
Optimizing Ordered Graph Algorithms with GraphIt
Yunming Zhang

MIT CSAIL

USA

yunming@mit.edu

Ajay Brahmakshatriya

MIT CSAIL

USA

ajaybr@mit.edu

Xinyi Chen

MIT CSAIL

USA

xinyic@mit.edu

Laxman Dhulipala

Carnegie Mellon University

USA

ldhulipa@cs.cmu.edu

Shoaib Kamil

Adobe Research

USA

kamil@adobe.com

Saman Amarasinghe

MIT CSAIL

USA

saman@csail.mit.edu

Julian Shun

MIT CSAIL

USA

jshun@mit.edu

Abstract
Many graph problems can be solved using ordered parallel

graph algorithms that achieve significant speedup over their

unordered counterparts by reducing redundant work. This

paper introduces a new priority-based extension to GraphIt,

a domain-specific language for writing graph applications,

to simplify writing high-performance parallel ordered graph

algorithms. The extension enables vertices to be processed

in a dynamic order while hiding low-level implementation

details from the user. We extend the compiler with new

program analyses, transformations, and code generation to

produce fast implementations of ordered parallel graph algo-

rithms. We also introduce bucket fusion, a new performance

optimization that fuses together different rounds of ordered

algorithms to reduce synchronization overhead, resulting in

1.2×–3× speedup over the fastest existing ordered algorithm

implementations on road networks with large diameters.

With the extension, GraphIt achieves up to 3× speedup on six

ordered graph algorithms over state-of-the-art frameworks

and hand-optimized implementations (Julienne, Galois, and

GAPBS) that support ordered algorithms.

CCS Concepts •Mathematics of computing→ Graph
algorithms; • Software and its engineering→ Parallel
programming languages; Domain specific languages.

Keywords Compiler Optimizations, Graph Processing

ACM Reference Format:
Yunming Zhang, Ajay Brahmakshatriya, Xinyi Chen, LaxmanDhuli-

pala, Shoaib Kamil, Saman Amarasinghe, and Julian Shun. 2020.

Optimizing Ordered Graph Algorithms with GraphIt. In Proceedings
of the 18th ACM/IEEE International Symposium on Code Generation
and Optimization (CGO ’20), February 22–26, 2020, San Diego, CA,

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

CGO ’20, February 22–26, 2020, San Diego, CA, USA
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7047-9/20/02.

https://doi.org/10.1145/3368826.3377909

USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3368826.3377909

1 Introduction
Many important graph problems can be implemented using

either ordered or unordered parallel algorithms. Ordered algo-

rithms process active vertices following a dynamic priority-

based ordering, potentially reducing redundant work. By

contrast, unordered algorithms process active vertices in an

arbitrary order, improving parallelism while potentially per-

forming a significant amount of redundant work. In practice,

optimized ordered graph algorithms are up to two orders of

magnitude faster than the unordered versions [7, 16, 22, 23],

as shown in Figure 1. For example, computing single-source

shortest paths (SSSP) on graphs with non-negative edge

weights can be implemented either using the Bellman-Ford

algorithm [8] (an unordered algorithm) or the ∆-stepping
algorithm [32] (an ordered algorithm).

1
Bellman-Ford up-

dates the shortest path distances to all active vertices on

every iteration. On the other hand, ∆-stepping reduces the
number of vertices that need to be processed every iteration

by updating path distances to vertices that are closer to the

source vertex first, before processing vertices farther away.

Figure 1. Speedup of ordered algorithms for single-source short-

est path and k-core over the corresponding unordered algorithms

implemented in our framework on a 24-core machine.

Writing high-performance ordered graph algorithms is

challenging for users who are not experts in performance op-

timization. Existing frameworks that support ordered graph

algorithms [7, 16, 35] require users to be familiar with C/C++

data structures, atomic synchronizations, bitvector manipu-

lations, and other performance optimizations. For example,

1
In this paper, we define ∆-stepping as an ordered algorithm, in contrast to

previous work [22] which defines ∆-stepping as an unordered algorithm.

https://doi.org/10.1145/3368826.3377909
https://doi.org/10.1145/3368826.3377909
https://doi.org/10.1145/3368826.3377909

CGO ’20, February 22–26, 2020, San Diego, CA, USA Y. Zhang, A. Brahmakshatriya, X. Chen, L. Dhulipala, S. Kamil, S. Amarasinghe, J. Shun

1 constexpr uintE TOP_BIT = ((uintE)INT_E_MAX) + 1;
2 constexpr uintE VAL_MASK = INT_E_MAX;
3 struct Visit_F {
4 array_imap<uintE> dists;
5 Visit_F(array_imap<uintE>& _dists) : dists(_dists) { }
6
7 inline Maybe<uintE> updateAtomic(uintE& s, uintE& d, intE& w) {
8 uintE oval = dists.s[d];
9 uintE dist = oval | TOP_BIT;
10 uintE n_dist = (dists.s[s] | TOP_BIT) + w;
11 if (n_dist < dist) {
12 if (!(oval & TOP_BIT) && CAS(&(dists[d]), oval, n_dist)) {
13 return Maybe<uintE>(oval);}
14 writeMin(&(dists[d]), n_dist);}
15 return Maybe<uintE>();}
16 inline bool cond(const uintE& d) const { return true; }};

Figure 2. Part of Julienne’s ∆-stepping edge update function, cor-
responding to Lines 7–10 of Fig. 3 in GraphIt’s ∆-stepping.

1 element Vertex end
2 element Edge end
3 const edges : edgeset{Edge}(Vertex,Vertex, int)=load(argv[1]);
4 const dist : vector{Vertex}(int) = INT_MAX;
5 const pq: priority_queue{Vertex}(int);
6

7 func updateEdge(src : Vertex, dst : Vertex, weight : int)
8 var new_dist : int = dist[src] + weight;
9 pq.updatePriorityMin(dst, dist[dst], new_dist);
10 end
11

12 func main()
13 var start_vertex : int = atoi(argv[2]);
14 dist[start_vertex] = 0;
15 pq = new priority_queue
16 {Vertex}(int)(true, "lower_first", dist, start_vertex);
17 while (pq.finished() == false)
18 var bucket : vertexset{Vertex} = pq.dequeueReadySet();
19 #s1# edges.from(bucket).applyUpdatePriority(updateEdge);
20 delete bucket;
21 end
22 end

Figure 3.GraphIt algorithm for ∆-stepping for SSSP. Priority-based
data structures and operators are highlighted in red.

Figure 2 shows a snippet of a user-defined function for ∆-
stepping in Julienne [16], a state-of-the-art framework for

ordered graph algorithms. The code involves atomics and

low-level C/C++ operations.

We propose a new priority-based extension to GraphIt

that simplifies writing parallel ordered graph algorithms.

GraphIt separates algorithm specifications from performance

optimization strategies. The user specifies the high-level al-

gorithm with the algorithm language and uses a separate

scheduling language to configure different performance opti-

mizations. The algorithm language extension introduces a set

of priority-based data structures and operators to maintain

execution orderingwhile hiding low-level details such as syn-

chronization, deduplication, and data structures to maintain

ordering of execution. Figure 3 shows the implementation

of ∆-stepping using the priority-based extension which de-

queues vertices with the lowest priority and updates their

neighbors’ distances in each round of the while loop. The

while loop terminates when all the vertices’ distances are

finalized. The algorithm uses an abstract priority queue data

structure, pq (Line 5), and the operators updatePriorityMin

(Line 9) and dequeueReadySet (Line 18) to maintain priorities.

The priority-based extension uses a bucketing data struc-

ture [7, 16] to maintain the execution ordering. Each bucket

stores active vertices of the same priority, and the buck-

ets are sorted in priority order. The program processes one

bucket at a time in priority order and dynamically moves

active vertices to new buckets when their priorities change.

Updates to the bucket structure can be implemented using

either an eager bucket update [7] approach or a lazy bucket
update [16] approach. With eager bucket updates, buckets

are immediately updated when the priorities of active ver-

tices change. Lazy bucketing buffers the updates and later

performs a single bucket update per vertex. Existing frame-

works supporting ordered parallel graph algorithms only

support one of the two bucketing strategies described above.

However, using a suboptimal bucketing strategy can result

in more than 10× slowdown, as we show later. Eager and lazy

bucketing implementations use different data structures and

parallelization schemes, making it difficult to combine both

approaches within a single framework.

With the priority-based extension, programmers can switch

between lazy and eager bucket update strategies and com-

bine bucketing optimizations with other optimizations using

the scheduling language. The compiler leverages program

analyses and transformations to generate efficient code for

different optimizations. The separation of algorithm and

schedule also enables us to build an autotuner for GraphIt

that can automatically find high-performance combinations

of optimizations for a given ordered algorithm and graph.

Bucketing incurs high synchronization overheads, slow-

ing down algorithms that spend most of their time on bucket

operations. We introduce a new performance optimization,

bucket fusion, which drastically reduces synchronization

overheads. In an ordered algorithm, a bucket can be pro-

cessed in multiple rounds under a bulk synchronous pro-

cessing execution model. In every round, the current bucket

is emptied and vertices whose priority are updated to the

current bucket’s priority are added to the bucket. The algo-

rithmmoves on to the next bucket when nomore vertices are

added to the current bucket. The key idea of bucket fusion is

to fuse consecutive rounds that process the same bucket. Using
bucket fusion in GraphIt results in 1.2×–3× speedup on road

networks with large diameters over existing work.

