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How much does your data exploration overfit?
Controlling bias via information usage.

Daniel Russo and James Zou

Abstract—Modern data is messy and high-dimensional, and
it is often not clear a priori what are the right questions to
ask. Instead, the analyst typically needs to use the data to
search for interesting analyses to perform and hypotheses to
test. This is an adaptive process, where the choice of analysis
to be performed next depends on the results of the previous
analyses on the same data. Ultimately, which results are reported
can be heavily influenced by the data. It is widely recognized
that this process, even if well-intentioned, can lead to biases
and false discoveries, contributing to the crisis of reproducibility
in science. But while any data-exploration renders standard
statistical theory invalid, experience suggests that different types
of exploratory analysis can lead to disparate levels of bias,
and the degree of bias also depends on the particulars of the
data set. In this paper, we propose a general information usage
framework to quantify and provably bound the bias and other
error metrics of an arbitrary exploratory analysis. We prove that
our mutual information based bound is tight in natural settings,
and then use it to give rigorous insights into when commonly used
procedures do or do not lead to substantially biased estimation.
Through the lens of information usage, we analyze the bias of
specific exploration procedures such as filtering, rank selection
and clustering. Our general framework also naturally motivates
randomization techniques that provably reduce exploration bias
while preserving the utility of the data analysis. We discuss
the connections between our approach and related ideas from
differential privacy and blinded data analysis, and supplement
our results with illustrative simulations.

Index Terms—Adaptive data analysis; Data snooping; Mutual
information; Over-fitting;

I. INTRODUCTION

ODERN data is messy and high dimensional, and it
is often not clear a priori what is the right analysis
to perform. To extract the most insight, the analyst typically
needs to perform exploratory analysis to make sense of the
data and identify interesting hypotheses. This is invariably an
adaptive process; patterns in the data observed in the first
stages of analysis inform which tests are run next and the
process iterates. Ultimately, the data itself may influence which
results the analyst chooses to report, introducing researcher
degrees of freedom: an additional source of over-fitting that
isn’t accounted for in reported statistical estimates [1]. Even
if the analyst is well-intentioned, this exploration can lead to
false discovery or large bias in reported estimates.
The practice of data-exploration is largely outside the do-
main of classical statistical theory. Standard tools of multiple
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hypothesis testing and false discovery rate (FDR) control
assume that all the hypotheses to be tested, and the procedure
for testing them, are chosen independently of the dataset. Any
“peeking” at the data before committing to an analysis proce-
dure renders classical statistical theory invalid. Nevertheless,
data exploration is ubiquitous, and folklore and experience
suggest the risk of false discoveries differs substantially de-
pending on how the analyst explores the data. This creates
a glaring gap between the messy practice of data analysis,
and the standard theoretical frameworks used to understand
statistical procedures. In this paper, we aim to narrow this
gap. We develop a general framework based on the concept
of information usage and systematically study the degree of
bias introduced by different forms of exploratory analysis, in
which the choice of which function of the data to report is
made after observing and analyzing the dataset.

To concretely illustrate the challenges of data exploration,
consider two data scientists Alice and Bob.

Example 1. Alice has a dataset of 1000 individuals for a
weight-loss biomarker study. For each individual, she has their
weight measured at 3 time points and the current expression
values of 2000 genes assayed from blood samples. There
are three possible weight changes that Alice could have
looked at—the difference between time points 1 and 2, 2
and 3 or 1 and 3—but Alice decides ahead of time to only
analyze the weight change between 1 and 3. She computes
the correlation across individuals between the expression of
each gene and the weight change, and reports the gene
with the highest correlations along with its r? value. This
is a canonical setting where we have tools for controlling
error in multiple-hypothesis testing and the false-discovery
rate (FDR). It is well-recognized that even if the reported
gene passes the multiple-testing threshold, its correlation in
independent replication studies tend to be smaller than the
reported correlation in the current study. This phenomenon is
also called the Winner’s Curse selection bias.

Example 2. Bob has the same data, and he performs some
simple data exploration. He first uses data visualization to
investigate the average expression of all the genes across
all the individuals at each of the time points, and observes
that there is very little difference between time 1 and 2 and
there is a large jump between time 2 and 3 in the average
expression. So he decides to focus on these later two time
points. Next, he realizes that half of the genes always have low
expression values and decides to simply filter them out. Finally,
he computes the correlations between the expression of the
1000 post-filtered genes and the weight change between time
2 and 3. He selects the gene with the largest correlation and
reports its value. Bob’s analysis consists of three steps and the



results of each step depend on the results and decisions made
in the previous steps. This adaptivity in Bob’s exploration
makes it difficult to apply standard statistical frameworks.
We suspect there is also a selection bias here leading to the
reported correlation being systematically larger than the real
correlations if those genes are tested again. How do we think
about and quantify the selection bias and overfitting due to this
more complex data exploration? When is it larger or smaller
than Alice’s selection bias?

The toy examples of Alice and Bob illustrate several sub-
tleties of bias due to data exploration. First, the adaptivity
of Bob’s analysis makes it more difficult to quantify its bias
compared to Alice’s analysis. Second, for the same analysis
procedure, the amount of selection bias depends on the dataset.
Take Alice for example, if across the population one gene
is substantially more correlated with weight change than
all other genes, then we expect the magnitude of Winner’s
Curse decreases. Third, different steps of data exploration
introduce different amounts of selection bias. Intuitively, Bob’s
visualizing of aggregate expression values in the beginning
should not introduce as much selection bias as his selection
of the top gene at the last step.

This paper introduces a mathematical framework to for-
malize these intuitions and to study selection bias from data
exploration. The main tool we develop is a metric of the bad
information usage in the data exploration. The true signal in a
dataset is the signal that is preserved in a replication dataset,
and the noise is what changes across different replications.
Using Shannon’s mutual information, we quantify the degree
of dependence between the noise in the data and the choice
of which result is reported. We then prove that the bias
of an arbitrary data-exploration process is bounded by this
measure of its bad information usage. This bound provides a
quantitative measure of researcher degrees of freedom, and
offers a single lens through which we investigate different
forms of exploration.

In Section II, we present a general model of exploratory
data-analysis that encompasses the procedures used by Alice
and Bob. Then we define information usage and show how
it upper and lower bounds various measures of bias and
estimation error due to data exploration in Section IV. In
Section V, we study specific examples of data exploration
through the lens of information usage, which gives insight
into Bob’s practices of filtering, visualization, and maximum
selection. Information usage naturally motivates randomization
approaches to reduce bias and we explore this in Section VL.
In Section VI, we also study a model of a data analyst who—
like Bob—interacts adaptively with the data many times before
selecting values to report.

II. A MODEL OF DATA EXPLORATION

We consider a general framework in which a dataset D
is drawn from a probability distribution P over a set of
possible datasets D. The analyst is considering a large number
m of possible analyses on the data, but wants to report
only the most interesting results. She decides to report the
result of a single analysis, and chooses which one after

observing the realized dataset, D, or some summary statistics
of D. More formally, the data analyst considers m functions
@15y Om : D — R of the data, where ¢;(D) denotes the
output of the ith analysis on the realization D. Each function
¢; is typically called an estimator; each ¢;(D) is an estimate
or statistic calculated from the sampled data, and is a random
variable due to the randomness in the realization of D. After
observing the sampled-data, the analyst chooses to report the
value ¢7(py(D) for T(D) € {1,...,m}. The selection rule
T :D — {1,...,m} captures how the analyst uses the data
and chooses which result to report. Because the choice made
by T is itself a function of the sampled-data, the reported
value ¢7(py(D) may be significantly biased. For example,
E[¢7(p)(D)] could be very far from zero even if each fixed
function ¢;(D) has zero mean.

Note that although the number of estimators is assumed to
be finite, it could be arbitrarily large; in particular m can be
exponential in the number of samples in the dataset. The ¢;’s
represent the set of all estimators that the analyst potentially
could have considered during the course of exploration. Also,
while for simplicity we focus on the case where exactly one
estimate is selected and reported, our results apply in settings
where the analyst selects and reports many estimates.'

Example 1. For Alice, D is a 1000-by-2003 matrix, where
the rows are the individuals and the columns are the 2000
genes plus the three possible weight changes. Here there are
m = 2000 potential estimators and ¢; is the correlation
between the ith gene and the weight change between times 1
and 3. Alice’s analysis corresponds to the selection procedure
T = arg max; ¢;.

Example 2. Bob has the same dataset D. Because his
exploration could have led him to use any of the three possible
weight-change measures, the set of potential estimators are the
correlations between the expression of one gene and one of the
three weight changes and there are 2000 X 3 such ¢;’s. Bob’s
adaptive exploration also corresponds to a selection procedure
T that takes the dataset and picks out a particular correlation
value ¢ to report.

Selection Bias. Denote the true value of estimator ¢; as
i = E[¢;(D)]; this is the value that we expect if we apply ¢;
on multiple independent replication datasets. On a particular
dataset D, if T'(D) = i is the selected test, the output of data
exploration is the value ¢;(D). The output and true-value can
be written more concisely as ¢ and pp. The difference ¢ —
wr captures the error in the reported value. We are interested in
quantifying the bias due to data-exploration, which is defined
as the average error E[¢pr—p7]. We will quantify other metrics
of error, such as the expected absolute-error E[|¢r — pr|] or
the squared-error E[(¢7 — uu1)?]. In each case, the expectation
is over all the randomness in the dataset D and any intrinsic
randomness in 7.

III. RELATED WORK

There is a large body of work on methods for providing
meaningful statistical inference and preventing false discov-

'For example, if the analyst chooses to report mg < m results, our
framework can be used to bound the average bias of the reported values
by letting T" be a random draw from the mo selected analyses.



ery. Much of this literature has focused on controlling the
false discovery rate in multiple-hypothesis testing where the
hypotheses are not adaptively chosen [2, 3]. Another line
of work studies confidence intervals and significance tests
for parameter estimates in sparse high dimensional linear
regression (see [4, 5, 6, 7] and the references therein).

One recent line of work [8, 9] proposes a framework for
assigning significance and confidence intervals in selective
inference, where model selection and significance testing are
performed on the same dataset. These papers correct for
selection bias by explicitly conditioning on the event that a
particular model was chosen. While some powerful results can
be derived in the selective inference framework (e.g. [10, 11]),
it requires that the conditional distribution P(¢; = -|T" = i)
is known and can be directly analyzed. This requires that the
candidate models and the selection procedure 7" are mathemat-
ically tractable and specified by the analyst before looking at
the data. Our approach does not explicitly adjust for selection
bias, but it enables us to formalize insights that apply to very
general selection procedures. For example, the selection rule
T could represent the choice made by a data-analyst, like Bob,
after performing several rounds of exploratory analysis.

A powerful line of work in computer science and learning
theory [12, 13, 14] has explored the role of algorithmic stabil-
ity in preventing overfitting. Related to stability is PAC-Bayes
analysis, which provides powerful generalization bounds in
terms of KL-divergence [15]. There are two key differences
between stability and our framework of information usage.
First, stability is typically defined in the worst case setting
and is agnostic of the data distribution. An algorithm is stable
if, no matter the data distribution, changing one training point
does not affect the predictions too much. Information usage
gives more fine-grained bias bounds that depend on the data
distribution. For example, in Section V-C we show the same
learning algorithm has lower bias and lower information usage
as the signal in the data increases. The second difference is that
stability analysis has been traditionally applied to prediction
problems—i.e. to bounding generalization loss in prediction
tasks. Information usage applies to prediction—e.g. ¢; could
be the squared loss of a classifie—but it also applies to model
estimation where ¢; could be the value of the ith parameter.

