion

™ 3.09s [1025 rounds]  3.55s [1489 rounds]
FT 5.64s [5604 rounds]  6.09s [7281 rounds]
WB 2.90s [772 rounds] 3.30s [2248 rounds]
RD 0.22s [1069 rounds]  0.77s [48407 rounds]

Table 7. Performance Impact of Eager and Lazy Bucket Updates.
Lazy update for k-core uses constant sum reduction optimization.

k-core SSSP with A-stepping
Datasets | Eager Update Lazy Update | Eager Update Lazy Update
LJ 0.84 0.75 0.093 0.24
™ 44.43 10.29 3.09 6.66
FT 46.59 14.42 5.64 10.34
WB 35.58 12.88 2.90 7.82
RD 0.55 0.31 0.22 9.48

well (Figure 11(a) and (b)). Compared to GAPBS, Graphlt
uses bucket fusion to significantly reduce synchronization
overheads and improves parallelism on the RoadUSA net-
work (Figure 11(c)). GAPBS suffers from NUMA accesses
when going beyond a single socket (12 cores). Julienne’s
overheads from lazy bucket updates make it hard to scale on
the RoadUSA graph.

6.4 Performance of Different Schedules

Table 6 shows that SSSP with bucket fusion achieves up to
3.4x speedup over the version without bucket fusion on
road networks, where there are a large number of rounds
processing each bucket. Table 6 shows that the optimization
improves running time by significantly reducing the number
of rounds needed to complete the algorithm.

Table 7 shows the performance impact of eager versus
lazy bucket updates on k-core and SSSP. k-core does a large
number of redundant updates on the priority of each vertex.
Every vertex’s priority will be updated the same number of
times as its out-degree. In this case, using the lazy bucket
update approach drastically reduces the number of bucket
insertions. Additionally, with a lazy approach, we can also
buffer the priority updates and later reduce them with a
histogram approach (lazy with constant sum reduction opti-
mization). This histogram-based reduction avoids overhead
from atomic operations. For SSSP there are not many redun-
dant updates and the lazy approach introduces significant
runtime overhead over the eager approach.
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7 Related Work

Parallel Graph Processing Frameworks. There has been
a significant amount of work on unordered graph process-
ing frameworks (e.g., [12, 17-20, 28, 30, 33, 34, 36, 37, 39—
41, 43, 44, 46-48, 51-53], among many others). These frame-
works do not have data structures and operators to support
efficient implementations of ordered algorithms, and can-
not support a wide selection of ordered graph algorithms.
A few unordered frameworks [30, 43, 47] have the users de-
fine functions that filter out vertices to support A-stepping
for SSSP. This approach is not very efficient and does not
generalize to other ordered algorithms. Wonderland [50]
uses abstraction-guided priority-based scheduling to reduce
the total number of iterations for some graph algorithms.
However, it requires preprocessing and does not implement
a strict ordering of the ordered graph algorithms. PnP [48]
proposes direction-based optimizations for point-to-point
queries, which is orthogonal to the optimizations in this pa-
per, and can be combined together to potentially achieve
even better performance. Graphlt [52] decouples the algo-
rithm from optimizations for unordered graph algorithms.
This paper introduces new priority-based operators to the
algorithm language, proposes new optimizations for the or-
dered algorithms in the scheduling language, and extends
the compiler to generate efficient code.

Bucketing. Bucketing is a common way to exploit paral-
lelism and maintain ordering in ordered graph algorithms.
It is expressive enough to implement many parallel ordered
graph algorithms [7, 16]. Existing frameworks support ei-
ther lazy bucket update or eager bucket update approach.
GAPBS [7] is a suite of hand-optimized C++ programs that
includes SSSP using the eager bucket update approach. Juli-
enne [16] is a high-level programming framework that uses
the lazy bucket update approach, which is efficient for appli-
cations that have a lot of redundant updates, such as k-Core
and SetCover. However, it is not as efficient for applications
that have fewer redundant updates and less work per bucket,
such as SSSP and A* search. Graphlt with the priority-based
extension unifies both the eager and lazy bucket update
approaches with a new programming model and compiler
extensions to achieve consistent high performance.