We implement the priority-based model as a language and

compiler extension to GraphIt [52]
2
, a domain-specific lan-

guage for writing high-performance graph algorithms. With

the extension, GraphIt achieves up to 3× speedup on six

ordered graph algorithms (∆-stepping based single-source

shortest paths (SSSP), ∆-stepping based point-to-point short-
est path (PPSP), weighted BFS (wBFS), A

∗
search, k-core de-

composition, and approximate set cover (SetCover)) over the

fastest state-of-the-art frameworks that support ordered al-

gorithms (Julienne [16] and Galois [35]) and hand-optimized

2
https://github.com/GraphIt-DSL/graphit

Optimizing Ordered Graph Algorithms with GraphIt CGO ’20, February 22–26, 2020, San Diego, CA, USA

S
S

S
P

P
P

S
P

k-
co

re

S
et

C
ov

er

GraphIt
(priority-based extension)

LJ
TW

R
D

1 1 1 1

1.06 1 1 1

1 1 1 1

S
S

S
P

P
P

S
P

k-
co

re

S
et

C
ov

er

Julienne
LJ

TW
R

D

4 2.41 1.01 1.42

1.31 1.89 1.03 1.32

16.9 15.3 1.09 1.2

S
S

S
P

P
P

S
P

k-
co

re

S
et

C
ov

er

Galois

LJ
TW

R
D

1.32 1.94

1 1.01

1.23 1.12

Figure 4. A heatmap of slowdowns of three frameworks compared

to the fastest of all frameworks for SSSP, PPSP, k-core, and SetCover.
Lower numbers (green) are better, with a value of 1 being the fastest.

Gray means that an algorithm is not supported. TW and LJ are

Twitter, and LiveJournal graphs with random weights between 1

and 1000. RD is the RoadUSA graph with original weights.

implementations (GAPBS [7]). Figure 4 shows that GraphIt

is up to 16.9× and 1.94× faster than Julienne and Galois on

the four selected algorithms and supports more algorithms

than Galois. Using GraphIt also reduces the lines of code

compared to existing frameworks and libraries by up to 4×.

The contributions of this paper are as follows.

• An analysis of the performance tradeoffs between eager

and lazy bucket update optimizations (Sections 3 and 6).

• A novel performance optimization for the eager bucket

update approach, bucket fusion (Sections 3 and 6).

• A new priority-based programming model in GraphIt

that simplifies the programming of ordered graph algo-

rithms and makes it easy to switch between and combine

different optimizations (Section 4).

• Compiler extensions that leverage program analyses, pro-

gram transformations, and code generation to produce

efficient implementations with different combinations of

optimization strategies (Section 5).

• A comprehensive evaluation of GraphIt that shows that it

is up to 3× faster than state-of-the-art graph frameworks

on six ordered graph algorithms (Section 6). GraphIt

also significantly reduces the lines of code compared to

existing frameworks and libraries.

2 Preliminaries
We first define ordered graph processing used throughout

this paper. Each vertex has a priority pv . Initially, the users
can explicitly initialize priorities of vertices, with the default

priority being a null value, ∅. These priorities change dynam-

ically throughout the execution. However, the priorities can

only changemonotonically, that is they can only be increased,
or only be decreased. We say that a vertex is finalized if its

priority can no longer be updated. The vertices are processed

and finalized based on the sorted priority ordering. By de-

fault, the ordered execution will stop when all vertices with

non-null priority values are finalized. Alternatively, the user

can define a customized stop condition, for example to halt

once a certain vertex has been finalized.

1 Dist = {∞, . . . , ∞} ▷ Length |V | array

2 procedure SSSP with ∆-stepping(Graph G , ∆, startV)
3 B = new LazyBucket(Dist, ∆, startV);
4 Dist[startV] = 0

5 while ¬empty B do
6 minBucket = B .getMinBucket()

7 buffer = new BucketUpdateBuffer();

8 parallel for src : minBucket do
9 for e : G.getOutEdge[src] do
10 Dist[e.dst] = min(Dist[e.dst], Dist[src] + e.weight)

11 buffer.syncAppend(e.dst, ⌊Dist[e.dst]/∆⌋)

12 buffer = buffer.reduceBucketUpdates();

13 B.bulkUpdateBuckets(buffer);

Figure 5. ∆-stepping for single-source shortest paths (SSSP) with
the lazy bucket update approach.

We define priority coarsening as an optimization to coarsen

the priority value of the vertex to p ′v by dividing the original

priority by a coarsening factor ∆ such that p ′v = ⌊pv/∆⌋. The
optimization is inspired by ∆-stepping for SSSP, and enables

greater parallelism at the cost of losing some algorithmic

work-efficiency. Priority coarsening is used in algorithms

that tolerate some priority inversions, such as A
∗
search,

SSSP, and PPSP, but not in k-core and SetCover.

3 Performance Optimizations for Ordered
Graph Algorithms

We use ∆-stepping for single-source shortest paths (SSSP)

as a running example to illustrate the performance tradeoffs

between the lazy and eager bucket update approaches, and

to introduce our new bucket fusion optimization.

3.1 Lazy Bucket Update
We first consider using the lazy bucket update approach for

the ∆-stepping algorithm, with pseudocode shown in Fig-

ure 5. The algorithm constructs a bucketing data structure

in Line 3, which groups the vertices into buckets according
to their priority. It then repeatedly extracts the bucket with

the minimum priority (Line 6), and finishes the computation

once all of the buckets have been processed (Lines 5–13). To

process a bucket, the algorithm iterates over each vertex in

the bucket, and updates the priority of its outgoing neigh-

bor destination vertices by updating the neighbor’s distance

(Line 10). With priority coarsening, the algorithm computes

the new priority by dividing the distance by the coarsening

factor, ∆. The corresponding bucket update (the vertex and

its updated priority) is added to a buffer with a synchronized

append (Line 11). The syncAppend can be implemented us-

ing atomic operations, or with a prefix sum to avoid atomics.

The buffer is later reduced so that each vertex will only have

one final bucket update (Line 12). Finally, the buckets are

updated in bulk with bulkUpdateBuckets (Line 13).
The lazy bucket update approach can be very efficient

when a vertex changes buckets multiple times within a round.

The lazy approach buffers the bucket updates, and makes

a single insertion to the final bucket. Furthermore, the lazy

approach can be combined with other optimizations such

CGO ’20, February 22–26, 2020, San Diego, CA, USA Y. Zhang, A. Brahmakshatriya, X. Chen, L. Dhulipala, S. Kamil, S. Amarasinghe, J. Shun

1 Dist = {∞, . . . , ∞} ▷ Length |V | array

2 procedure SSSP with ∆-stepping(Graph G , ∆, startV)
3 B = new ThreadLocalBuckets(Dist, ∆, startV);
4 for threadID : threads do
5 B .append(new LocalBucket());

6 Dist[startV] = 0

7 while ¬empty B do
8 minBucket = B .getGlobalMinBucket()

9 parallel for threadID : threads do
10 for src : minBucket.getVertices(threadID) do
11 for e : G.getOutEdge[src] do
12 Dist[e.dst] = min(Dist[e.dst], Dist[src] + e.weight)

13 B[threadID].updateBucket(e.dst, ⌊Dist[e.dst]/∆⌋)

Figure 6. ∆-stepping for SSSP with the eager bucket update ap-

proach.

as histogram-based reduction on priority updates to fur-

ther reduce runtime overheads. However, the lazy approach

adds additional runtime overhead from maintaining a buffer

(Line 7), and performing reductions on the buffer (Line 12)

at the end of each round. These overheads can incur a sig-

nificant cost in cases where there are only a few updates per

round (e.g., in SSSP on large diameter road networks).

3.2 Eager Bucket Update
Another approach for implementing ∆-stepping is to use

an eager bucket update approach (shown in Figure 6) that

directly updates the bucket of a vertex when its priority

changes. The algorithm is naturally implemented using thread-

local buckets, which are updated in parallel across different

threads (Line 9). Each thread works on a disjoint subset of

vertices in the current bucket (Line 10). Using thread-local

buckets avoids atomic synchronization overheads on bucket

updates (Lines 3 and 12–13). To extract the next bucket, the al-

gorithm first identifies the smallest priority across all threads

and then has each thread copy over its local bucket of that

priority to a global minBucket (Line 8). If a thread does not

have a local bucket of the next smallest priority, then it will

skip the copying process. Copying local buckets into a global

bucket helps redistribute the work among threads for better

load balancing.

Compared to the lazy bucket update approach, the eager

approach saves instructions and one global synchronization

needed for reducing bucket updates in the buffer (Figure 5,

Line 12). However, it potentially needs to perform multiple

bucket updates per vertex in each round.

3.3 Eager Bucket Fusion Optimization
A major challenge in bucketing is that a large number of

buckets need to be processed, resulting in thousands or even

tens of thousands of processing rounds. Since each round

requires at least one global synchronization, reducing the

number of rounds while maintaining priority ordering can

significantly reduce synchronization overhead.