Exciting recent work in computer science [16, 17, 18, 19]
has leveraged the connection between algorithmic stability
and differential privacy to design specific differentially private
mechanisms that reduce bias in adaptive data analysis. In this
framework, the data analyst interacts with a dataset indirectly,
and sees only the noisy output of a differentially private
mechanism. In Section VI, we discuss how information usage
also motivates using various forms of randomization to reduce
bias. In the Appendix, we discuss the connections between
mutual information and a recently introduced measure called
max-information [19]. The results from this privacy literature
are designed for worst-case, adversarial data analysts. We
provide guarantees that vary with the selection rule, but apply
to all possible selection procedures, including ones that are
not differentially private. The results in algorithmic stability
and differential privacy are complementary to our framework:
these approaches are specific techniques that guarantee low

bias for worst-case analysts, while our framework quantifies
the bias of any general data-analyst.

Finally it is also important to note the various practical
approaches used in specific settings to quantify or reduce bias
from exploration. Using random subsets of data for validation
is a common prescription against overfitting. This is feasible
if the data points are independent and identically distributed
samples. However, for structured data—e.g. time-series or
network data—it is not clear how to create a validation set. The
bounds on overfitting we derive based on information usage do
not assume independence and apply to structured data. Special
cases of selection procedures 1" corresponding to filtering by
summary statistics of biomarkers [20] and selection matrix
factorization based on a stability criterion [21] have been
studied. The insights from these specific settings agree with
our general result that low information usage limits selection
bias.

IV. CONTROLLING EXPLORATION BIAS VIA INFORMATION
USAGE

Information usage upper bounds bias. In this paper, we
bound the degree of bias in terms of an information—theoretic
quantity: the mutual information between the choice T'(D) of
which estimate to report, and the actual realized value of the
estimates (¢1(D), ..., ¢, (D)). We state this result in a general
framework, where ¢ = (¢1,...,0,) : @ — R™ and T :
Q — {1,..,m} are any random variables defined on a common
probability space. Let g = (i1, ..., i) = E[¢] denote the
mean of ¢. Recall that a real-valued random variable X is
o—sub-Gaussian if for all A\ € R, E[e*X] < ¢*7°/2 50 that
the moment generating function of X is dominated by that
of a normal random variable. Zero—mean Gaussian random
variables are sub-Gaussian, as are bounded random variables.

Proposition 1. If ¢; — p,; is o—sub-Gaussian for each i €
{1,...,m}, then,

E o7 — pr] | < 0/21(T; ),

where I denotes mutual information®.

The randomness of ¢ is due to the randomness in the
realization of the data D ~ P. This captures how each es-
timate ¢; varies if a replication dataset is collected, and hence
captures the noise in the statistics. The mutual information
I(T; ¢), which we call information usage, then quantifies
the dependence of the selection process on the noise in the
estimates. Intuitively, a selection process that is more sensitive
to the noise (high I) is at a greater risk for bias. We will also
refer to I(T;¢) as bad information usage to highlight the
intuition that it really captures how much information about
the noise in the data goes into selecting which estimate to
report. We normally think of data analysis as trying to extract
the good information, i.e. the true signal, from data. The more
bad information is used, the more likely the analysis procedure
is to overfit.

2The mutual information between two random variables X, Y is defined
P(zx,
w 10GY) =5, Pley) log (505805



When T is determined entirely from the values
{é1,..., pm}, mutual information I(7T;¢) is equal to
entropy H(T). This quantifies how much T varies over
different independent replications of the data.

The parameter o provides the natural scaling for the values
of ¢;. The condition that ¢; is o-sub-Gaussian ensures that
its tail is not too heavy>. In the Appendix, we show how this
condition can be relaxed to treat cases where ¢; is a sub-
Exponential random variables (Proposition 9) as well as set-
tings where the ¢;’s have different scaling o;’s (Proposition 8).

Proposition 1 applies in a very general setting. The mag-
nitude of overfitting depends on the generating distribution
of the data set, and on the size of the data, and this is
all implicitly captured in by the mutual-information I(T’; ¢).
For example, a common type of estimate of interest is
¢ = nt 2?21 fi(X;), the sample average of some func-
tion f; based on an iid sequence Xji,..., X,,. Note that if
fi(X;) — E[fi(X;)] is sub-Gaussian with parameter o, then
¢; — p; is sub-Gaussian with parameter o /1/n and therefore

Blor] - Blur]] < oy 22

To illustrate Proposition 1, we consider two extreme set-
tings: one where 7' is chosen independently of the data and
one where T heavily depends on the values of all the ¢;’s.
The subsequent sections will investigate the applications of
information usage in depth in settings that interpolate between
these two extremes.

Example: data-agnostic exploration. Suppose 7 is inde-
pendent of ¢. This may happen if the choice of which estimate
to report is decided ahead of time and cannot change based on
the actual data. It may also occur when the dataset can be split
into two statistically independent parts, and separate parts are
reserved for data-exploration and estimation. In such cases,
one expects there is no bias because the selection does not
depend on the actual values of the estimates. This is reflected
in our bound: since 7' is independent of ¢, I(T;¢) = 0 and
therefore E[¢r] = Elur].

Example: maximum of Gaussians. Suppose each ¢; is an
independent sample from the zero-mean normal N (0, 02). If
T = argmaxg;, then I(T;¢) = H(T) = log(m) because

1<i<m
all m ¢;’s are symmetric and have equal chance of being
selected by T. Applying Proposition 1 gives E[¢r — pr] =
E[¢r] < o4/2log(m). This is the well known inequality
for the maximum of Gaussian random variables. Moreover,
it is also known that this equation approaches equality as
the number of Gaussians, m, increases, implying that the
information usage I(T'; ¢) precisely measures the bias of max-
selection in this setting. It is illustrative to also consider a more
general selection 7" which first ranks the ¢;’s from the largest
to the smallest and then uniformly randomly selects one of the
mg largest ¢;’s to report. Here I(T;¢) = H(T) — H(T|¢),
where H(T') = logm (by the symmetry of ¢; as before) and
H(T|¢) = logmg (since given the values of ¢;’s there is still

3 A random variable X is said to be o-sub-Gaussian if E [eMX*E[X])] <

e??22/2 for all A.

uniform randomness over which of the top mg is selected).
We immediately have the following corollary.

Corollary 1. Suppose for each i € {1,...,m}, ¢; is a zero-
centered sub-Gaussian random variable with parameter o. Let
1) = P2) = -+ = P(m) denote the values of ¢; sorted from
the largest to the smallest. Then

1 & / m
72@5(1) <o 210g7.
mo im1 mo

In Appendix C, we show that this bound is also tight as m
and my increase.

Information usage bounds other metrics of exploration
error. So far we have discussed how mutual information
upper bounds the bias |E [¢1 — pr]|. In different application
settings, it might be useful to control other measures of explo-
ration error, such as the absolute error deviation E [|¢r — pr|]
and the squared error E [(¢7 — pr)?].

Here we extend Proposition 1 and show how +/I(T’; ¢)
and I(T;¢) can be used to bound absolute error deviation
and squared error. Note that due to inherent noise even in the
absence of selection bias, the absolute or squared error can
be of order o or o2, respectively. The next result effectively
bounds the additional error introduced by data-exploration in
terms of information-usage.

E

Proposition 2. Suppose for each i € {1,...,m}, ¢; — p; is o
sub-Gaussian. Then

Ell¢r — pr|] < o+ 1o/ 21(T; @)

and
E[(¢r — pr)?] < 1.250% + c2021(T; @).

where c1 < 36 and co < 10 are universal constants.

Information usage also lower bounds error. In the max-
imum of Gaussians example, we have already seen a setting
where information usage precisely quantifies bias. Here we
show that this is a more general phenomenon by exhibiting
a much broader setting in which mutual-information lower
bounds expected-error. This complements the upper bounds
of Proposition 1 and Proposition 2.

Suppose T' = argmax; ¢; where ¢ ~ N (u, ). Because
T is a deterministic function of ¢, mutual information is
equal to entropy. The probability T' = ¢ is a complicated
function of the mean vector w, and the entropy H (7') provides
a single number measuring the uncertainty in the selection
process. Proposition 2 upper bounds the average squared
distance between ¢ and pr by entropy. The next proposition
provides a matching lower bound, and therefore establishes a
fundamental link between information usage and selection-risk
in a natural family of models.

Proposition 3. Let T = argmaxi<i<m ¢; where ¢ ~
N (w, I). There exist universal numerical constants c; = 1/8,
ca < 2.5, cg =10, and ¢4 = 1.5 such that for any m € N
and p € R™,

e H(T) — ¢y < E[(é1 — pur)?] < s H(T) + cu.



Recall that the entropy of 7' is defined as

H(T) = Xi:P(T — i)log <P(lel)> .

Here log(1/P(T = 1)) is often interpreted as the “surprise”
associated with the event {7 = i} and entropy is interpreted as
expected surprise in the realization of 7. Proposition 3 relies
on a link between the surprise associated with the selection of
statistic 7, and the squared error (¢; — ,uz-)z on events when it
is selected.

To understand this result, it is instructive to instead consider
a simpler setting; imagine m = 2, ¢ = x always, ¢o ~
N(0,1), and the selection rule is 7' = argmax; ¢;. When
x >> 0 is large,

log(1/P(T = 2)) = log(1/P(¢ > 1)) ~ 2%/2

and so the surprise associated with the event {T = 2} scales
with the squared gap between the selection threshold x and
the true mean of ¢o. One can show that as x — oo,

H(Tr) ~ P(Tm = 2) IOg(l/P(Tz = 2))
~ P(T, = 2)z?
~ E[(¢1, — pr,)?]

where T, denotes the selection rule with threshold x and
f(z) ~ g(z) if f(x)/g(x) = 1 as z — oc.

In the Appendix, we investigate additional threshold-based
selection policies applied to Gaussian and exponential random
variables, allowing for arbitrary correlation among the ¢;’s,
and show that H(T) also provides a natural lower bound on
estimation-error.

V. WHEN IS BIAS LARGE OR SMALL? THE VIEW FROM
INFORMATION USAGE

In this section, we consider several simple but commonly
used procedures of feature selection and parameter estimation.
In many applications, such feature selection and estimation are
performed on the same dataset. Information usage provides
a unified framework to understand selection bias in these
settings. Our results inform when these these procedures
introduce significant selection bias and when they do not. The
key idea is to understand which structures in the data and
the selection procedure make the mutual information I(7'; ¢)
significantly smaller than the worst-case value of log(m). We
provide several simulation experiments as illustrations.

A. Filtering by marginal statistics

Imagine that T" is chosen after observing some dataset D.
This dataset determines the values of ¢, ..., ¢,,,, but may also
contain a great deal of other information. Manipulating the
mutual information shows

I(T;¢) = H(T)-H(T|p)
< H(T)-I(T;D|¢)
= (1-aH(T)

where o = I(T; D|¢)/H(T) captures the fraction of the
uncertainty in 7" that is explained by the data in D beyond the

values ¢, ..., . In many cases, instead of being a function
of ¢, the choice T is a function of data that is more loosely
coupled with ¢, and therefore we expect that I(T’; ¢) is much
smaller than H (T') (which itself can be less than log(m)).

One setting when the selection of 7" depends on the statistics
of D that are only loosely coupled with ¢ is variance based
feature selection [22, 23]. Suppose we have n samples and m
bio-markers. Let X; ; denote the value of the i-th bio-marker
on sample j. Here D = {X;;}. Let ¢; = n~' 37 | X,
be the empirical mean values of the i-th biomarker. We are
interested in identifying the markers that show significant non-
zero mean. Many studies first perform a filtering step to select
only the markers that have high variance and remove the
rest. The rationale is that markers that do not vary could be
measurement errors or are likely to be less important. A natural
question is whether such variance filtering introduces bias.

In our framework, variance selection is exemplified by the
selection rule 7 = arg max; V; where V; = E?Zl(Xm—qbi)Q.
Here we consider the case where only the marker with the
largest variance is selected, but all the discussion applies to
softer selection when we select the K markers with the largest
variance. The resulting bias is E[¢ — pr|. Proposition 1 states
that variance selection has low bias if I(T; ¢) is small, which
is the case if the empirical means and variances, ¢; and V;, are
not too dependent. In fact, when the X; ; are i.i.d. Gaussian
samples, ¢1, ..., ¢, are independent of V7, ..., V,, . Therefore
I(T; ¢) = 0 and we can guarantee that there is no bias from
variance selection.