Speculative Execution. Speculative execution can also ex-
ploit parallelism in ordered graph algorithms [22, 23]. This
approach can potentially generate more parallelism as ver-
tices with different priorities are executed in parallel as long
as the dependencies are preserved. This is particularly im-
portant for many discrete simulation applications that lack
parallelism. However, speculative execution in software in-
curs significant performance overheads as a commit queue
has to be maintained, conflicts need to be detected, and val-
ues are buffered for potential rollback on conflicts. Hardware
solutions have been proposed to reduce the overheads of
speculative execution [2, 24-26, 42], but it is costly to build
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customized hardware. Furthermore, some ordered graph al-
gorithms, such as approximate set cover and k-core, cannot
be easily expressed with speculative execution.
Approximate Priority Ordering. Some work disregard a
strict priority ordering and use an approximate priority or-
dering [3, 4, 12, 35]. This approach uses several “relaxed"
priority queues in parallel to maintain local priority ordering.
However, it does not synchronize globally among the differ-
ent priority queues. To the best of our knowledge and from
communications with the developers, Galois [12, 35] does not
currently support strict priority ordering and only supports
an approximate ordering. Galois [35] provides an ordered
list abstraction, which does not explicitly synchronize after
each priority. As a result, it is hard to implement algorithms
that require explicit synchronization, such as k-core. Galois
also require users to handle atomic synchronizations for cor-
rectness. This approach cannot implement certain ordered
algorithms that require strict priority ordering, such as work-
efficient k-core decomposition and SetCover. D-galois [13]
implements k-core for only a specific k, whereas Graphlt’s
k-core finds all cores.

Synchronization Relaxation. There has been a number of
frameworks that relax synchronizations in graph algorithms
for better performance while preserving correctness [9, 21,
45]. Compared to existing synchronization relaxation work,
bucket fusion in our new priority-based extension is more
restricted on synchronization relaxation. The synchroniza-
tion between rounds can be removed only when the vertices
processed in the next round has the same priority as ver-
tices processed in the current round. This way, we ensure
no priority inversion happens.

8 Conclusion

We introduce a new priority-based extension to Graphlt that
simplifies the programming of parallel ordered graph algo-
rithms and generates high-performance implementations.
We propose a novel bucket fusion optimization that signif-
icantly improves the performance of many ordered graph
algorithms on road networks. Graphlt with the extension
achieves up to 3% speedup on six ordered algorithms over
state-of-the-art frameworks (Julienne, Galois, and GAPBS)
while significantly reducing the number of lines of code.

A Artifact Evaluation Information

e Algorithms: SSSP with A-stepping, PPSP, wBFS, A*
search, k-core, and Approximate Set Cover

e Compilation: C++ compiler with C++14 support, Cilk
Plus and OpenMP

e Binary: Compiled C++ code

e Data set: Social, Web, and Road graphs

¢ Run-time environment: Ubuntu 11.04

e Hardware: 2-socket Intel Xeon E5-2695 v3 CPUs with
Transparent Huge Pages enabled
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e Publicly available? Yes
e Code licenses (if publicly available)? MIT License

The detailed instructions to evaluate the artifact are avail-
able at https://github.com/Graphlt-DSL/graphit/blob/master/
graphit_eval/priority_graph_cgo2020_eval/readme.md.

The evaluation in the link first demonstrates how SSSP
with A-stepping with different schedules are compiled to
C++ programs (Figure 9). Then we provide instructions on
how to run different algorithms on small graphs serially.
Finally, there is an optional part that replicates the paral-
lel performance on a more powerful 2-socket machines for
LiveJournal, Twitter, and RoadUSA graphs (Table 4).
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