Often in practice, many consecutive rounds process a

bucket of the same priority. For example, in ∆-stepping, the
priorities of vertices that are higher than the current priority

can be lowered by edge relaxations to the current priority

1 Dist = {∞, . . . , ∞} ▷ Length |V | array

2 procedure SSSP with ∆-stepping(Graph G , ∆, startV)
3 B = new ThreadLocalBuckets(Dist, ∆, startV);
4 for threadID : threads do
5 B .append(new LocalBucket());

6 Dist[startV] = 0

7 while ¬empty B do
8 minBucket = B .getMinBucket()

9 parallel for threadID : threads do
10 for src : minBucket.getVertices(threadID) do
11 for e : G.getOutEdge[src] do
12 Dist[e.dst] = min(Dist[e.dst], Dist[src] + e.weight)

13 B[threadID].updateBucket(e.dst, ⌊Dist[e.dst]/∆⌋)
14 while B[threadID].currentLocalBucket() is not empty do
15 currentLocalBucket = B[threadID].currentLocalBucket()
16 if currentLocalBucket.size() < threshold then
17 for src : currentLocalBucket do
18 for e : G.getOutEdge[src] do
19 Dist[e.dst] = min(Dist[e.dst], Dist[src] + e.weight)

20 B[threadID].updateBucket(e.dst, ⌊Dist[e.dst]/∆⌋)
21 else break

Figure 7.∆-stepping for single-source shortest paths with the eager
bucket update approach and the bucket fusion optimization.

in a single round. As a result, the same priority bucket may

be processed again in the next round. The process repeats

until no new vertices are added to the current bucket. This

pattern is common in ordered graph algorithms that use

priority coarsening. We observe that rounds processing the

same bucket can be fused without violating priority ordering.

Based on this observation, we propose a novel bucket fu-

sion optimization for the eager bucket update approach that

allows a thread to execute the next round processing the cur-

rent bucket without synchronizing with other threads. We

illustrate bucket fusion using the ∆-stepping algorithm in

Figure 7. The same optimization can be applied in other appli-

cations, such as wBFS, A
∗
search and point-to-point shortest

path. This algorithm extends the eager bucket update algo-

rithm (Figure 6) by adding a while loop inside each local

thread (Figure 7, Line 14). The while loop executes if the cur-

rent local bucket is non-empty. If the current local bucket’s

size is below a certain threshold, the algorithm immediately

processes the current bucket without synchronizing with

other threads (Figure 7, Line 16). If the current local bucket

is large, it will be copied over to the global bucket and dis-

tributed across other threads. The threshold is important

to avoid creating straggler threads that process too many

vertices, leading to load imbalance. The bucket processing

logic in the while loop (Figure 7, Lines 17–20) is the same

as the original processing logic (Figure 7, Lines 10–13). This

optimization is hard to apply for the lazy approach since a

global synchronization is needed before bucket updates.

Bucket fusion is particularly useful for road networks

where multiple rounds frequently process the same bucket.

For example, bucket fusion reduces the number of rounds by

more than 30× for SSSP on the RoadUSA graph, leading to

more than 3× speedup by significantly reducing the amount

of global synchronization (details in Section 6).

Optimizing Ordered Graph Algorithms with GraphIt CGO ’20, February 22–26, 2020, San Diego, CA, USA

Table 1. Algorithm language extensions in GraphIt.

Edgeset Apply Operator Return
Type

Description

applyUpdatePriority(func f) none Applies f(src, dst) to every edge. The f function updates priorities of vertices.

Priority Queue Operators
new priority_queue(
bool allow_priority coarsening,
string priority_direction,
vector priority_vector,
Vertex optional_start_vertex)

priority_queue The constructor for the priority queue. It specifies whether priority coarsen-

ing is allowed or not, higher or lower priority gets executed first, the vector

that is used to compute the priority values, and an optional start vertex.

A lower_first priority direction specifies that lower priority values are

executed first, whereas a higher_first indicates higher priority values are
executed first.

pq.dequeueReadySet() vertexset Returns a bucket with all the vertices that are currently ready to be pro-

cessed.

pq.finished() bool Checks if there is any bucket left to process.

pq.finishedVertex(Vertex v) bool Checks if a vertex’s priority is finalized (finished processing).

pq.getCurrentPriority() priority_type Returns the priority of the current bucket.

pq.updatePriorityMin(Vertex v, ValT new_val) void Decreases the value of the priority of the specified vertex v to the new_val.

pq.updatePriorityMax(Vertex v, ValT new_val) void Increases the value of the priority of the specified vertex v to the new_val.

pq.updatePrioritySum(Vertex v, ValT sum_diff,
ValType min_threshold)

void Adds sum_diff to the priority of the Vertex v. The user can specify an optional
minimum threshold so that the priority will not go below the threshold.

4 Programming Model
The newpriority-based extension follows the design of GraphIt

and separates the algorithm specification from the perfor-

mance optimizations, similar to Halide [38] and Tiramisu [6].

The user writes a high-level algorithm using the algorithm

language and specifies optimization strategies using the

scheduling language. The extension introduces a set of priority-

based data structures and operators to GraphIt to maintain

execution order in the algorithm language and adds support

for bucketing optimizations in the scheduling language.

4.1 Algorithm Language
The algorithm language exposes opportunities for eager

bucket update, eager update with bucket fusion, lazy bucket

update, and other optimizations. The high-level operators

hide low-level implementation details such as atomic syn-

chronization, deduplication, bucket updates, and priority

coarsening. The algorithm language shares the vertex and

edge sets, and operators that apply user-defined functions

on the sets with the GraphIt algorithm language.

The new priority-based extension proposes high-level pri-

ority queue-based abstractions to switch between thread-

local and global buckets. The extension to GraphIt also in-

troduces priority update operators to hide the bucket update

mechanisms, and provides a new edgeset apply operator,

applyUpdatePriority. The priority-based data structures and

operators are shown in Table 1.

Figure 3 shows an example of∆-stepping for SSSP. GraphIt
works on vertex and edge sets. The algorithm specification

first sets up the edgeset data structures (Lines 1–3), and sets

the distances to all the vertices in dist to INT_MAX to rep-

resent∞ (Line 4). It declares the global priority queue, pq, on

Line 5. This priority queue can be referenced in user-defined

functions and the main function. The user then defines a

function, updateEdge, that processes each edge (Lines 7–10).

In updateEdge, the user computes a new distance value, and

then updates the priority of the destination vertex using the

updatePriorityMin operator defined in Table 1. In other algo-

rithms, such as k-core, the user can use updatePrioritySum

when the priority is decremented or incremented by a given

value. The updatePrioritySum can detect if the change to the

priority is a constant, and use this fact to perform more opti-

mizations. The priority update operators, updatePriorityMin

and updatePrioritySum, hide bucket update operations, al-

lowing the compiler to generate different code for lazy and

eager bucket update strategies.

Programmers use the constructor of the priority queue

(Lines 15–16) to specify algorithmic information, such as the

priority ordering, support for priority coarsening, and the

direction that priorities change (documented in Table 1). The

abstract priority queue hides low-level bucket implementa-

tion details and provides a mapping between vertex data

and their priorities. The user specifies a priority_vector

that stores the vertex data values used for computing pri-

orities. In SSSP, we use the dist vector and the coarsening

parameter (∆ specified using the scheduling language) to

perform priority coarsening. The while loop (Line 17) pro-

cesses vertices from a bucket until all buckets are finished

processing. In each iteration of the while loop, a new bucket

is extracted with dequeueReadySet (Line 18). The edgeset op-
erator on Line 19 uses the from operator to keep only the

edges that come out of the vertices in the bucket. Then it

uses applyUpdatePriority to apply the updateEdge function

to outgoing edges of the bucket. Label (#s1#) is later used by

the scheduling language to configure optimization strategies.

4.2 Scheduling Language
The scheduling language allows users to specify different

optimization strategies without changing the algorithm. We

CGO ’20, February 22–26, 2020, San Diego, CA, USA Y. Zhang, A. Brahmakshatriya, X. Chen, L. Dhulipala, S. Kamil, S. Amarasinghe, J. Shun

Table 2. Scheduling functions for applyUpdatePriority operators. Default options are in bold.

Apply Scheduling Functions Descriptions
configApplyPriorityUpdate(label,config); Config options: eager_with_fusion, eager_no_fusion, lazy_constant_sum, and lazy.
configApplyPriorityUpdateDelta(label,config); Configures the ∆ parameter for coarsening the priority range.

configBucketFusionThreshold(label, config); Configures the threshold for the bucket fusion optimization.

configNumBuckets(label,config); Configures the number of buckets that are materialized for the lazy bucket update approach.

17 ...
18 while (pq.finished() == false)
19 var bucket : vertexsubset = pq.dequeueReadySet();
20 #s1# edges.from(bucket).applyUpdatePriority(updateEdge);
21 delete bucket;
22 end

...
25 schedule:
26 program->configApplyPriorityUpdate("s1", "lazy")
27 ->configApplyPriorityUpdateDelta("s1", "4")
28 ->configApplyDirection("s1", "SparsePush")
29 ->configApplyParallelization("s1","dynamic-vertex-parallel");

Figure 8. GraphIt scheduling specification for ∆-stepping.

extend the scheduling language of GraphIt with new com-

mands to enable switching between eager and lazy bucket

update strategies. Users can also tune other parameters, such

as the coarsening factor for priority coarsening. The sched-

uling API extensions are shown in Table 2.