This illustrates an important point that the bias bound
depends on I(T; ¢) instead of I(T; D). The selection process
T may depend heavily on the dataset D and I(T; D) could
be large. However as long as the statistics of the data used for
selection have low mutual information with the estimators ¢;,
there is low bias on the reported values.

We can apply our framework to analyze biases that arise
from feature filtering more generally. A common practice in
data analysis is to reduce multiple hypotheses testing burden
and increase discovery power by first filtering out covariates
or features that are unlikely to be relevant or interesting [20].
This can be viewed as a two-step procedure. For each feature
i, two marginal statistics are computed from the data, 1,
and ¢;. Filtering corresponds to a selection protocol on ;.
Since I(T'; ¢) < I(¢; @), if the 1;’s do not reveal too much
information about ¢;’s then the filtering step does not create
too much bias. In our example above, 1); is the sample variance
and ¢; is the sample mean of feature i. General principles for
creating independent v; and ¢; are given in [20].

More generally, suppose the dataset determines two sets
of statistics ¢ = (¢1,..,0m) and Y = (V;, ..., Yns). We
report ¢ and want to quantify its bias, but the selection rule
depends only on the 1;’s, i.e. T = f(v;) can be expressed
as a function of the ;’s. This captures the general situation
where data processing and feature selection uses one set of
summary statistics (¢)) and we want to quantify the bias
introduced in these steps on another set of statistics (¢). The
dependence structure can be expressed as a Markov chain
T — 1) — ¢, where this notation indicates that conditioned
on @, T is independent of ¢. The data processing inequality



implies I(T; ¢) < I(¢; ), which—combined with our bound—
formalizes the intuition that the selection rule cannot be
substantially biased when ¢ and ) share limited information
in common. However, this bound may be quite loose. We
instead turn to strong data processing inequalities.

Definition 1. A pair of random variables (X,Y) satisfies a
strong data-processing inequality with contraction coefficient
n € [0, 1] if for all random variables U with U — X —Y

I(U;Y) <nl(U; X)

Let nxy be the smallest constant such that (1) is satisfied for
all valid U.

The contraction coefficient satisfies several natural proper-
ties. First, it tensorizes [24]. That is, if (X1,Y7),...(Xy, Ya)
is an independent sequence, then 1xy = max;nx,y;. Also,
if X,Y and Z follow a Markov chain X — Y — Z then

Nxz <Nyz.
Example. Suppose D = (Xi,...,X,,) consists of n iid
random variables and ¥ = (Xi,..., X)) is a subsample of

k < n data points. Then 1y < nyp < k/n [25].

Example.(Noisy Channels) If (X,Y") corresponds to a bi-
nary symmetric channel with error rate § then nxy = (1—26)2
[26].

Note that the contraction coefficient 74, depends only on
the distribution of ¢ and 1), and not on the selection rule 7'.
A benefit of our mutual information framework for bounding
the exploration bias is that we can immediately apply Strong
Data Processing to obtain tighter bounds on bias:

Proposition 4. Suppose ¢; — p; is o sub-Gaussian for each
i € {1,..,,m}. Then if the selection T is independent of ¢
conditioned on 1,

Elpr — pr] < 0/ 2091 (T;1).

B. Bias due to data visualization

Data visualization, using clustering for example, is a com-
mon technique to explore data and it can inform subsequent
analysis. How much selection bias can be introduced by such
visualization? While in principle a visualization could reveal
details about every data point, a human analyst typically only
extracts certain salient features from plots. For concreteness,
we use clustering as an example, and imagine the analyst
extracts the number of clusters K from the analysis. In our
framework the natural object of study is the information usage
I(K; ¢), since if the final selection 7' is a function of K,
then I(7T'; ¢) < I(K; ¢) by the data-processing inequality. In
general, K is a random variable that can take on values 1
to n (if each point is assigned its own cluster). When there
is structure in the data and the clustering algorithm captures
it, then K can be strongly concentrated around a specific
number of clusters and [(K; ¢) < H(K) ~ 0. In this setting,
clustering is informative to the analyst but does not lead
to “bad information-usage” and therefore does not increase
exploration bias. This is a stylized example; if the analyst uses
additional information beyond the number of clusters K, then
the bias could increase.

C. Rank selection with signal

Rank selection is the procedure for selecting the ¢; with
the largest value (or the top K ¢;’s with the largest values).
It is the simplest selection policy and the one that we are
instinctively most likely to use. We have seen previously how
rank selection can introduce significant bias. In the bio-marker
example in Subsection V-A, suppose there is no signal in the
data, so X;; ~ N(0,1) and ¢; ~ N(0,1/n). Under rank
selection, ¢ would have a bias close to +/(2logm)/n.

What is the bias of rank selection when there is signal in
the data? Our framework cleanly illustrates how signal in the
data can reduce rank selection bias. As before, this insight
follows transparently from studying the mutual information
I(T, ¢). Recall that mutual information is bounded by entropy:
I(T; ¢) < H(T) < log(m). When the data provides a strong
signal of which 7' to select, the distribution of 7" is far from
uniform, and H(7') is much smaller than its worst case value
of log(m).

Consider the following simple example. Assume

I N(wo?)
b {N(O,Jz)

Ifi=1I*
Ifi £ I*

where i > 0. The data analyst would like to identify I*
and report the value of ¢r«. To do this, she selects T =
arg max; ¢;. When p = 0, there is no true signal in the data
and T is equally likely to take on any value in {1,..,m},
I(T;¢) = H(T) = log(m). As p increases, however, T
concentrates on I*, causing H(T") and the bias E[¢r — 7] to
diminish. We simulated this example with m = 1000 ¢;’s,
all but one of which are i.i.d. samples from A/(0,1) and
¢+ ~ N (p, 1) for o € [1,4]. The simulation results, averaged
over 1000 independent runs, are shown in Figure 1.
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Figure 1. As the signal strength increases (u increases), the entropy of
selection H(T') decreases, causing the information upper bound /2I(T; ¢)
to also decrease. The bias of the selected ¢ decreases as well.

D. Information usage along the Least Angle Regression path

Our analyses illustrate that in certain stylized settings,
information usage tightly bounds the bias of optimization



selections. Here we show that information usage also accu-
rately captures the bias of a more complex selection proce-
dure corresponding to Least Angle Regressions (LARS) [27].
LARS is an interesting example for two reasons. First it is
widely used as a practical tool for sparse regression and is
closely related to LASSO. Second LARS composes a sequence
of maximum selections and thus provides a more complex
example of selection. In Figure 2, we show the simulation
results for LARS under three data settings corresponding to
low, medium and high signal-to-noise ratios. We use bootstrap-
ping to empirically estimate the information usage and since
we know the ground truth of the experiment, we can easily
compute the bias of LARS. As the signal in the data increases,
the information usage of LARS decreases and, consistent with
the predictions of our theory, the bias of LARS also decreases.
Moreover, as the number of selected features increases, the
average (per feature) information usage of LARS decreases
and, consistent with this, the average bias of LARS also
decreases monotonically. Details of the experiment are in the
Appendix.

E. Differentially private algorithms

Recent papers [28, 19] have shown that techniques from
differential privacy, which were initially inspired by the need
to protect the security and privacy of datasets, can be used
to develop adaptive data analysis algorithms with provable
bounds on over-fitting. These differentially private algorithms
satisfy worst case bounds on certain likelihood ratios, and
are guaranteed to have low information-usage. On the other
hand, many algorithms have low information-usage without
being differentially private. Moreover, as we have seen, the
exploration bias of an algorithm could be large or small de-
pending on the particular dataset (e.g. the signal-to-noise ratio
of the data) and information usage captures this. Differentially
private algorithms have low information usage for all datasets
and 7 that is designed adversarial to exploit this dataset, so this
is a much stricter condition. In [19], the authors also define and
study a notion of max-information, which can be viewed as
a worst-case analogue of mutual information. We discuss the
relationship between these measures further in the Appendix.

FE. Information usage and classification overfitting

This section applies our framework to the problem of
overfitting in classification. A classifier is trained on a dataset
consisting of n examples, with input features X;,.., X,, € X
and corresponding labels Y7,...Y;, € {—1,1}. We consider
here a setting where the features of the training examples
X,; = x; are fixed, and study overfitting of the noisy labels.
Each label Y; is drawn independently of the other labels from
an unknown distribution P(Y; = 1|X; = z;). A classifier f
associates a label f(z) € {—1,1} with each input z. The
training error of a fixed classifier f is
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Figure 2. Information bound /2I(T; ¢) (dotted lines) and bias of Least
Angle Regression (solid lines). Results are shown for low (red), medium (blue)
and high (green) signal-to-noise settings. The z-axis indicates the number
of features selected by LARS and the y-axis corresponds to the average
information usage and bias in the selected features.

while its true error rate is

n
L(f) = BIE(H] = - S P(f(e) # i),
i=1
is the expected fraction of examples it mis-classifies on a
random draw of the labels Y7, ..,Y,,. The process of training
a classifier corresponds to selecting, as a function of the
observed data, a particular classification rule f from a large
family F of possible rules. Such a procedure may overfit the
training data, causing the average training error E[L(f)] to be
much smaller than its true error rate E[L(f)].

As an example, suppose each X; € R? is a d-dimensional
feature vector, and F = {fy : § € R} consists of all linear
classifiers of the form fyp(z) = 1(2T6 > 0). A training
algorithm might set f = f; by choosing the parameter
vector that minimizes the number of mis-classifications on
the training set. This procedure tends to overfit the noise
in the training data, and as a result the average training of
f can be much smaller than its true error rate. The risk
of over-fitting tends to increase with the dimension d, since
higher dimensional models allow the algorithm to fit more
complicated, but spurious, patterns in the training set.

The field of statistical learning provides numerous bounds
on the magnitude of overfitting based on more general notions
of the complexity of an arbitrary function class F, with the
most influential being the Vapnik-Chervonenkis dimension, or
VC-dimension*. While the focus is on overfitting of the train-
ing data, similar concerns apply to overfitting the validation
data.

The next proposition provides information-usage bounds the
degree of over-fitting, and then shows that mutual information
is upper-bounded by the VC-dimension of JF. Therefore,
information-usage is always constrained by function-class
complexity.

4The VC-dimension of F is the size of the largest set it shatters. A set
{z1,..,@m} € X is shattered by F if for any choice of labels y1, .., ym € J,
there is some f € F with f(x;) = y; for all 4.



Proposition 5. Let = (z1,.h2,), Y = (Y1,...,Y,),
fx) = (fla), - ( n)) and log (2) = max{l,log(2)}.
Then,

BL(f) — L) < | LY

If F has VC-dimension d < oo, then
. ne
I(f(x);Y) < dlog, (F) :

The proof of the information usage bound follows by an
easy reduction to Proposition 1. The proof of the second claim
relies on a known link between VC-dimension and a notion
of the log-covering numbers of the function-class.

It is worth highlighting that because VC-dimension depends
only on the class of functions JF, bounds based on this
measure can’t shed light on which types of data-generating
distributions and fitting procedures (X,Y) ~ f allow for
effective generalization. Information usage depends on both,
and a result could be much smaller than VC-dimension; for
example, this occurs when some classifiers in F are much
more likely to be selected after training than others. This can
occur naturally due to properties of the training procedure, like
regularization, or properties of the data-generating distribution.