Figure 8 shows a set of schedules for ∆-stepping. GraphIt
uses labels (#label#) to identify the algorithm language state-

ments for which the scheduling language commands are

applied. The programmer adds the label s1 to the edge-
set applyUpdatePriority statement. After the schedule key-

word, the programmer calls the scheduling functions. The

configApplyPriorityUpdate function allows the program-

mer to use the lazy bucket update optimization. The program-

mer can use the original GraphIt scheduling language to con-

figure the direction of edge traversal (configApplyDirection)

and the load balance strategies (configApplyParallelization).

Direction optimizations can be combined with lazy priority

update schedules. configApplyUpdateDelta is used to set the

delta for priority coarsening.

Users can change the schedules to generate code with dif-

ferent combinations of optimizations as shown in Figure 9.

Figure 9(a) shows code generated by combining the lazy

bucket update strategy and other edge traversal optimiza-

tions from the GraphIt scheduling language. The scheduling

function configApplyDirection configures the data layout of

the frontier and direction of the edge traversal (SparsePush

means sparse frontier and push direction). Figure 9(b) shows

the code generated when we combine a different traversal

direction (DensePull) with the lazy bucketing strategy. Fig-

ure 9(c) shows code generated with the eager bucket update

strategy. Code generation is explained in Section 5.

5 Compiler Implementation
We demonstrate how the compiler generates code for dif-

ferent bucketing optimizations. The key challenges are in

how to insert low-level synchronization and deduplication

instructions, and how to combine bucket optimizations with

direction optimization and other optimizations in the origi-

nal GraphIt scheduling language. Furthermore, the compiler

has to perform global program transformations and code

generation to switch between lazy and eager approaches.

5.1 Lazy Bucket Update Schedules
To support the lazy bucket update approach, the compiler

applies program analyses and transformations on the user-

defined functions (UDFs). The compiler uses dependence

analysis on updatePriorityMin and updatePrioritySum to de-

termine if there are write-write conflicts and insert atomics

instructions as necessary (Figure 9(a) Line 20). Additionally,

the compiler needs to insert variables to track whether a

vertex’s priority has been updated or not (tracking_var in

Figure 9(a), Line 18). This variable is used in the generated

code to determine which vertices should be added to the

buffer outEdges (Figure 9(a), Line 21). Deduplication is en-

abled with a compare-and-swap (CAS) on deduplication flags

(Line 21) to ensure that each vertex is inserted into the out-

Edges only once. Deduplication is required for correctness

for applications such as k-core. Changing the schedules with
different traversal directions or frontier layout affects the

code generation for edge traversal and user-defined func-

tions (Figure 9(b)). In the DensePull traversal direction, no

atomics are needed for the destination nodes.

We built runtime libraries to manage the buffer and up-

date buckets. The compiler generates appropriate calls to the

library (getNextBucket, setupFrontier, and updateBuckets).

The setupFrontier API (Figure 9(a), Line 24) performs a pre-

fix sum on the outEdges buffer to compute the next frontier.

We use a lazy priority queue (declared in Figure 9(a), Line 2)

for storing active vertices based on their priorities. The lazy

bucketing is based on Julienne’s bucket data structures that

only materialize a few buckets, and keep vertices outside of

the current range in an overflow bucket [16]. We improve its

performance by redesigning the lazy priority queue interface.

Julienne’s original interface invokes a lambda function call

to compute the priority. The new priority-based extension

computes the priorities using a priority vector and ∆ value

for priority coarsening, eliminating extra function calls.

Lazy with constant sum reduction.We also incorporated

a specialized histogram-based reduction optimization (first

proposed in Julienne [16]) to reduce priority updates with a

constant value each time. This optimization can be combined

with the lazy bucket update strategy to improve performance.

For k-core, since the priorities for each vertex always reduce

Optimizing Ordered Graph Algorithms with GraphIt CGO ’20, February 22–26, 2020, San Diego, CA, USA

int * dist = new int[num_verts];
EagerPriorityQueue* pq;
int delta = 4;
WGraph* G = loadGraph(argv[1]);

//simplified snippets of the generated main function
…
dist[start_vertex] = 0;
frontier[0] = start_vertex;
pq = new EagerPriorityQueue(true, “lower”, dist, delta);
uint* frontier = new uint[G.num_edges()];
#pragma omp parallel
{ vector<vector<uint> > local_bins(0);
 while (pq.finished()) {
 #pragma omp for nowait schedule(dynamic, 64)
 for (size_t i = 0; i < frontier.size(); i++) {
 uint s = frontier[i];
 for (WNode d : G.getOutNgh(s)) {
 int new_dist = dist[s] + d.weight;
 bool changed = atomicWriteMin(&dist[d.v],new_dist);
 if (changed == false) {break;}}
 if (changed) {
 size_t dest_bin = new_dist/delta;
 if (dest_bin >= local_bins.size()) {
 local_bins.resize(dest_bin+1);}
 local_bins[dest_bin].push_back(d.v);
 }}}// end of for frontier for loop
 … //omitted:find next bucket
 #pragma omp barrier
 … //omitted:copy local buckets to global bucket
 #pragma omp barrier } // end of parallel region
ŏ

int * dist = new int[num_verts];
LazyPriorityQueue* pq;
int delta = 4;
WGraph* G = loadGraph(argv[1]);

//simplified snippets of the generated main function
…
dist[start_vertex] = 0;
pq = new LazyPriorityQueue(true, “lower”, dist, delta);
while (pq.finished()){
 VertexSubset * frontier = getNextBucket(pq);
 uint* outEdges = setupOutputBuffer(g, frontier);
 uint* offsets = setupOutputBufferOffsets(g, frontier);
 parallel_for (uint s : frontier.vert_array) {
 int j = 0;
 uint offset = offsets[i];
 for(WNode d : G.getOutNgh(s)){
 bool tracking_var = false;
 int new_dist = dist[s.v] + d.weight;
 tracking_var = atomicWriteMin(&dist[d.v], new_dist);
 If (tracking_var && CAS(dedup_flags[d.v],0,1)){
 outEdges[offset + j] = d.v;
 } else { outEdges[offset + j] = UINT_MAX; }
 j++;
 }}
 VertexSubset* nextFrontier = setupFrontier(outEdges);
 updateBuckets(nextFrontier, pq, delta);
 …
}
ŏ

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

int * dist = new int[num_verts];
LazyPriorityQueue* pq;
int delta = 4;
WGraph* G = loadGraph(argv[1]);

//simplified snippets of the generated main function
…
dist[start_vertex] = 0;
pq = new LazyPriorityQueue(true, “lower”, dist, delta);
while (pq.finished()){
 VertexSubset * frontier = getNextBucket(pq);
 bool * next = newA(bool, g.num_nodes());
 parallel_for (uint i = 0; i < numNodes; i++) next[i] = 0;
 parallel_for (uint d=0; d < numNodes; d++) {
 for(WNode s : G.getInNgh(d)){
 if (frontier->bool_map_[s.v]) {
 bool tracking_var = false;
 int new_dist = dist[s.v] + s.weight;
 If (new_dist < dist[d]){
 dist[d] = new_dist;
 tracking_var = true;}
 if (tracking_var) {next[d] = 1;}
 }}}
 VertexSubset* nextFrontier = setupFrontier(next);
 updateBuckets(nextFrontier, pq, delta);
 …
}
ŏ

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

(a) Lazy Bucket Update with Parallel SparsePush Traversal
program->configApplyPriorityUpdate(“s1”, “lazy”)
->configApplyPriorityUpdateDelta(“s1”, 4)
->configApplyDirection(“s1“, SparsePush”)
->configApplyParallelization(“s1”, “dynamic-vertex-parallel”);

(b) Lazy Bucket Update with Parallel DensePull Traversal
program->configApplyPriorityUpdate(“s1”, “lazy”)
->configApplyPriorityUpdateDelta(“s1”, 4)
->configApplyDirection(“s1“, DensePull”)
->configApplyParallelization(“s1”, “dynamic-vertex-parallel”);

(c) Eager Bucket Update with Parallel SparsePush Traversal
program->configApplyPriorityUpdate(“s1”, “eager”)
->configApplyPriorityUpdateDelta(“s1”, 4)
->configApplyDirection(“s1“, SparsePush”)
->configApplyParallelization(“s1”, “dynamic-vertex-parallel”);

Figure 9. Simplified generated C++ code for ∆-stepping for SSSP with different schedules. Changes in schedules for (b) and (c) compared to

(a) are highlighted in blue. Changes in the generated code are highlighted in purple background. parallel_for is translated to cilk_for or

#pragma omp parallel for. Struct WNode has two fields, v and weight. v stores the vertex ID and weight stores the edge weight.

1 func apply_f(src: Vertex, dst: Vertex)
2 var k: int = pq.get_current_priority();
3 pq.updatePrioritySum(dst, -1, k);
4 end

1 apply_f_transformed = [&] (uint vertex, uint count) {
2 int k = pq->get_current_priority();
3 int priority = pq->priority_vector[vertex];
4 if (priority > k) {
5 uint __new_pri = std::max(priority + (-1) * count, k);
6 pq->priority_vector[vertex] = __new_pri;
7 return wrap(vertex, pq->get_bucket(__new_pri));}}

Figure 10. The original (top) and transformed (bottom) user-

defined function for k-core using lazy with constant sum reduction.

by one at each update, we can optimize it further by keep-

ing track of only the number of updates with a histogram.

This way, we avoid contention on vertices that have a large

number of neighbors on the frontier.

To generate code for the histogram optimization, the com-

piler first analyzes the user-defined function to determine

whether the change to the priority of the vertex is a fixed

value and if it is a sum reduction (Figure 10 (top), Line 3).

The compiler ensures that there is only one priority update

operator in the user-defined function. It then extracts the

fixed value (-1), the minimum priority (k), and vertex identi-

fier (dst). In the transformed function (Figure 10 (bottom)),

an if statement and max operator are generated to check and

maintain the priority of the vertex. The applyUpdatePriority

operator gets the counts of updates to each vertex using a

histogram approach and supplies the vertex and count as

arguments to the transformed function (Figure 10 (bottom),

Line 1). The compiler copies all of the expressions used in

the priority update operator and the expressions that they

depend on in the transformed function.

5.2 Eager Bucket Update Schedules
The compiler uses program analysis to determine feasibility

of the transformation, transforms user-defined functions and

edge traversal code, and uses optimized runtime libraries to

generate efficient code for the eager bucket update approach.

The compiler analyzes the while loop (Figure 3, Lines 17–

21) to look for the pattern of an iterative priority update with

a termination criterion. The analysis checks that there is no

other use of the generated vertexset (bucket) except for the
applyUpdatePriority operator, ensuring correctness.

Once the analysis identifies the while loop and edge tra-

versal operator, the compiler replaces the while loop with an

ordered processing operator. The ordered processing opera-

tor uses an OpenMP parallel region (Figure 9(c), Lines 12–32)

to set up thread-local data structures, such as local_bins.

We built an optimized runtime library for the ordered pro-

cessing operator based on the ∆-stepping implementation

in GAPBS [7]. A global vertex frontier (Figure 9(c), Line 11)

keeps track of vertices of the next priority (the next bucket).

In each iteration of the while loop, the #pragma omp for
(Figure 9(c), Lines 15–16) distributes work among the threads.

After priorities and buckets are updated, each local thread

proposes its next bucket priority, and the smallest priority

across threads will be selected (omitted code on Figure 9(c),

Line 28). Once the next bucket priority is decided, each thread

CGO ’20, February 22–26, 2020, San Diego, CA, USA Y. Zhang, A. Brahmakshatriya, X. Chen, L. Dhulipala, S. Kamil, S. Amarasinghe, J. Shun

Table 3. Graphs used for experiments. The number of edges are

directed edges. Graphs are symmetrized for k-core and SetCover.

Type Dataset Num.

Verts

Num.

Edges

Symmetric

Num.Edges

Social Orkut (OK) [49] 3 M 234 M 234 M

Graphs LiveJournal (LJ) [14] 5 M 69 M 85M

Twitter (TW) [27] 41 M 1469 M 2405 M

Friendster (FT) [49] 125 M 3612 M 3612 M

Web

Graph

WebGraph (WB) [31] 101 M 2043 M 3880 M

Road Massachusetts (MA) [1] 0.45 M 1.2 M 1.2 M

Graphs Germany (GE) [1] 12 M 32 M 32 M

RoadUSA (RD) [15] 24 M 58 M 58 M

will copy vertices in its next local bucket to the global frontier

(Figure 9(c), Line 30)

Finally, the compiler transforms the user-defined functions

by appending the local buckets to the argument list and

inserting appropriate synchronization instructions. These

transformations allow priority update operators to directly

update thread-local buckets (Figure 9(c), Lines 23–26).

Bucket Fusion. The bucket fusion optimization adds an-

other while loop after end of the for-loop on Line 27 of Fig-

ure 9(c), and before finding the next bucket across threads on

Line 28. This inner while loop processes the current bucket in

the local priority queue (local_bins) if it is not empty and its

size is less than a threshold. In the inner while loop, vertices

are processed using the same transformed user-defined func-

tions as before. The size threshold improves load balancing,

as large buckets are distributed across different threads.

5.3 Autotuning
We built an autotuner on top of the extension to automati-

cally find high-performance schedules for a given algorithm

and graph. The autotuner is built using OpenTuner [5] and

stochastically searches through a large number of optimiza-

tion strategies generated with the scheduling language. It

uses an ensemble of search methods, such as the area under

curve bandit meta technique, to find good combinations of

optimizations within a reasonable amount of time.

6 Evaluation
We compare the performance of the new priority-based ex-

tension in GraphIt to state-of-the-art frameworks and ana-

lyze performance tradeoffs among different GraphIt sched-

ules. We use a dual-socket system with Intel Xeon E5-2695

v3 CPUs with 12 cores each for a total of 24 cores and 48

hyper-threads. The system has 128 GB of DDR3-1600 mem-

ory and 30 MB last level cache on each socket and runs with

Transparent Huge Pages (THP) enabled and Ubuntu 18.04.

Data Sets. Table 3 shows our input graphs and their sizes.

For k-core and SetCover, we symmetrize the input graphs.

For ∆-stepping based SSSP, wBFS, PPSP using ∆-stepping,
and A

∗
search, we use the original directed versions of graphs

with integer edge weights. The RoadUSA (RD), Germany(GE)

and Massachusetts (MA) road graphs are used for the A
∗

search algorithm, as they have the longitude and latitude

data for each vertex. GE and MA are constructed from data

downloaded from OpenStreetMap [1]. Weight distributions

used for experiments are described in the caption of Table 4.

Existing Frameworks.Galois v4 [35] uses approximate pri-

ority ordering with an ordered list abstraction for SSSP. We

implemented PPSP and A
∗
search using the ordered list. To

the best of our knowledge and from communications with

the developers, strict priority-based ordering is currently

not supported for Galois. Galois does not provide implemen-

tations of wBFS, k-core and SetCover, which require strict

priority ordering. GAPBS [7] is a suite of C++ implemen-

tations of graph algorithms and uses eager bucket update

for SSSP. GAPBS does not provide implementations of k-
core and SetCover. We used Julienne [16] from early 2019.

The developers of Julienne have since incorporated the opti-

mized bucketing interface proposed in this paper in the latest

version. GraphIt [52] and Ligra [40] are two of the fastest un-

ordered graph frameworks. We used the best configurations

(e.g., priority coarsening factor ∆ and the number of cores)

for the comparison frameworks. Schedules and parameters

used are in the artifact.

6.1 Applications
Weevaluate the extension to GraphIt on SSSPwith∆-stepping,
weighted breadth-first search (wBFS), point-to-point short-

est path (PPSP), A
∗
search, k-core decomposition (k-core),

and approximate set cover (SetCover).

SSSP and Weighted Breadth-First Search (wBFS). SSSP
with ∆-stepping solves the single-source shortest path prob-

lem as shown in Figure 5. In ∆-stepping, vertices are parti-
tioned into buckets with interval ∆ according to their cur-

rent shortest distance. In each iteration, the smallest non-

empty bucket i which contains all vertices with distance

in [i∆, (i + 1)∆) is processed. wBFS is a special case of ∆-
stepping for graphs with positive integer edge weights, with

delta fixed to 1 [16]. We benchmarked wBFS on only the

social networks and web graphs with weights in the range

[1, logn), following the convention in previous work [16].

Point-to-point Shortest Path (PPSP). Point-to-point short-
est path (PPSP) takes a graphG(V ,E,w(E)), a source vertex
s ∈ V , and a destination vertex d ∈ V as inputs and computes

the shortest path between s and d . In our PPSP application,

we used the ∆-stepping algorithm with priority coarsening.

It terminates the program early when it enters iteration i
where i∆ is greater than or equal to the shortest distance

between s and d it has already found.

A∗ Search. The A∗
search algorithm finds the shortest path

between two points. The difference between A
∗
search and ∆-

stepping is that, instead of using the current shortest distance

to a vertex as priority, A
∗
search uses the estimated distance

of the shortest path that goes from the source to the target

vertex that passes through the current vertex as the priority.

Optimizing Ordered Graph Algorithms with GraphIt CGO ’20, February 22–26, 2020, San Diego, CA, USA

Table 4. Running time (seconds) of GraphIt with the priority-based extension and state-of-the-art frameworks. GraphIt, GAPBS, Galois,

and Julienne use ordered algorithms. GraphIt with no extension (unordered) and Ligra use unordered Bellman-Ford for SSSP, PPSP, wBFS,

and A
∗
search, and unordered k-core. The fastest results are in bold. Graphs marked with † have weight distribution of [1, logn). Road

networks come with original weights. Other graphs have weight distribution between [1, 1000). – represents an algorithm not implemented

in a framework and x represents a run that did not finish due to timeout or out-of-memory error.