G. Approximately independent data splitting.

A data scientist has access to data in the form of n samples
(81,...,8n) from a Markov chain. She would like to mimic
the honest data-splitting she uses with i.i.d data. To do this,
she splits the into three parts: (S1,..,8n,)s (Sni+1s-- Sns)
and (Sp,+1,--,8n). The first part is used for selection, the
third for estimation, and the middle data is thrown away. In
particular, ¢ = ¢1, ..., dm : (Snot1,--,Sn) — R™ and that
T: (81, 8n,) — {1,...,m}. One expects that if ny —n; is
large so there is a sufficient delay between the two samples,
then the risk of bias and overfitting will be low. We’ll see that
this is easy to formalize via an information usage lens.

We assume the Markov process is stationary and time homo-
geneous with stationary distribution 7. Moreover, it satisfies a
uniform mixing condition

max D(P(s, = +[s1 = s)||7) < cpe™ 7 vr e N.

We then claim that
I(T; @) < cpe™

(n2—n1)

and so a sufficient delay between the sample used for selection
and the sample used for estimation guarantees low bias. We
have immediately that,

ZP (st =s)D
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where we used that P(s; =
processing inequality
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s) = m(s). Then, by the data
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H. Bias control via FDR control

There has been intense interest in large-scale hypothesis
testing procedures that control the false-discovery rate. Here
we consider the bias and error incurred when estimation is
performed after variables are selected in this manner, and
bound this in terms of the false discovery rate and the rates
of type I and type II errors.

As motivation, consider analysis of a large micro-array
experiment. There is a large set of gene-expression data
D € R™™ consisting of m gene expression levels drawn from
n samples, where there first n; samples were taken from tissue
with a cancerous tumor and the remaining no = n — n; were
taken from healthy tissue. A scientist would like to identify
genes with large differential between the expression levels
across the two tissue types. She casts this as a multiple hypoth-
esis testing problem, where rejecting a given null hypothesis
indicates strength of evidence that an observed differential
is unlikely due to random chance. Many procedures exist
to control the false discovery rate, which is the expected
proportion of type I errors among rejected null hypotheses.

Consider for example the procedure proposed by Benjamini
and Hochberg. One first constructs p-values py, ... p,, for m
separate hypothesis testing problems. These are then sorted
as p(1) < pe) < ..., Pim)- To guarantee the false discovery
rate is controlled at some level ¢ € (0,1), their procedure
specifies the selection of the the first ¢ hypotheses, where 7 is
the largest number such that p(;) < qt/m. Framed differently,
all hypotheses with p-values less than a random threshold
[ = qt/ m are rejected. To gain some insight, let us consider
a simple model where each p-value is drawn either from a
uniform distribution (i.e. the null distribution) or an alternative
distribution F'. Consider an asymptotic regime where the num-
ber of alternative m — oo, but the proportion of alternatives
following the null distribution stays fixed. Then [29] show
that under regularity conditions on F, the random threshold I
converges in probability to a deterministic limit [*. Therefore,
the rate of type I and type II errors, as well as the proportion
of false discoveries, all tend to a fixed levels asymptotically
as m — oo. Whether a particular hypothesis is accepted or
rejected is still random and data-dependent, but when m is
large the overall proportions are nearly deterministic.

We consider a more abstract framework. There is some
random matrix D € R™*™, and a vector ¢ € R™ that is
a function of D with p = E[¢]. The indices {1,...,m} are
partitioned into two sets Hy and H;. A selection procedure
is a map ¢ : R™™ — {0,1}™, where ¢(D); = 1 indicates
variable ¢ was selected. We set S C {1,...,m} to be the set
of selected variables and Sy to be its complement.

To form the analogy with the story above, we think of ¢
as a vector of summary statistics of the columns of D—e.g.
the observed gene expression differential between tumor tissue
and healthy tissue—and think of H, as the set for which the
null distribution holds — e.g. across repeated samples there
would not be an observed differential. The selected variables
Sy is the set for which the null hypothesis was rejected. Set
N o= #(7‘[0 n Sl)/#HQ and g = #(Hl N So)/#Hl to be
analogues of the proportion of type I and type II errors. Note



that & is the fraction of false discoveries relative to the total
number of nulls, and is different from what is called the False
Discovery Proportion or FDP. To simplify the discussion, we
assume there is always at least one selected variable, so S
is nonempty. We are interested in the average error or bias in
reported estimates among selected, which leads to the study
of quantities like

S (01— ), (1)

#Sl 1€S1
1
o O 16— pual,
#Sl €51
1
or oo > (d — ).
#Sl i€S1

These can be rewritten as E[¢pr — ur], E[|l¢r — pr|] or
E[(¢7—pr)?] where, conditioned on D, T is drawn uniformly
at random from the set of selected of selected variables 5.
This leads naturally to the study of information usage I(T'; ¢),
which bounds these quantities. The quantities in (1) reflect
whether, the estimation procedures applied to the selected
variables produce accurate results on average. For this reason,
we are able to provide meaningful guarantees that do not
degrade as m — oo, a regime in which it is impossible to
guarantees that every selected variable is estimated accurately.

Now, let us define FDR = P(T € H;) to be the false
discovery rate. This is the expected proportion of selected
variables S; that are contained within the null set Hgy. The
next lemma bounds information usage in terms of the false
discovery rate, the rates of type I and II error, and an extra
error term that vanishes as the random proportion of realized
type I and II errors concentrate around their expected value.
A short proof is given in Appendix E.

Proposition 6. For the FDR control problem defined above,
1
I(T;$) < h(FDR) + (1 ~ FDR) - log <16>

1
+ FDR - log (> +&
Q@
where h(p) = —plog(p)—(1—p)log(1—p) denotes the binary
entropy function, o = E[&] and = E[f] denote the type 1
and II error proportion relative to the total number of true
null and true alternative, respectively. The error term is

o (9)] b )

for log , (z) = max{0, log(z)}.

This result further formalizes the insight that estimation
after selection is unlikely to overfit in settings where the
selection procedure works reliably. When the rates of false
discovery, type I error, and type II error are small, information
usage is guaranteed to also be low. The implied bounds on
estimation error after selection grow smoothly as the reliability
of the selection procedure degrades.

VI. LIMITING INFORMATION USAGE AND BIAS VIA
RANDOMIZATION

We have seen how information usage provides a unified
framework to investigate the magnitude of exploration bias
across different analysis procedures and datasets. It also
suggests that methods that reduces the mutual information
between 1" and ¢ can reduce bias. In this section, we explore
simple procedures that leverages randomization to reduce
information usage and hence bias, while still preserving the
utility of the data analysis.

We first revisit the rank-selection policy considered in the
previous subsection, and derive a variant of this scheme
that uses randomization to limit information usage. We then
consider a model of a human data analyst who interacts
sequentially with the data. We use a stylized model to show
that, even if the analysts procedure is unknown or difficult
to describe, adding noise during the data-exploration process
can provably limit the bias incurred. Many authors have
investigated adding noise as a technique to reduce selection
bias in specialized settings [28, 30]. The main goal of this
section is to illustrate how the effects of adding noise is
transparent through the lens of information usage.

A. Regularization via randomized selection

Subsection V-C illustrates how signal in the data intrinsi-
cally reduces the bias of rank selection by reducing the entropy
term H(T) in I(T;¢) = H(T) — H(T|¢). A complementary
approach to potentially reduce bias is to increase conditional
entropy H (T|¢) by adding randomization to the selection pol-
icy T. Note that while this randomization increases H (T |¢),
it also increases H(T) and thus could increase information
usage. It is easy to maximize conditional entropy by choosing
T uniformly at random from {1,...,m}, independently of
¢. Imagine however that we want to not only ensure that
conditional entropy is large, but want to choose 7" such that
the selected value ¢ is large. After observing ¢, it is natural
then to set the probability m; of setting 1" = ¢ by solving a
maximization problem

H(m)

maximize
ﬂ€R$

k k
subject to qubi > b and Zwi =1.
i=1 i=1

The solution 7* to this problem is the maximum entropy or
“Gibbs” distribution, which sets

i€ {l,..m} 2

for B > 0 that is chosen so that ). 7 $; = b. This procedure
effectively adds stability, or a kind of regularization, to the
selection strategy by adding randomization. Whereas tiny per-
turbations to ¢ may change the identity of 7' = arg max; ¢;,
the distribution 7* is relatively insensitive to small changes in
¢. Note that the strategy (2) is one of the most widely studied
algorithms in the field of online learning [31], where it is often
called exponential weights. It is also known as the exponential
mechanism in differential privacy. In our framework it is
transparent how it reduces bias.

T X ePei



To illustrate the effect of randomized selection, we use
simulations to explore the tradeoff between bias and accuracy.
We consider the following simple, max-entropy randomization
scheme:

o Take as input parameters § and K, and observations
@1, ...0m. Here ( is the inverse temperature in the Gibbs
distribution and K is number of ¢;’s we need to select.

o Sample without replacement K indices 17,..Tx from

*

7* given in (2). Report the corresponding values
o1y 5 OT, -
We consider settings where we have two groups of ¢;’s: after
relabeling assume that p; = = un, = ¢ > 0 and
i = 0 for ¢ > N;. We define the bias of the selection to be
+ Efil(qﬁﬂ — wr,) and the accuracy of the selection to be
{T; : T; < N;}|/K, which is the fraction of reported ¢, with
true signal p. In Figure 3, we illustrate the tradeoff between
accuracy and bias for N; = 1000, n — N7 = 100000 (i.e. there
are many more false signals than true signals), randomization
strength 5 = 2, and the signal strength yp varying from 1
to 5. Consistent with the theoretical analysis, max-entropy
selection significantly decreased bias. In the low signal regime
(u = 1), both rank selection and max-entropy selection have
low accuracy because the signal is overwhelmed by the large
number of false positives. In the high signal regime (u > 4),
both selection methods have accuracy close to one and max-
entropy selection has significantly less bias. In the intermediate
regime (1 < p < 4), max-entropy selection has substantially
less bias but is less accurate than rank selection.
Formally, unless the Gibbs distributions is degenerate with
probability 1,

I(T;¢) = H(T') — H(T|¢) < log(m) — H(T|¢p) < log(m),

so information usage is strictly smaller than its worst-case
value of log(m). It is worth highlighting, however, that the
Gibbs mechanism described above does not reduce bias or
information usage for all possible data—generating distributions
because it could increase entropy H (7).

accuracy bias tradeoff in selection
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Figure 3. Tradeoff between accuracy and bias as the signal strength g

increases. The two curves illustrate the tradeoff for the maximum selection
(i.e. reporting the largest K = 100 values of ¢;) and the max-entropy
randomized selection procedures.
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B. Randomization for a multi-step analyst

We next study how randomization can decrease information
usage and bias even when we have very little knowledge of
what the analyst is doing. To illustrate this idea, we analyze
in detail a simple example of a very flexible data analyst
who performs multiple steps of analysis. Flexibility in multi-
step data analysis presents a challenge to current statistical
approaches for quantifying selection bias. Recent development
in post-selection inference have focused on settings where
the selection rule is simple and analytically tractable, and the
full analysis procedure is fixed and specified before any data
analysis is performed. While powerful results can be derived
in this framework—including exact bias corrections and valid
post-selection confidence intervals [8, 9]—these methods do
not apply for exploratory analysis where the procedure can be
quite flexible.

In this section, we show how our mutual information
framework can be used to analyze bias for a flexible multi-step
analyst. We show that even if one does not know, or can’t fully
describe, the selection procedure 7', one can control its bias by
controlling the information it uses. The main idea is to inject
a small amount of randomization at each step of the analysis.
This randomization is guaranteed to keep the bad information
usage low no matter what the analyst does.

The idea of adding randomization during data analysis to
reduce overfitting has been implemented as practical rule-of-
thumb in several communities. Particle physicists, for example,
have advocated blind data analysis: when deciding which
results to report, the analyst interacts with a dataset that has
been obfuscated through various means, such as adding noise
to observations, removing some data points, or switching data-
labels. The raw, uncorrupted, dataset is only used in computing
the final reported values [32]. Adding noise is also closely
related to a recent line of work inspired by differential privacy
[16, 18, 19, 17].

A model of flexible, multi-step analyst. We consider a
model of adaptive data analysis similar to that of [19, 18].
In this setting, the analyst learns about the data by running a
series of analyses on the dataset. Each analysis is modeled by
a function of the data ¢;, and choice of which analysis to run
may depend on the results from all the earlier analyses. More
formally, we define the model as follows:

1) At step 1, the analyst selects a statistic ¢, to query for
T) € [m] and observes a result Y, € R.

2) In the k-th iteration, the analyst chooses a statistic ¢,
as a function of the results that she has received so far,
{Yr,,Th,...., Y7, _,,Tk—1}, and receives result Yrp, .

3) After K iterations, the analyst selects ¢ = ¢, s asa
function of {YTl N AT YTK s TK}

The simplest setting is when the result of the analysis is
just the value of ¢7, on the data D: Ypr, = ¢ (D). An
example of this is the rank selection considered before. At the
k-th step, ¢y is queried (i.e. the order is fixed and does not
depend on the previous results) and Y = ¢y is returned. The
analyst queries all m ¢;’s and returns the one with maximal
value.



In general, we allow the analysis output Y7, to differ from
the empirical value of the test ¢, and a particularly useful
form is Y7, = ¢p, + noise . This captures blind analysis
settings, where the analyst intentionally adds noise throughout
the data analysis in order to reduce over-fitting. A natural
goal is to ensure that for every query 7} used in the adaptive
analysis, the reported result Y7, is close to true value pr, .
We will show through analyzing the information usage that
noise addition can indeed guarantee such accuracy.

This adaptive analysis protocol can be viewed as a Markov
chain

Tk+1 — I{},C = {T17YT17~-~7Tk7YTk} ~D— ¢7

where recall that ¢ denotes the vector {¢1, ..., ¢, }. By the in-
formation processing inequality [33], I (Tk+1; @) < I(Hy; ¢).
Therefore, a procedure that controls the mutual information
between the history of feedback Hj and the statistics ¢ will
automatically control the mutual information I(T}41; ¢). By
exploiting the structure of the adaptive analysis model, we
can decompose the cumulative mutual information I(Hy; ¢)
into a sum of k terms. This is formalized in the following
composition lemma for mutual information.

Lemma 1. Let H, = (T1, Yr,, T2, Y1, , ..., Tk, Y1, ) denote the
history of interaction up to time k. Then, under the adaptive
analysis model

k
I(Tiyr; ¢) < I(Hi; ¢) = > 1Yy 60, | Hia, Th)
i=1

The important takeaway from this lemma is that by bound-
ing the conditional mutual information between the response
and the queried value at each step, I(Yr,; ¢, |H;—1,T;), we
can bound I (T 1; ¢) and hence bound the bias after k rounds
of adaptive queries. Given a dataset D, we can imagine
the analyst having a (mutual) information budget, I, which
is decided a priori based on the size of the data and her
tolerance for bias. At each step of the adaptive data analysis,
the analyst’s choice of statistic to query next (as a function
of her analysis history) incurs an information cost quantified
by I(Yry,; ¢r,|Hi—1,T;). The information costs accumulate
additively over the analysis steps, until it reaches I, at which
point the guarantee on bias requires the analysis to stop.

A trivial way to reduce mutual information is to return a
response Y7, that is independent of the query ¢7,, in which
case the analyst learns nothing about the data and incurs no
bias. However in order for the data to be useful for the analyst,
we would like the results of the queries to also be accurate.

Adding randomization to reduce bias. As before let ;; =
E[¢;] denote the true answer of query ¢;. If each ¢; — p; is
o—sub-Gaussian, then E[|¢; — p;|] < o. Using Proposition 2,
we can bound the average excess error of the response Y7, ,
E[|Yr, — p1,|] — 0, by the sum of two terms,

EHYTk — KTy H -0
< EHYTk - ¢Tk ” + E[|¢)Tk - :u’Tk| - O—}
< EHYTk - d)Tk ” +covy QI(Tk; ¢) .

Distortion

Selection Bias

Response accuracy degrades with distortion, a measure of the
magnitude of the noise added to responses, but this distortion
also controls the degree of selection bias in future rounds. We
will explicitly analyze the tradeoff between these terms in a
stylized case of the general model.
Gaussian noise protocol. We analyze the following special
case.
1) Suppose ¢; ~ N(u;, %2) and (¢1, ..., ¢x) is jointly
Gaussian for any k.
2) For the jth query ¢r;, j = 1,2, ..., the protocol returns
a distorted response' Yr, = ¢1, + W; where W; ~

N(0, ‘%) Note that unlike (¢1, @, ....), the sequence
(W7, Wha, ....) is independent.

The term n can be thought of as the number of samples in the
data-set. Indeed, if ¢; is the empirical average of n samples
from a N (u;,0?) distribution, then ¢; ~ AN (yu;,0%/n). The
ratio o2 /wj2 is the signal-to-noise ratio of the kth response.
We want to choose the distortion levels (wq,ws,...) so as to
guarantee that a large number of queries can be answered
accurately. In order to do this, we will use the next lemma
to relate the distortion levels to the information provided by a
response. The lemma gives a form for the mutual information
I(X; X + W) where X and W are independent Gaussian
random variables. As one would expect, this shows that mutual
information is very small when the variance of W is much
larger than the variance of X. Lemma 3, provided in the
Appendix, provides a similar result when X is a general (not
necessarily Gaussian) random variable.

Lemma 2. If X ~ N(0,0%) and Y = X + W where W ~
N(0,03) is independent of X, then

1 B

I(X;Y) = 510g(1+[3) <3

where 3 = o3 /02 is the signal to noise ratio.

Using Lemma 2, we provide an explicit bound on the
accuracy of Y7, , as a function a function of n,o and k.
Note that this result places no restriction on the procedure that
generates (17,75, ...) except that the choice T}, can depend on
¢ only through the data {T%,Yr,,...Tx—1, Yr,_, } available at
time k.

Proposition 7. Suppose ¢; ~ N (pi, %2) and (¢1, ..., 0r) is
Jjointly Gaussian for any k. If for the jth query, Yr, = ¢, +
W; where W; ~ N (0, #) and (W1, Wy, ...) is independent
of ¢, then for every k € N

O'kl/4
E[|YTk+1 = KTy ” <c (nl/g>

where c denote a universal constant that is independent of
o,w, k, and n.

If the sequence of choices (717,7%,75,...) were non-
adaptive, simply returning responses without any noise (Y, =
¢1,) would guarantee E[|Y7, , — pr, . [] < o/v/n. In the
adaptive model, the first few queries are still answered with
accuracy of order o /+/n, but the error increases for the later
queries. This illustrates the fundamental tension that the longer



the analyst explores the data, the more likely for the later
analysis to overfit.

The factor k'/* can roughly be viewed as the worst-case
price of adaptivity. It is worth emphasizing this price would
be more severe if the system returned responses without any
noise. When no noise is added error can be as large as
E[|Yr., — pr,.|] = Qov/k/n), as is demonstrated in
Example 1 in the Appendix. Therefore, adding noise offers
a fundamental improvement in attainable performance.

A similar insight was attained by [28], who noted that by
adding Laplacian noise it is possible to answer up to n? queries
accurately, whereas without noise accuracy degrades after n
queries. In the Gaussian case, it’s clear from our bound that
as n, k — oo, all queries will be answered accurately as long
as k = o(n?).

VII. DISCUSSION

We have introduced a general information usage approach
to quantify bias that arises from data exploration. While we
focus on bias, we show our mutual information based metric
can be used to bound other error metrics of interest, such as
the average absolute error E[|¢r — ur|]. It is interesting to
note that the same information usage also naturally appears in
the lower bound on error, suggesting it may be fundamentally
linked to exploration bias. This paper established lower bounds
when the selection process corresponds to solving optimization
problems—i.e. T' = argmax. An interesting direction of
research is to understand more general exploration procedures
in which information usage provides a tight approximation to
bias.

One advantage of using mutual information to bound bias
is that we have many tools to analyze and compute mutual
information. This conceptual framework allow us to extract
insight into settings when common data analysis procedures
lead to severe bias and when they do not. In particular we show
how signal in the data can reduce selection bias. Information
usage also suggests engineering approaches to reduce mutual
information (and hence bias) by adding randomization to each
step of the data exploration. Another important project is to
investigate implementations of such randomization approaches
in practical analytic settings.

As discussed before, the information usage framework
proposed here is very much complementary to the excit-
ing developments in post-selection inference and differential
privacy. Post-selection inference, for very specific settings,
is able to exactly characterize and correct for exploration
biases—in this case exploration is feature and model selection.
Differential privacy lies at the other extreme in that it derives
powerful but potentially conservative results that apply to an
adversarial data-analyst. The modern practice of data science
often lies in between these two extremes—the analyst has
more flexibility than assumed in post-selection inference, but
is also interested in finding true signals and hence is much less
adversarial than the worst-case. Information usage provides a
bound on exploration bias in all settings. It is also important
that this bound is data-dependent. In practice, the same analyst
may be much less prone to false discoveries when exploring

a high-signal dataset versus a low-signal dataset, and this
should be reflected in the bias metric. An interesting goal is
to develop approaches that combine the sharpness of post-
selection inference and differential privacy with the generality
of information usage.

APPENDIX A
OVERVIEW OF THE APPENDIX

The appendix provides complete proofs of all the results
in the main text as well as extensions and additional ap-
plications of information usage. Section B gives the proof
of Proposition 1, which states that information usage can
be used to upper bounds selection bias. We also show that
more general results hold when the estimators have different
variances and when the estimators have heavier tales (i.e. sub-
exponential rather than sub-Gaussian). Section C then proves
that the error due to exploration is at least as large as the
information usage for several families of explorations, which
includes Proposition 3. Section D completes the proof of the
link between information usage and classification overfitting
(Proposition 5). In Section F, we provide additional applica-
tions to show how information usage can be used to control
the bias in other metrics of interest, such as p-values in a
multiple hypothesis testing problem and regret in optimization
under uncertainty. Section G provides additional details of the
experiments corresponding to Figure 2. Section H completes
the analysis of how randomization controls the bias of a
multi-step, flexibile data analyst. Section I discusses how our
information usage relates to other information measures such
as max-information.

APPENDIX B
PROOFS OF INFORMATION USAGE UPPER BOUNDS

A. Information Usage Upper Bounds Bias: Proof of Proposi-
tion 1

The proof of Proposition 1 relies on the following varia-
tional form of Kullback—Leibler divergence, which is given
in Theorem 5.2.1 of Robert Gray’s textbook Entropy and
Information Theory [34].

Fact 1. Fix two probability measures P and Q defined
on a common measurable space (0, F). Suppose that P is
absolutely continuous with respect to Q. Then

D (P||Q) = sup {Ep[X] — logEq[e*]},

where the supremum is taken over all random variables X
such that the expectation of X under P is well defined, and

eX is integrable under Q.

Proof of Proposition 1.

I(T;¢) = > P(T=i)D(P(p=-T=i)||P(p="))
=1
> > P(T=i)D(P(¢i =T =i)||P(¢; =)



Applying Fact 1 with P = P(¢; = -|T = i),
and X = A(¢; — p;), we have

D (P(¢i =-|T =) [ P(¢s

Q=P(¢;i="),

=) >sup A\A; — A\20?/2
A

where A; = E[¢;|T = 4] — p;. Taking the derivative with
respect to A\, we find that the optimizer is A = A;/o2. This
gives

202 1(T; p) ZP = E[A2].

By the tower property of conditional expectation and Jensen’s
inequality

— B[Ar] < \/BIAZ) < 0/20(T5 ).