Algorithm SSSP PPSP wBFS

Graph LJ OK TW FT WB GE RD LJ OK TW FT WB GE RD LJ
†

OK
†

TW
†

FT
†

WB
†

GraphIt with extension (ordered) 0.093 0.106 3.094 5.637 2.902 0.207 0.224 0.043 0.061 2.597 4.063 2.473 0.049 0.045 0.072 0.104 1.822 7.563 2.129
GAPBS 0.1 0.107 3.547 6.094 3.304 0.59 0.765 0.042 0.063 2.707 4.312 2.628 0.116 0.112 0.072 0.107 1.903 7.879 2.228

Galois 0.123 0.234 2.93 7.996 3.005 0.244 0.276 0.084 0.165 2.625 7.092 2.606 0.059 0.051 – – – – –

Julienne 0.169 0.334 4.522 x 4.11 3.104 3.685 0.104 0.16 4.904 x 4.107 1.836 0.687 0.148 0.145 2.32 x 2.813

GraphIt (unordered) 0.221 0.479 6.376 38.458 8.521 90.524 122.374 0.221 0.479 6.376 38.458 8.521 90.524 122.374 0.12 0.198 2.519 21.77 3.659

Ligra (unordered) 0.301 0.604 7.778 x x 94.162 129.2 0.301 0.604 7.778 x x 94.162 129.2 0.164 0.257 3.054 x x

Algorithm k -core Approximate Set Cover A
∗
search

Graph LJ OK TW FT WB GE RD LJ OK TW FT WB GE RD MA GE RD

GraphIt with extension (ordered) 0.745 1.634 10.294 14.423 12.876 0.173 0.305 0.494 0.564 5.299 11.499 7.57 0.545 0.859 0.010 0.060 0.075
GAPBS – – – – – – – – – – – – – – 0.03 0.142 0.221

Galois – – – – – – – – – – – – – – 0.078 0.066 0.083

Julienne 0.752 1.62 10.5 14.6 13.1 0.184 0.327 0.703 0.868 6.89 13.2 10.7 0.66 1.03 0.181 1.551 4.876

GraphIt (unordered) 6.131 8.152 x 325.286 x 0.421 1.757 – – – – – – – 0.456 90.524 122.374

Ligra (unordered) 5.99 8.09 225.102 324 x 0.708 1.76 – – – – – – – 0.832 94.162 129.2

Our A
∗
search implementation is based on a related work [2]

and needs the longitude and latitude of the vertices.

k-core. A k-core of an undirected graph G(V ,E) refers to
a maximal connected sub-graph of G where all vertices in

the sub-graph have induced-degree at least k . The k-core
problem takes an undirected graph G(V ,E) as input and
for each u ∈ V computes the maximum k-core that u is

contained in (this value is referred to as the coreness of the

vertex) using a peeling procedure [29].

Approximate Set Cover. The set cover problem takes as

input a universe U containing a set of ground elements, a

collection of sets F s.t. ∪f ∈F f = U, and a cost function

c : F → R+. The problem is to find the cheapest collection

of sets A ⊆ F that coversU, i.e. ∪a∈Aa = U. In this paper,

we implement the unweighted version of the problem, where

c : F → 1, but the algorithm used easily generalizes to the

weighted case [16]. The algorithm at a high-level works by

bucketing the sets based on their cost per element, i.e., the

ratio of the number of uncovered elements they cover to

their cost. At each step, a nearly-independent subset of sets

from the highest bucket (sets with the best cost per element)

are chosen, removed, and the remaining sets are reinserted

into a bucket corresponding to their new cost per element.

We refer to the following papers by Blelloch et al. [10, 11]

for algorithmic details and a survey of related work.

6.2 Comparisons with other Frameworks
Table 4 shows the execution times of GraphIt with the new

priority-based extension and other frameworks. GraphIt out-

performs the next fastest of Julienne, Galois, GAPBS, GraphIt,

and Ligra by up to 3× and is no more than 6% slower than the

fastest. GraphIt is up to 16.8× faster than Julienne, 7.8× faster

than Galois, and 3.5× faster than hand-optimized GAPBS.

Compared to unordered frameworks, GraphIt without the

priority-based extension (unordered) and Ligra, GraphIt with

the extension achieves speedups between 1.67× to more than

600× due to improved algorithm efficiency. The times for

SSSP and wBFS are averaged over 10 starting vertices. The

times for PPSP and A
∗
search are averaged over 10 source-

destination pairs. We chose start and end points to have a

balanced selection of different distances.

GraphIt with the priority extension has the fastest SSSP

performance on six out of the seven input graphs. Julienne

uses significantly more instruction than GraphIt (up to 16.4×

instructions than GraphIt). On every iteration, Julienne com-

putes an out-degree sum for the vertices on the frontier to

use the direction optimization, which adds significant run-

time overhead. GraphIt avoids this overhead by disabling

the direction optimization with the scheduling language.

Julienne also uses lazy bucket update that generates extra

instructions to buffer the bucket updates whereas GraphIt

saves instructions by using eager bucket update. GraphIt is

faster than GAPBS because of the bucket fusion optimization

that allows GraphIt to process more vertices in each round

and use fewer rounds (details are shown in Table 6). The

optimization is especially effective for road networks, where

synchronization overhead is a significant performance bot-

tleneck. Galois achieves good performances on SSSP because

it does not have as much overhead from global synchroniza-

tion needed to enforce strict priority. However, it is slower

than GraphIt on most graphs because approximate priority

ordering sacrifices some work-efficiency.

GraphIt with the priority extension is the fastest on most

of the graphs for PPSP, wBFS, and A
∗
search, which use a

variant of the ∆-stepping algorithm with priority coarsening.

Both GraphIt and GAPBS use eager bucket update for these

algorithms. GraphIt outperforms GAPBS because of bucket

fusion. Galois is often slower than GraphIt due to lower work-

efficiency with the approximate priority ordering. Julienne

uses lazy bucket update and is slower than GraphIt due to

the runtime overheads of the lazy approach.

PPSP and A
∗
search are faster than SSSP as they only

run until the distance to the destination vertex is finalized.

CGO ’20, February 22–26, 2020, San Diego, CA, USA Y. Zhang, A. Brahmakshatriya, X. Chen, L. Dhulipala, S. Kamil, S. Amarasinghe, J. Shun

Table 5. Line counts of SSSP, PPSP, A∗
search, k-core, and SetCover

for GraphIt, GAPBS, Galois, and Julienne. The missing numbers

correspond to a framework not providing an algorithm.

GraphIt with

extension

GAPBS Galois Julienne

SSSP 28 77 90 65

PPSP 24 80 99 103

A* 74 105 139 84

KCore 24 – – 35

SetCover 70 – – 72

A
∗
search is sometimes slower than PPSP because of addi-

tional random memory accesses and computation needed

for estimating distances to the destination.

For k-core and SetCover, the extended GraphIt runs faster
than Julienne because the optimized lazy bucketing interface

uses the priority vector to compute the priorities of each

vertex. Julienne uses a user-defined function to compute the

priority every time, resulting in function call overheads and

redundant computations. Galois does not provide ordered

algorithms for k-core and SetCover, which require strict

priority and synchronizations after processing each priority.

Delta Selection for PriorityCoarsening.The best∆ value

for each algorithm depends on the size and the structure of

the graph. The best ∆ values for social networks (ranging

from 1 to 100) are much smaller than deltas for road net-

works with large diameters (ranging from 2
13
to 2

17
). Social

networks need only a small ∆ value because they have ample

parallelism with large frontiers and work-efficiency is more

important. Road networks need larger ∆ values for more

parallelism. We also tuned the ∆ values for the comparison

frameworks to provide the best performance.

Autotuning. The autotuner for GraphIt is able to automati-

cally find schedules that performed within 5% of the hand-

tuned schedules used for Table 4. For most graphs, the au-

totuner can find a high-performance schedule within 300s

after trying 30-40 schedules (including tuning integer param-

eters) in a large space of about 10
6
schedules. The autotuning

process finished within 5000 seconds for the largest graphs.

Users can specify a time limit to reduce autotuning time.

Line Count Comparisons. Table 5 shows the line counts of
the five graph algorithms implemented in four frameworks.

GAPBS, Galois, and Julienne all require the programmer to

take care of implementation details such as atomic synchro-

nization and deduplication. GraphIt uses the compiler to

automatically generate these instructions. For A
∗
search and

SetCover, GraphIt needs to use long extern functions that
significantly increases the line counts.

6.3 Scalability Analysis
We analyze the scalability of different frameworks in Fig-

ure 11 for SSSP on social and road networks. The social

networks (TW and FT) have very small diameters and large

numbers of vertices. As a result, they have a lot of parallelism

in each bucket, and all three frameworks scale reasonably

Figure 11. Scalability of different frameworks on SSSP.

Table 6. Running times and number of rounds reductions with the

bucket fusion optimization on SSSP using ∆-stepping.

Datasets with Fusion without Fusion

TW 3.09s [1025 rounds] 3.55s [1489 rounds]

FT 5.64s [5604 rounds] 6.09s [7281 rounds]

WB 2.90s [772 rounds] 3.30s [2248 rounds]

RD 0.22s [1069 rounds] 0.77s [48407 rounds]

Table 7. Performance Impact of Eager and Lazy Bucket Updates.

Lazy update for k-core uses constant sum reduction optimization.

k-core SSSP with ∆-stepping

Datasets Eager Update Lazy Update Eager Update Lazy Update

LJ 0.84 0.75 0.093 0.24

TW 44.43 10.29 3.09 6.66

FT 46.59 14.42 5.64 10.34

WB 35.58 12.88 2.90 7.82

RD 0.55 0.31 0.22 9.48

well (Figure 11(a) and (b)). Compared to GAPBS, GraphIt

uses bucket fusion to significantly reduce synchronization

overheads and improves parallelism on the RoadUSA net-

work (Figure 11(c)). GAPBS suffers from NUMA accesses

when going beyond a single socket (12 cores). Julienne’s

overheads from lazy bucket updates make it hard to scale on

the RoadUSA graph.