E[¢r — pir]
O

Remark. In the first step of the proof of Proposition 1, we
used the fact that, for all i € {1,...,m},

D(P(p=-T=10)|P(p="))
> D(P(¢i =T =1)[|[P(di=")),

which follows from the information processing inequality. The
application of this inequality is not tight in general and can
lead to gaps between the actual bias and our upper bound
based on I1(T; ¢). Consider the following scenario. Suppose
T:¢1— [2,...,m], i.e. T is a deterministic function that uses
the realized value of ¢1 to decide which other ¢; to select. For
example, imagine ¢1 ~ Uniform|0, 1] and T is defined so that
T=2if¢1 € [0,1/(m=1)} T = 3if¢; € [1/(m—1),2/(m—
1)], and so on. Here T is deterministic, I(T; ) = logm,
and this is manifested in D (P(¢p = -|T =14) || P(¢p =-)) > 0.
However, if ¢;,j # 1 is mdependent of each other b,
then D (P(¢; =-|T =1)||P(¢pi =-)) = 0 and the bias is
also 0. The upper bound of Proposition 1 is tight in other
settings; it is also useful in general because the mutual
information 1(T;¢) is amenable to analysis and explicit
calculation. In cases where there is a gap, we may study
P(T = i)D (P(61 = T = i) || P(6; = -)) direcly.

B. Extension to Unequal Variances

We can prove a generalization of Proposition 1 for settings
when the estimates ¢; have unequal variances.

Proposition 8. Suppose that for each i € {1, ...,
is o;—sub-Gaussian. Then,

[El¢r] — Elur]| < /Elo7]v2I(T; ¢)

where I denotes mutual information.

m}’ d)l — M

Proof. The first part of the proof is the same as that of
Proposition 1. For each i € {1,...,m},

D (P(¢; =T =i)||P(¢; =) > sup A\A; — \?a?/2
A

where A; = E[¢;|T = i] — ;. The optimizer is \; = A;/0?.
Rearranging the terms gives

A; < 0i\/2D (P(¢; = |T =4) || P(s = -)).

This implies
E[Ar]

= Y AP(T=
> oiP(T' =1i)\/2D (P

\/Zo*?P(@ =T =)

IN

(¢ =T =10)[[P(di =)

IN

X \/2ZP(¢ =
= E[7]V21(T: ¢).
where we have used Cauchy-Schwartz for the second inequal-

ity.
O

C. Extension to Sub-exponential Random Variables

Recall that a random variable X is sub-Gaussian with
parameter o if E[eXX~BXD] < ¢X*0%/2 for 4l real-values
A. While many random variables are sub-Gaussian, there are
other important classes of random variables that are light
tailed, but not quite sub-Gaussian. Here, we will show how
our information-usage bounds extend to the larger class of
sub-exponential random variables. We say that X is sub-
exponential with parameters (o, b) if E[e* X —E[X])] < A*0*/2
whenever |\| < 1/b. For example if X ~ x?2 follows a chi-
squared distribution with n > 1 degrees of freedom, then it is
sub-exponential with parameters (2+/n,4).

Proposition 9. Suppose that for each i € {1,...,m}, ¢; — p;

is sub-exponential with parameters (c,b). Then

2

Elpr — pr] < 0I(T; ¢)+%

Moreover, if b < 1, we also have
2

o

Elér — pr] < VbI(T; ¢) + —.
[T — pr] < VOI(T; P) NG

Proof. Following the same analysis as in the sub-Gaussian

setting (Prop. 1), we have

D (P(¢; =T =i)||P(¢i =-)) > sup AA; — N\?0?/2

A<1/b

The RHS is greater than the value from setting A = 1/b.
Therefore, we have

Ai 0'2
T = ) > =
PP =T =0)|[Poi=) > - 7
Multiplying each side by P(T' = ¢) and summing over ¢ €
{1,..,m} gives
Elgpr —pr]  o°
I(T: @) > 2T —HT1 9
( 7¢) — b 2b2
and hence

2

E[¢r — pr] < 0I(T; ¢)+%



When b < 1, A\ = 1/v/b < 1/b is also a feasible point. Putting
in this value of ) into the calculations above gives the second

bound

o2

El¢r — pur] < VOI(T; ¢) + 278

D. Extension to Other Metrics of Exploration Error

Proposition 2 - Part (1). Suppose for each i € {1,...,m},
@i — W; is o sub-Gaussian. Then

Ellér — url) < o + - o/2I(T5 $)
where ¢ < 36 is a universal constant.

Proof. Let U; = ¢; — p; which is assumed to be o sub-
Gaussian and let v; = E[|¢; — p;]] and Y; = |U;| — ;. We
show below that Y; is sub-Gaussian with parameter co where
¢ < 36. This implies the result, since by Proposition 1 and the
data-processing inequality,

E(|¢r — pr| — 7] = E[Y7] < co/2I(T;Y) < /2I(T; ¢).

Since v; < o for all ¢, v < o, and we have

Ell¢r — purl] < o + 360+/21(T; ).

The remainder of the proof shows Y = |U| —E[|U]] is sub-
Gaussian whenever U is sub-Gaussian. We use the following
equivalent definition of a sub-Gaussian random variable.

a) Fact 1.: [35] Given a zero-mean random variable Y,
Suppose there is a constant ¢ > 1 and Gaussian random
variable Z ~ N(0,72) such that

P(|Y] > s) < c¢(P(|Z] > s)) for all s > 0.

Then Y is sub-Gaussian with parameter v/2cT.
b) Fact 2.: [35] Suppose Y is a zero-mean sub-Gaussian
random variable with parameter o. Then

P(|Y] > s) < V8eP(1Z] > s)

where Z ~ N(0,20?).

Let U be a zero-mean random variable that is sub-Gaussian
with parameter o. Let v = E[|U|] and Y = |U| — . We want
to determine the sub-Gaussian parameter of Y. We have

P(Y|>s) = P(U|>s+7) +P(U]<y-s)
< VBeP(|Z] > 5) + P(U| <7 - 3)

where Z ~ N(0,202) and we have used Fact 2. Moreover
P(|Z] > s)
P(|lU S ] S N = 7

since the RHS exceeds 1 for s < ~ and the LHS is 0O for
s > . Hence

and, by Fact 1, Y is sub-Gaussian with parameter 2(\/§e +
1/P(]Z| > 7))o. We can simplify this expression further.

Jiz1= )

Since U is o sub-Gaussian, its variance is bounded above by
o2, Therefore v < \/E[U?] < o, which implies

P(Z] > 7) > P(|Z] > o) > 0.1
and Y is sub-Gaussian with parameter 360. O

This bound is similar to a bias-variance decomposition,
where the o term is the variance and the mutual-information
term is the bias. When selection is over many ¢;’s, the
bias term tends to dominate. The parameter o captures the
magnitude of noise in the estimates, and therefore implicitly
captures the number of samples in the data set. In particular, If
¢i =n~t 30 fi(X;) where {fi(X;)}_, is an independent
sequence of o-sub-Gaussian random variables, then

o o
E — < — - —/2[(T; ¢).
H(bT NTH = \/E‘FC \/ﬁ ( 7¢)
Using the fact that the square of a sub-Gaussian random
variable is sub-exponential and Proposition 9, we can also
control the mean squared distance between ¢ and pip.

Proposition 2 - Part (2). Suppose ¢; — u; is o sub-Gaussian
for each i € {1,...,m}. Then

E[(¢r — pr)’] < 0% (1.25+ 101(T; b)) -

Proof. We use the following fact about sub-Gaussian random
variables.
c) Fact 3.: [35] If Y be a zero-mean sub-Gaussian

variable with parameter o, then
E| *L} <1 foralneo,1)
€20 —— fora ,1).

TAV1I=A
Given such a Y, we would like to derive the sub-exponential
parameters of Y2 — +, where v = E[Y?] > 0. Applying Fact
3, we have

AY2—) 1 2
E|e 22 < —— < e for A€ (0,0.1

I e 000
where the last inequality can be verified numerically. Using
the substitution ¢t = A/ o2, we have

E [et(Yz—'y)} < 1007 oy o {0) 021)
o

which implies that Y2 — v is sub-exponential with parameters
(vV50%,1002).

In our setting, Y; = ¢; — u; is o sub-Gaussian and vy; =
E[(¢; — 11:)?] < o2. Applying Proposition 9 to Y;?, we have

2

El(¢r — pnr)?) < 0? + 100°[(T5Y?) + 2
<o” (1.25+10I(T;Y?))
< 0% (1.25 4 101(T; $)) .

where Y? = (Y2,...Y,2) and the final step uses the data-
processing inequality. O

In the next result, we think of ¢ = (¢1,..,¢m) and T
as a collection of estimates and a choice of which one to
report made based on common data-set D, while we think
of ¢ = (¢~>1, ey J)m) as these same estimates computed on a



fresh replication data-set D. The next result bounds the KL-
divergence between ¢ and ¢, which captures the change
in the distribution of the reported result due to performing
selection and estimation on a common data-set.

Proposition 10. Lert (z~5 denote a random variable drawn from
the marginal distribution of ¢, but drawn independently of T
and ¢. Then

D (P(r =) || P(br =) < I(T;0).

Proof.
D (P(ér =) |P(Gr =)
<D (P(pr =T =")||P(ér =T =)
< iP(T:

D (P(or =T =1) || P(r = |T = 1))
= Y P(T =)D (P(¢; =T =) P(¢s =)

< ) PT=i)DP(¢=-T=i|P¢="))

T=1
= I(T; 9),

where both inequalities follow from the data-processing in-
equality for KL divergence. O

APPENDIX C
INFORMATION USAGE ALSO LOWER BOUNDS BIAS

A. Top-k selection: a lower bound for Corollary 1

Here we show that the bound of Corollary 1 is tight as
m/mg — oo. For convenience, we show this when m is
divisible by mg. Consider the following alternative selection
policy T. Randomly partition the ¢;’s into mg groups of size
m/mg. Within each group, select the maximal ¢; and from
these mo maximal ¢;’s randomly select one as ¢7.. Because the
average among the mg group leaders is less than the average
among the ¢(1), ..., (m,)» We have E[¢p7] < E[pr]. Moreover,

each group leader converges to o1/21ogm/myg and since the
groups are independent, the average E[¢;] also converges to

ov/2logm/my.

B. Maximum of Gaussians: Proof of Proposition 3

Recall the statement of Proposition 3.

Proposition 3. Let T' = argmaxi<;<m ¢; where ¢ ~
N (w, I). There exist universal numerical constants ¢; = 1/8,
cy < 2.5, c3 =10, and ¢y = 1.5 such that for any m € N
and p € R™,

ctH(T) — ¢y < E[(¢r — pr)?] < esH(T) + c4.

The upper bound above follows by Proposition 2. Here we
will focus on establishing the lower bound.

Throughout, we will use the notation M £ ¢ = max; ¢;
and M_; & max;»; ¢;. We rely on the following facts. The
first shows that the maximum of Gaussian random variables is

itself a sub-Gaussian random variable. The second establishes
a tail bound for normal random variables.

Fact 2. M £ max; ¢; is I-subgaussian. In particular
E[e*(M-EM]] < eN'/2. This implies the variance bound
E[(M — E[M)])]? < 1 and the tail bounds P(M > E[M] +
A) < e N2, Similarly, M_; is 1-sub—Gaussian for all i.

Fact 3. If X ~ N(0,1) then for all x > 0

PX >x)>

1 T g2
e " /2
T Vor \a2+1
Proposition 3 provides an analogous lower bound. To un-
derstand this result, recall that entropy the entropy of 7' is

ZP

i) log(1/P(T" = 1)).

Consider a setting where E[M] significantly exceeds p;.
Then, since M concentrates around E[M], the probability
i is maximal is close to the probability ¢; exceeds E[M].
By the above fact, one expects that log(1/P(T = i)) =~
logP(¢; > E[M]) ~ (E[M] — u;)?/2. This is roughly the
intuition behind the following result. Along with our upper
bound, this describes a natural family of problems in which
E[(67 — pir)?] = O(1 + H(T)).

Proof. We focus on establishing the lower bound, as the upper
bound follows from Proposition 2.

By definition, T' = ¢ if and only if M_; < ¢;. Our proof
will separately consider two cases, depending on whether
EM_;] > u+1.Let I ={i:E[M_;] > p; + 1} denote
the set of estimates whose mean is at least a full standard
deviation below that of M_;

The entropy of T' can be decomposed as
1
P(T=1i)l _
)= 2 P =k (P(T = i))

gl
s (7).

+> P(T
iel
We first upper bound the sum over ¢ ¢ I. We do this by
lower bounding P(T" = i), which yields an upper bound
on log(1/P(T = 4)). For any constant A > 0, and i ¢ I,
P(M_; < E[M_;] + X\) > 1 — ¢ */2. Using the fact that
E[M_;] < p; + 1, we have for all A >0

P(T=i) = P(Mf <¢z)
> P(M_; <E[M_i]+A)-P(¢; > E[M_;] + })
> P( _Z<E[M i+ A) - P(di > pi + 14 X)
_ 1 1+ _ 2
> (1-e A/z)m((1+)\)2+1)e (112)2/2

lI>

p(A).



Therefore

< P(T¢ >maxlog<

Direct calculation shows c_; < 5.

Now we consider the case ¢+ € I. To simplify notation,

consider the shifted random variables X = ¢; —
and Y = M_;

function of E[Y]?. We have

P(T =)

= / P(X > 2)P(Y = dz)

— 00

V
—
=
~
\%
o
9
~
I
&
E

\8

— ;. We lower bound log(1/P(T =

Hi ~ N(O’ 1)
1)) by a

= PY>1) | P(X>z2)P(Y =dz|Y > 1)
1
> 7 :
> P = 1) /< 2:” )eIZ/QP(Y =dz|Y >1).
V2 ¢+ 1
1
By Jensen’s inequality,
logP(T =) > log(1/v2r) + log(P(Y > 1))
oo
+/ <1og< ) —x2/2>
1
x P(Y =dz|Y > 1),

which can be rewritten as

log (P(lez)) <log(V2r) + log (P<Yl>1))

Y2+
E |l
+ [og< %
E[Y2|Y>1]
+f.

Yo

For Y > 1, one has log((Y? +1)/Y) < log(1+Y) <Y.

Therefore,

log (P(lez)> < log(v27) + log (P(Y121)>
+ 15E[Y?]Y > 1].

Now,

E[Y?)Y > 1] < E[Y?/P(Y > 1)
= (E[(Y - E[Y])*] +

+E[Y]?) /P(Y >1).

Since Y = M_; — u;, the variance of Y is bounded by 1.
Using as well that P(Y > 1) > 1 — 1//e gives the bound

s (=) <820 s (g )
151+ EBY]?)

PY >1)
<5+ 4E[Y]2

Now, plugging in E[Y] =
everything together, we find

ZP =) log(1/P(T = 1))

E[M_;] — p; and putting

Scor+5+4) P(T=i)(E[M_;] - )
el

<cor+5+4) P(T=i)(E[M] - ;)
iel

< c_;+5+4|E[M] — pr|?

where || X|| = +/E[X?] denotes the Lo norm a random
variable X and the second inequality uses that E[M] >
E[M_;] > p;.

We complete the proof by relating |E[M] — ur|| to ||¢7 —
prll. Recall that ¢r is 1-sub—Gaussian and E[¢r] = E[M].
Therefore

IE[M] - ér|| = E[(¢r — E[pr])?] < 1
Combining this with the triangle inequality shows

|EM] - pr| = [E[M] = ¢+ ér — prll < 1+ |[¢r — pr |-
We can then conclude

[B[M] - L+ o7 — prl)?* < 2+ 2l¢r — pr|?

where the inequality uses that max,er f(z) = 0 for f(z) =
(1 + x)? — 2 — 222, Together, this shows

H(T) < cor +5+8+8||¢r — pr||?

pr|* <

or
o7 — prl|* > ct H(T) — c2

where ¢; = 1/8 and ¢ = (c_; + 13)/8 < 2.5. O

C. Threshold Selection with Gaussian Random Variables

In addition to the max-selection policy, we analyze a softer
threshold selection policy and prove that the information usage
lower bounds bias here as well. Let each ¢; correspond to a
Gaussian of variance 1, and we allow the Gaussians to have
different means and be correlated.

Let M be a constant. The threshold-M selection procedure
does the following:

1) If at least one ¢; is larger than M, uniformly randomly

select one of these ¢;’s to report. For this, we exclude
P-1.

2) Otherwise, always report an arbitrary, fixed ¢_.

In what follows, we will show that for M sufficiently large,
the entropy H (T') lower bounds the square-loss bias E[(Z1 —
ur)?], where, recall that Zy = E[¢;|T = i]. Let N_; =



Ho; > M,j # i,j # —1}|. As M increases, E[N_;|¢; >
M] decreases. We want the threshold to be high enough so
that only a few ¢;’s are expected to pass the threshold. Let
N (M) = max; E[N_;|¢; > M].

Theorem 1. Suppose

M — max p;

> \/2 log[27 (1 + B [N_i|¢; > M]) (M — max p1;)] + 3,
then
E[(¢pr — pr)?] > H(T).

Proof. For i # —1, define p; = P(T = i). Then we have

n—1

=P(¢; > M) P(N_; = kl|¢; > M)%H
k=0
= P(¢; > M)E [1 +1N_ 6 > M} ‘

Let p = Y p; denote the probability that at least one ¢;, i #
—1, passes the threshold. Note that here and below, when we
write ) p;, we always mean the sum of over ¢ # —1. We can
write the entropy as

1
=Zp¢10g;i+ 1 —p)log -—

1
+Zpllog(1/E[ N_Z|¢>_ D
+(1—p)10g1i

1
SZPilOgm
+> pilog (1+ E[N_|¢; > M])

1
+ (1~ p)log -—

1
SZPilOg B(o: > M)

+> pilog(1+E[N_|¢; > M]) +p

We can rewrite the inequality as

> pilog s

>H(T)

—Zpilog(l—i-E[
— .

P(¢; Z M)~
N_i|¢p; > M])

Since ¢; ~

(M — pi)®
2

N(pi,1) and M > p;, we have the bounds

1
> log —log(M — pi) — 3 log(2m)

1

1
P(¢; > M)

(M=)

After some algebra we have
E[(¢r — pr)’]
> " pi(M = )

2 Z Pi {

—log (1 +E[N_i|¢; > M])

log 2m 1

—log(M — ;) — ——— — 1
5 og(M — p;) e

+ H(T)
>H(T)

where the 2second inequality used the above inequalities
for M and Y p;log m; and the third in-
equality used the condition that M — max; u; exceeds
V2log2m (1 + E[N_;|¢; > M]) (M — max; ;)] + 3.

O

As M increases, unless the ¢;’s are very highly correlated,
E[N_;|¢; > M]) decreases and H(T) dominates in the
inequality. This shows that H(7T') is a natural lower bound
on E(Z2) and hence /H(T) lower bounds bias. Actually
we can improve this lower bound by considering I(T'|®) =

H(T) — H(T|®) using the fact that
H(T|®) = Z P(N = i)H(T|N =)
= Z P(N =i)logi
= [logN\N > 1]
where N = |{¢;,¢; > M}|. Assuming that ¢;’s are indepen-

dent, we need to control the gap between E[Z2] and I(T, ),
we need to upper bound plog(l + E[N]) — E[log N|N > 1].

D. Threshold Selection with Exponential Random Variables

We can prove the analogous lower bound for the threshold
policy with exponential random variables. Let ¢; = \; +
exp(1l) be the shifted exponential random variable. So for
x> N, P(¢p; = 2) = e ) and P(¢; = z) = 0 for
xr < \;. Different ¢;’s can have different A\; and we allow
them to be correlated. The mean of ¢; is u; = A; + 1. As
before, let N (M) = max; E[N_;|¢; > M].

Theorem 2. Suppose M — max \; > 4 + 2log(1 + N (M)),
Elor — ur] > H(T)/2.

Proof. The proof follows the same structure as before. Since
P(¢; > M) = e~ M=X) we have log1/P(¢; > M) =
M — )\; and

= Z pi(M — X;)

i#—1

+ Y pilog (1/E [

it—1

1
m’@ ZM]>

+(1

1
—p)l
p)log 7—



On the other hand,

El¢r — pr]
> Z pi(M — p;)
i#—1
= Y p(M-x)-
i#—1
> log (1/E \qbzzM —2p
)= 32 o (178 [ > )
> H(T)— ) log(1 +E[N_;|¢; > M]) —2p
i#—1
> H(T)/2.
O

APPENDIX D
INFORMATION USAGE AND CLASSIFICATION
OVERFITTING: PROOF OF PROP. 5

Proof. The empirical L(f) and expected L(f) loss of a
classifier f € F on the training examples x = (x1, ..., %)
depend only on the predictions f(x) = (f(z1),..., f(zy)) it
makes on these examples. Let Fx = {f(x) : f € F} and note
that m = |Fx| < 2™ is finite. Let fi, ..., f, be functions that
make different classifications at x, so UT*{ f(x)} = Fx.

Now, the overfitting problem studied in Prop. 5 can be cast
in the same framework as the rest of the paper. For each ¢ €
{1,...,m}, set ¢; = L(f;) and p; = L(f;) to be the training
error and expected error of classifier f;. Let T € {1,..,m} be
the random index satisfying f(x) = fp(x). Then, our result
follows by bounding |E[¢r — ur]|.

If X ~ Bern(p) is a Bernoulli random variable with param-
eter p, then X — p is sub-Gaussian with parameter less than
1/4 [36]. Similarly, if X7, ..X,, are Bernoulli random variables
with respective parameters p1, ..., p,,, then n =1 S (Xi—pi)
is sub-Gaussian with parameter not exceeding 1/4/n. This
immediately implies ¢; —p; is o—sub-Gaussian with o < 1/2n,
so applying Prop. 1 implies

Blor —pr)| < 120 [TV,

Using the information-processing inequality, and the definition
of T', we have

I(T;¢) < I(T;Y) = I(f(x),Y),

which completes the proof of the first claim.

The second claim uses a standard link between VC-
dimension and the size of Fx. Set Sx(n) = max{|Fx|:x €
X"} to be the maximum number of ways n points can be
classified by the function class. This is often called the growth
function of F. We have immediately that I(T;¢) < H(T) <
log Sz(n). Sauer’s lemma (see Lemma 1 of [37]) shows that

2n
Sr(n) < { end
(7)
where d < oo is the VC-dimension of F. This implies
log Sr(n) < dlog, (<}). O

ifn<d
ifn>d

APPENDIX E
B1AS CONTROL VIA FDR CONTROL: PROOF OF PROP. 6

Proof. Let x = 1{rcy,) denote an indicator for a false
discovery. Since this is a deterministic function of T,

I(T59) = 1I(T;(x, @) = L(T; )+ (T3¢ | x) < HX)+I(T; 9 | x)

Now, using the distribution of x we have

ITi¢|x) < HX)+Px=0)I(T;¢[x=0)
+P(x =1DI(T;¢ | x=1)
= hPT eH)+P(T eH)I(T;¢|T €M)
P(T € Ho)I(T;¢ | T € Ho)
< h(P(T eH.))+P(T e H)I(T;D|T € Hy)

+P(T € Ho)I(T; D | T € Ho)

where we have applied chain rule and the data-processing
inequality. Now, we have

I(T;D|TeH,) = HT|TeH)—H(TIT € Hi1, D)
< log(#M1)
—Ellog (#(S1 NH1)) [ T € Ha]
= log(#H1)

—Ellog ((1 —B)- (#Hl)) | T € H,i]
- _E [1og(1—6) |TeH1}

= log(15)+E{log(1_g> |TE'H1].

Then,
PT e H)I(T;D | T eH1) < —P(TeH1)log(l-7)
+E |:10g ( ) 1{T€7~L1 :|
< (T S H1 10g (1 — ﬂ
oo ()]

Essentially the same calculation shows,
P(T € Ho)[(T; X | T € Ho) < —P(T € Ho)log(a)+E [1og+ (g)} .