6.4 Performance of Different Schedules
Table 6 shows that SSSP with bucket fusion achieves up to

3.4× speedup over the version without bucket fusion on

road networks, where there are a large number of rounds

processing each bucket. Table 6 shows that the optimization

improves running time by significantly reducing the number

of rounds needed to complete the algorithm.

Table 7 shows the performance impact of eager versus

lazy bucket updates on k-core and SSSP. k-core does a large
number of redundant updates on the priority of each vertex.

Every vertex’s priority will be updated the same number of

times as its out-degree. In this case, using the lazy bucket

update approach drastically reduces the number of bucket

insertions. Additionally, with a lazy approach, we can also

buffer the priority updates and later reduce them with a

histogram approach (lazy with constant sum reduction opti-

mization). This histogram-based reduction avoids overhead

from atomic operations. For SSSP there are not many redun-

dant updates and the lazy approach introduces significant

runtime overhead over the eager approach.

Optimizing Ordered Graph Algorithms with GraphIt CGO ’20, February 22–26, 2020, San Diego, CA, USA

7 Related Work
Parallel Graph Processing Frameworks. There has been
a significant amount of work on unordered graph process-

ing frameworks (e.g., [12, 17–20, 28, 30, 33, 34, 36, 37, 39–

41, 43, 44, 46–48, 51–53], among many others). These frame-

works do not have data structures and operators to support

efficient implementations of ordered algorithms, and can-

not support a wide selection of ordered graph algorithms.

A few unordered frameworks [30, 43, 47] have the users de-

fine functions that filter out vertices to support ∆-stepping
for SSSP. This approach is not very efficient and does not

generalize to other ordered algorithms. Wonderland [50]

uses abstraction-guided priority-based scheduling to reduce

the total number of iterations for some graph algorithms.

However, it requires preprocessing and does not implement

a strict ordering of the ordered graph algorithms. PnP [48]

proposes direction-based optimizations for point-to-point

queries, which is orthogonal to the optimizations in this pa-

per, and can be combined together to potentially achieve

even better performance. GraphIt [52] decouples the algo-

rithm from optimizations for unordered graph algorithms.

This paper introduces new priority-based operators to the

algorithm language, proposes new optimizations for the or-

dered algorithms in the scheduling language, and extends

the compiler to generate efficient code.

Bucketing. Bucketing is a common way to exploit paral-

lelism and maintain ordering in ordered graph algorithms.

It is expressive enough to implement many parallel ordered

graph algorithms [7, 16]. Existing frameworks support ei-

ther lazy bucket update or eager bucket update approach.

GAPBS [7] is a suite of hand-optimized C++ programs that

includes SSSP using the eager bucket update approach. Juli-

enne [16] is a high-level programming framework that uses

the lazy bucket update approach, which is efficient for appli-

cations that have a lot of redundant updates, such as k-Core
and SetCover. However, it is not as efficient for applications

that have fewer redundant updates and less work per bucket,

such as SSSP and A
∗
search. GraphIt with the priority-based

extension unifies both the eager and lazy bucket update

approaches with a new programming model and compiler

extensions to achieve consistent high performance.

Speculative Execution. Speculative execution can also ex-

ploit parallelism in ordered graph algorithms [22, 23]. This

approach can potentially generate more parallelism as ver-

tices with different priorities are executed in parallel as long

as the dependencies are preserved. This is particularly im-

portant for many discrete simulation applications that lack

parallelism. However, speculative execution in software in-

curs significant performance overheads as a commit queue

has to be maintained, conflicts need to be detected, and val-

ues are buffered for potential rollback on conflicts. Hardware

solutions have been proposed to reduce the overheads of

speculative execution [2, 24–26, 42], but it is costly to build

customized hardware. Furthermore, some ordered graph al-

gorithms, such as approximate set cover and k-core, cannot
be easily expressed with speculative execution.

Approximate Priority Ordering. Some work disregard a

strict priority ordering and use an approximate priority or-

dering [3, 4, 12, 35]. This approach uses several “relaxed"

priority queues in parallel to maintain local priority ordering.

However, it does not synchronize globally among the differ-

ent priority queues. To the best of our knowledge and from

communications with the developers, Galois [12, 35] does not

currently support strict priority ordering and only supports

an approximate ordering. Galois [35] provides an ordered

list abstraction, which does not explicitly synchronize after

each priority. As a result, it is hard to implement algorithms

that require explicit synchronization, such as k-core. Galois
also require users to handle atomic synchronizations for cor-

rectness. This approach cannot implement certain ordered

algorithms that require strict priority ordering, such as work-

efficient k-core decomposition and SetCover. D-galois [13]

implements k-core for only a specific k , whereas GraphIt’s
k-core finds all cores.
Synchronization Relaxation. There has been a number of

frameworks that relax synchronizations in graph algorithms

for better performance while preserving correctness [9, 21,

45]. Compared to existing synchronization relaxation work,

bucket fusion in our new priority-based extension is more

restricted on synchronization relaxation. The synchroniza-

tion between rounds can be removed only when the vertices

processed in the next round has the same priority as ver-

tices processed in the current round. This way, we ensure

no priority inversion happens.

8 Conclusion
We introduce a new priority-based extension to GraphIt that

simplifies the programming of parallel ordered graph algo-

rithms and generates high-performance implementations.

We propose a novel bucket fusion optimization that signif-

icantly improves the performance of many ordered graph

algorithms on road networks. GraphIt with the extension

achieves up to 3× speedup on six ordered algorithms over

state-of-the-art frameworks (Julienne, Galois, and GAPBS)

while significantly reducing the number of lines of code.

A Artifact Evaluation Information
• Algorithms: SSSP with ∆-stepping, PPSP, wBFS, A∗

search, k-core, and Approximate Set Cover

• Compilation:C++ compiler with C++14 support, Cilk

Plus and OpenMP

• Binary: Compiled C++ code

• Data set: Social, Web, and Road graphs

• Run-time environment: Ubuntu 11.04

• Hardware: 2-socket Intel Xeon E5-2695 v3 CPUs with

Transparent Huge Pages enabled

CGO ’20, February 22–26, 2020, San Diego, CA, USA Y. Zhang, A. Brahmakshatriya, X. Chen, L. Dhulipala, S. Kamil, S. Amarasinghe, J. Shun

• Publicly available? Yes
• Code licenses (if publicly available)? MIT License

The detailed instructions to evaluate the artifact are avail-

able at https://github.com/GraphIt-DSL/graphit/blob/master/
graphit_eval/priority_graph_cgo2020_eval/readme.md.
The evaluation in the link first demonstrates how SSSP

with ∆-stepping with different schedules are compiled to

C++ programs (Figure 9). Then we provide instructions on

how to run different algorithms on small graphs serially.

Finally, there is an optional part that replicates the paral-

lel performance on a more powerful 2-socket machines for

LiveJournal, Twitter, and RoadUSA graphs (Table 4).

Acknowledgments
We thank Maleen Abeydeera for help with A

∗
search and

Mark Jeffrey for helpful comments. This research was sup-

ported by DOE Early Career Award #DE-SC0018947, NSF CA-

REER Award #CCF-1845763, MIT Research Support Commit-

tee Award, DARPA SDH Award #HR0011-18-3-0007, Applica-

tions Driving Architectures (ADA) Research Center, a JUMP

Center co-sponsored by SRC and DARPA, Toyota Research

Institute, DoE Exascale award #DE-SC0008923, DARPA D3M

Award #FA8750-17-2-0126.

References
[1] 2019. OpenStreetMap ©OpenStreetMap contributors.

https://www.openstreetmap.org/.

[2] Maleen Abeydeera and Daniel Sanchez. 2020. Chronos: Efficient Spec-

ulative Parallelism for Accelerators. In International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS).

[3] Dan Alistarh, Trevor Brown, Justin Kopinsky, Jerry Zheng Li, and

Giorgi Nadiradze. 2018. Distributionally Linearizable Data Structures.

In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 133–142.

[4] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. 2015. The

SprayList: A Scalable Relaxed Priority Queue. In ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP).
11–20.

[5] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-

Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.

2014. OpenTuner: An Extensible Framework for Program Autotuning.

In International Conference on Parallel Architectures and Compilation
Techniques.

[6] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele

Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,

Shoaib Kamil, and Saman Amarasinghe. 2019. Tiramisu: A Polyhe-

dral Compiler for Expressing Fast and Portable Code. In IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
193–205.

[7] Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The GAP

Benchmark Suite. CoRR abs/1508.03619 (2015). http://arxiv.org/abs/
1508.03619

[8] Richard Bellman. 1958. On a Routing Problem. Quart. Appl. Math. 16,
1 (1958), 87–90.

[9] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017.

Groute: An Asynchronous Multi-GPU Programming Model for Irreg-

ular Computations. In ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP). 235–248.
[10] Guy E. Blelloch, Richard Peng, and Kanat Tangwongsan. 2011. Linear-

work Greedy Parallel Approximate Set Cover and Variants. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA).

[11] Guy E. Blelloch, Harsha Vardhan Simhadri, and Kanat Tangwongsan.

2012. Parallel and I/O Efficient Set Covering Algorithms. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA).

[12] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex

Brooks, Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon: A

Communication-optimizing Substrate for Distributed Heterogeneous

Graph Analytics. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI). 752–768.

[13] Roshan Dathathri, Gurbinder Gill, Loc Hoang, and Keshav Pingali.

2019. Phoenix: A Substrate for Resilient Distributed Graph Analytics.

In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 615–630.

[14] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse

Matrix Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec. 2011),
1:1–1:25 pages.

[15] Camil Demetrescu, Andrew Goldberg, and David Johnson.

2019. 9th DIMACS implementation challenge - shortest paths.

http://www.dis.uniroma1.it/challenge9/.

[16] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2017. Julienne:

A Framework for Parallel Graph Algorithms Using Work-efficient

Bucketing. In ACM Symposium on Parallelism in Algorithms and Ar-
chitectures (SPAA). 293–304.

[17] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2019. Low-

latency Graph Streaming Using Compressed Purely-functional Trees.

In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 918–934.

[18] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Car-

los Guestrin. 2012. PowerGraph: Distributed Graph-parallel Computa-

tion on Natural Graphs. In Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation (OSDI’12). 17–30.

[19] Samuel Grossman, Heiner Litz, and Christos Kozyrakis. 2018. Making

Pull-based Graph Processing Performant. InACMSIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP). 246–260.

[20] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and

Margaret Martonosi. 2016. Graphicionado: A High-performance and

Energy-efficient Accelerator for Graph Analytics. In Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 56:1–56:13.

[21] Harshvardhan, Adam Fidel, Nancy M. Amato, and Lawrence Rauch-

werger. 2014. KLA: A New Algorithmic Paradigm for Parallel Graph

Computations. In International Conference on Parallel Architectures and
Compilation (PACT). 27–38.

[22] Muhammad Amber Hassaan, Martin Burtscher, and Keshav Pingali.

2011. Ordered vs. Unordered: A Comparison of Parallelism and Work-

efficiency in Irregular Algorithms. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP). 3–12.

[23] Muhammad Amber Hassaan, Donald D. Nguyen, and Keshav K. Pin-

gali. 2015. Kinetic Dependence Graphs. In International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 457–471.

[24] M. C. Jeffrey, S. Subramanian, M. Abeydeera, J. Emer, and D. Sanchez.

2016. Data-centric execution of speculative parallel programs. In An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO).
1–13.

[25] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez. 2015.

A scalable architecture for ordered parallelism. In Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 228–241.

[26] M. C. Jeffrey, V. A. Ying, S. Subramanian, H. R. Lee, J. Emer, and D.

Sanchez. 2018. Harmonizing Speculative and Non-Speculative Exe-

cution in Architectures for Ordered Parallelism. In Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 217–230.

https://github.com/GraphIt-DSL/graphit/blob/master/graphit_eval/priority_graph_cgo2020_eval/readme.md
https://github.com/GraphIt-DSL/graphit/blob/master/graphit_eval/priority_graph_cgo2020_eval/readme.md
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619

Optimizing Ordered Graph Algorithms with GraphIt CGO ’20, February 22–26, 2020, San Diego, CA, USA

[27] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010.

What is Twitter, a Social Network or a News Media?. In International
Conference on World Wide Web (WWW). 591–600.

[28] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi:

Large-scale Graph Computation on Just a PC. In USENIX Conference
on Operating Systems Design and Implementation (OSDI). 31–46.

[29] David W. Matula and Leland L. Beck. 1983. Smallest-last Ordering and

Clustering and Graph Coloring Algorithms. J. ACM 30, 3 (July 1983),

417–427.

[30] Ke Meng, Jiajia Li, Guangming Tan, and Ninghui Sun. 2019. A Pattern

Based Algorithmic Autotuner for Graph Processing on GPUs. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP). 201–213.

[31] Robert Meusel, Oliver Lehmberg, Christian Bizer, and Sebas-

tiano Vigna. [n.d.]. Web Data Commons - Hyperlink Graphs.

http://webdatacommons.org/hyperlinkgraph.

[32] Ulrich Meyer and Peter Sanders. 2003. ∆-stepping: a parallelizable
shortest path algorithm. J. Algorithms 49, 1 (2003), 114–152.

[33] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez. 2018.

Exploiting Locality in Graph Analytics through Hardware-Accelerated

Traversal Scheduling. In Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 1–14.

[34] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. 2019. PHI:

Architectural Support for Synchronization- and Bandwidth-Efficient

Commutative Scatter Updates. In Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). 1009–1022.

[35] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Light-

weight Infrastructure for Graph Analytics. In ACM Symposium on
Operating Systems Principles (SOSP). 456–471.

[36] Sreepathi Pai and Keshav Pingali. 2016. A Compiler for Throughput

Optimization of Graph Algorithms on GPUs. In ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA). 1–19.

[37] Vijayan Prabhakaran, Ming Wu, Xuetian Weng, Frank McSherry, Li-

dong Zhou, and Maya Haridasan. 2012. Managing Large Graphs on

Multi-cores with Graph Awareness. In USENIX Conference on Annual
Technical Conference (ATC).

[38] Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly

Barnes, Sylvain Paris, Marc Levoy, Saman Amarasinghe, and Frédo

Durand. 2017. Halide: Decoupling Algorithms from Schedules for

High-performance Image Processing. Commun. ACM 61, 1 (Dec. 2017),

106–115.

[39] Sherif Sakr, Faisal Moeen Orakzai, Ibrahim Abdelaziz, and Zuhair

Khayyat. 2017. Large-Scale Graph Processing Using Apache Giraph (1st

ed.). Springer Publishing Company, Incorporated.

[40] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Pro-

cessing Framework for Shared Memory. In ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP). 135–146.

[41] Shuang Song, Xu Liu, Qinzhe Wu, Andreas Gerstlauer, Tao Li, and

Lizy K. John. 2018. Start Late or Finish Early: A Distributed Graph

Processing System with Redundancy Reduction. PVLDB 12, 2 (2018),

154–168.

[42] S. Subramanian, M. C. Jeffrey, M. Abeydeera, H. R. Lee, V. A. Ying,

J. Emer, and D. Sanchez. 2017. Fractal: An execution model for fine-

grain nested speculative parallelism. InACM/IEEE Annual International
Symposium on Computer Architecture (ISCA). 587–599.

[43] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Sub-

ramanya R. Dulloor, Michael J. Anderson, Satya Gautam Vadlamudi,

Dipankar Das, and Pradeep Dubey. 2015. GraphMat: High Performance

Graph Analytics Made Productive. Proc. VLDB Endow. 8, 11 (July 2015),
1214–1225.

[44] Keval Vora, Rajiv Gupta, and Guoqing (Harry) Xu. 2017. KickStarter:

Fast and Accurate Computations on Streaming Graphs via Trimmed

Approximations. In International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 237–251.

[45] Keval Vora, Sai Charan Koduru, and Rajiv Gupta. 2014. ASPIRE: Ex-

ploiting Asynchronous Parallelism in Iterative Algorithms Using a

Relaxed Consistency Based DSM. In ACM International Conference
on Object Oriented Programming Systems Languages, and Applications
(OOPSLA). 861–878.

[46] Lei Wang, Liangji Zhuang, Junhang Chen, Huimin Cui, Fang Lv, Ying

Liu, and Xiaobing Feng. 2018. Lazygraph: Lazy Data Coherency for

Replicas in Distributed Graph-parallel Computation. In ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP).
276–289.

[47] Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl

Yang, Leyuan Wang, Muhammad Osama, Chenshan Yuan, Weitang

Liu, Andy T. Riffel, and John D. Owens. 2017. Gunrock: GPU Graph

Analytics. ACM Trans. Parallel Comput. 4, 1, Article 3 (Aug. 2017),

3:1–3:49 pages.

[48] Chengshuo Xu, Keval Vora, and Rajiv Gupta. 2019. PnP: Pruning and

Prediction for Point-To-Point Iterative Graph Analytics. In Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 587–600.

[49] Jaewon Yang and Jure Leskovec. 2015. Defining and Evaluating Net-

work Communities Based on Ground-truth. Knowl. Inf. Syst. 42, 1 (Jan.
2015), 181–213.

[50] Mingxing Zhang, YongweiWu, Youwei Zhuo, Xuehai Qian, Chengying

Huan, and Kang Chen. 2018. Wonderland: A Novel Abstraction-Based

Out-Of-Core Graph Processing System. In International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 608–621.

[51] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Ama-

rasinghe, and Matei Zaharia. 2017. Making Caches Work for Graph

Analytics. In IEEE International Conference on Big Data (Big Data).
293–302.

[52] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,

Julian Shun, and Saman Amarasinghe. 2018. GraphIt: A High-

performance Graph DSL. Proc. ACM Program. Lang. 2, OOPSLA, Article
121 (Oct. 2018), 121:1–121:30 pages.

[53] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.

2016. Gemini: A Computation-Centric Distributed Graph Process-

ing System. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 301–316.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Performance Optimizations for Ordered Graph Algorithms
	3.1 Lazy Bucket Update
	3.2 Eager Bucket Update
	3.3 Eager Bucket Fusion Optimization

	4 Programming Model
	4.1 Algorithm Language
	4.2 Scheduling Language

	5 Compiler Implementation
	5.1 Lazy Bucket Update Schedules
	5.2 Eager Bucket Update Schedules
	5.3 Autotuning

	6 Evaluation
	6.1 Applications
	6.2 Comparisons with other Frameworks
	6.3 Scalability Analysis
	6.4 Performance of Different Schedules

	7 Related Work
	8 Conclusion
	A Artifact Evaluation Information
	References