Plugging in P(T € Hy) = FDR concludes the proof. O

APPENDIX F
ADDITIONAL APPLICATIONS OF INFORMATION USAGE

When a data analyst selects hypothesis tests to perform
after data exploration, they may compute extremely small p-
values even if there is no signal in the data, and all null
hypotheses hold. In this section we apply our information-
usage framework to quantify how severely the analyst must
explore the data to produce these small p-values. We also give
an illustration of mutual information bound in controlling the
value of information in decision-making under uncertainty.



A. The Probability of Small p—values

Let ¢; be the observed p-value of the ith hypothesis and
suppose the analyst has to report the p-value ¢ corresponding
to a single hypothesis test from among a large collection of
¢1, ..., o Of observed p-values. Under the null hypothesis,
each p-value ¢; is uniformly distributed, so P(¢; < €¢) = ¢
for each ¢ € [0,1]. Suppose the data analyst rejects the
null hypothesis corresponding to 7' whenever ¢ < .05. If
T is chosen adaptively so that ¢ is the smallest p-value
among ¢1,..¢5, then the probability of falsely rejecting the
null hypothesis is 1—(.95)° & .23. Therefore, at a significance
level of .05, even fairly mild forms of adaptivity can create a
substantial risk of false discovery. Nevertheless, we argue in
this section that very small p-values are very unlikely unless
the mutual information I(7T'; ¢) is large.

To build intuition, imagine that ¢q,...,0, s
Uniform(0, 1). If the hypothesis T' = arg min;<,, ¢; with the
smallest p-value is selected, the reported p-value is expected
to be of order 1/m. In particular, E[¢r] = 1/(m + 1), and

P(¢T§1)=1—(1—1)m—>1—1.
m m e

Therefore, when selecting among m ~ e® hypotheses, one
expects to observe p-values as small as € ~ e~ 2 but not
smaller. Our next proposition extends this line of reasoning,
and replaces B = log(m) with the mutual information
between 1" and ¢. It shows that when ¢, ..., ¢,,, are uniformly
distributed, but not necessarily independent, one is very un-
likely to observe a p value ¢ much smaller than e~ !(T3¢)
under an arbitrary adaptive selection procedure 7.

In fact, the bound provided by the following proposition
is stronger. Instead of depending on I(T; ¢), it depends on
the mutual information between 7" and a more compressed
random variable Z.. Here Z.; = 1(¢; < €) and the term
I(T;Z.) < I(T; ¢) is a measure of the dependence of the
selection rule on the realization of extremely small p-values.

Proposition 11. Define Z.; = 1(¢; < €) and let Z, =

(Zepyoos Zem). If ¢ ~ Uniform(0,1) for all i € {1,..,m}
then
(T Z.)
P < —_—.
(pr<e)<e+ log(1/2¢)

Proof of Proposition 11. Since ¢; ~ Uniform(0,1), Z., =
1(¢; < €) is a Bernoulli random variable with parameter ¢ and
E[Z;] = e. We use the fact [36] that a probability p Bernoulli
random variable is sub-Gaussian with parameter

o 1-2p < 1
—\ 2log((1 —p)/p) = \/ 210g(1/2p)

Combining this with Proposition 1, we have the desired result

E[Zr] - Elur] =P(pr <€) —e < %'

O

To interpret this result, suppose the selection procedure 7T’
reports the minimal p-value and € = 27" If we test 2¥ inde-
pendent hypotheses, then standard multiple hypotheses testing

theory tells us that there is a non-neglible probability that pr is

less than e. This shows up in the bound of Proposition 11 since
I(T3Z)
log(1/2¢)
hypotheses, I(T;Z.) can be significantly less than 2¥, and
our bound quantifies the risk of false discovery in this more

nuanced setting.

~ 1. However, when there is correlation among the

B. Regret Analysis and the Value of Information

Consider a general problem of optimization under uncer-
tainty. A decision-maker would like to choose the action x
from a finite set X’ that solves max,cx fo(x). Here 6 is an
unknown parameter that is drawn from a prior distribution
over a set of possible parameters ©. We consider the decision-
maker’s expected shortfall in performance due to not knowing
the parameter 6:

E[max fo(2)] — max E[fs(x)].

This measures the value of perfect information about 6: the
expected improvement in decision quality that would result
from resolving uncertainty about the identity of 6. This is
sometimes called the Bayes risk or Bayesian regret of the
decision arg max,cx E[fy(z)].

Our main result provides an information theoretic bound
on Bayes risk. Let X* € argmax,cx fo(z) denote a true
maximizer of the function fy. Here X ™ is a random variable,
since @ is random, and X* is a function of 6. Let u(z) =

E[fo(2)].

Proposition 12. If for each for each x € X, fo(x) — u(x) is
o sub-Gaussian, then

E[max fo(z)] — max pu(z) < 0/2H(X*)
Proof. Note that
max i(z) = Blp(X™)]

and
E[gleaffe(m)] = E[fo(X7)]
Therefore,
E[max fo()] —maxp(z) < E[fs(X7)] - Blu(X")]
< 0y/21(X%6)
= oV2H(X)
O
APPENDIX G

ADITIONAL EXPERIMENTAL DETAILS

Here we provide additional details for the LARS bias
experiments of Figure 2. We consider random design matrix
X € R100x1000 whoge entries are i.i.d. samples from N/(0,1).
The rows of X are then normalized to have unit variance.
The effects are represented by the vector 3 € R0, The
first 20 entries of § are set to a constant s—corresponding
to the signals—and rest of the entries are all set to be 0. By
increasing s, we increase the signal-to-noise in the data. The



low, medium and high signal settings corresponds to setting
s = 0.04,0.06 and 0.08, respectively. Finally the outcomes
are given by y = X - 8 + ¢, where € ~ N (0, I199/10) is the
noise. We consider the full selection path of LARS on X and
y. Let the index T; denote the ith feature to enter the subset
selected by LARS.

In this experiment, for simplicity, we quantify the bias
on the univariate regression coefficients. More concretely,
suppose we have the true values y* = X - 3. Then we can
use least squares between y* and the jth column of X to
determine the true univariate coefficient 37 of the feature j.
From the noisy observations y, we can similarly compute the
noisy univariate coefficient Bj. We quantify the bias BT =BT,
for ¢+ = 1,2, .... This bias quantifies how much LARS overfit
to the noise in the data.

APPENDIX H
COMPLETE ANALYSIS OF THE MULTI-STEP DATA
ANALYSIS MODEL

Proof of Lemma 1. Since, conditional on Hy, Ty4; is in-
dependent of ¢, the data-processing inequality for mutual
information implies,

I(Tyy1;¢) < I(Hi; ).

Now we have,

k
I(Hi; ) = > IT((T,Yr,); ¢ Hi 1)
=1

We complete the proof by simplifying the expression for
I((Ti,Yr,); #|Hi-1). Let ¢y = (¢; : j # i). Then,
I((T;,Yr,); p|Hi—1) = I (Ti;¢|Hi)
+1 (Yr,;; ¢|H;—1,T;)
= I (Yr,;9|Hi—1,T3)
= I(YTi; HiflaTi)
(Y ¢~ |Hio1, Ty, dr,)
= I(Yr;¢7,|Hi-1, Th),

where the final equality follows because, conditioned on ¢,

Y7, is independent of @¢(_7,). O
Proof of Lemma 2.
o2
I(X;Y) = —=log|(1 !
ey > ( of + o%>
1 o2
= -1 2
98 o2 + o3
o

O

Lemma 3. Let X be a real value random variable with
variance 0% = (X — E[X])?] and W ~ N(0,0%,) be a
normal random variable that is independent of X. Then

2
UX

IXGX+W) < =5
w

20

Proof. Let px(x) denote the density of X with respect to
some base measure v over X. Then we have

I(X; X +W)
_ /D @+ W =) [|P(X +W = ))px ()dv(z)

< / UD@@ +W =) [|Pea + W = )px (a2)dv(x2)

xpx (z1 dy(xl)

® / / 9”12;;2 P (@1)px (22)dw (1) dv(2)

) X
o
O

Here inequality (a) uses the convexity of KL divergence,
(b) follows from the formula for the KL divergence between
univariate normal distributions N (z1,0%) and N (xa, 0?), and
(c) uses that if X1 and X5 are iid random variables with mean
U, then

E[(X1 — X2)’] = E[(X1 — p+ p — X2)?] = 2E[(X1 — p)?).

We prove a more general statement of Proposition 7.

Proposition 13. Suppose ¢; ~ N (u;, 7) and (1, ..., Pi) is
Jjointly Gaussian for any k. If for the jth query, Yr, = ¢, +

2
W; where W; ~ N (0, %J) and (W1, Wa,...) is independent

of ¢, then
k -2
o Wk+1 2 > et w,;
EHYTk+1 T M T4 H < %""_cl Jn +o jf
Ifw; = = 0j* for each j € N, then for every k € N

O’kl/4

nl/2

where c1 and co denote universal constants that are indepen-
dent of o,w, k, and n.

EHYTICJA - /“LTk+1H <e <

Proof of Proposition 13.

EHYTk+1 — HTyyq H < E[|YTk+1 - ¢Tk+1 H + E[|¢Tk+1 — BTy ”
[2wWi41
S ™m + EH¢T}¢+1 :LLTkJrl ”
2Wpy1 O 21(Tit1; @)
™ + Vn teo n

where c is a universal numerical constant. The second inequal-
ity uses the expected value of the half-normal distribution, and
the third inequality follows from Proposition 2.

The desired result follows by bounding the mutual informa-
tion term. Applying Lemma 1, we have

k
I(Tii1; Z (Yr,; 67| Hio1, Th)



where H, = (Th, Yr,, T, Yr,, ..., Tk, Y1, ) denotes the history
of interaction up to time k. Because the ¢;’s are jointly
Gaussian, and observation noise is Gaussian, the posterior
P(¢;, = -|H;—1) is Gaussian with conditional variance less
than o2 /m. Moreover, conditional on H;—1, T; is independent
of (¢1,¢2...) and (Y1,Y5,....), so ¢, |H;—1,T; is normally
distributed with variance less than o2 /n.
Lemma 2 implies

a?/n o?

Hithi) S 2%2//71 = ﬁ

o2\ & 9
< (7)o

Plugging this into the earlier bound implies

/2wk 1
[|YTk+1 /jka+1 - +—= + CJ

which is the desired result.

I(Yr,;

and therefore

I(Tiy1; b)
1 1w

Example 1 (Adaptively fitting a linear model [28]). A data-

analyst collects n samples of 01, ...0,, “p of k dimensional

vectors drawn from an unknown distribution and 0 is the
average of the 6;’s. She would like to find a unit vector x
that is highly correlated with this distribution, in the sense
that Eg.p[z TQ) is large. To do this, she looks to maximize
274.

Suppose D = N(0,02I), so Egp[z?0] = 0 for all .
Nevertheless, the analyst can still find a vector with a large
inner product with 0. Imagine she collects k measurements
of 0, allowing her to completely uncover the vector, and then
chooses X = 0/|0|| Then, since 0 ~ N(0, %21)

E[XT0) = E[|0]| =© (0\/5) :

APPENDIX I
MUTUAL-INFORMATION VS MAX-INFORMATION

Recent work has proposed max-information [19], and its
generalization, approximate max-information, as a metric to
control the error of a worst-case, adversarial, data analyst. This
notion was motivated by techniques from differential privacy,
which shows that a differentially private mechanism have low
approximate max-information, and hence has low error even
when the analyst is adversarial.

To understand the relationship between mutual-information
and max-information, we revisit the rank selection example
from Section V. While max—information provides a powerful
tool for analyzing the behavior of a worst-case adaptive
protocol, this example shows it can exhibit counter-intuitive
behavior when analyzing specific selection procedures.

We assume
(b‘ ~ N(:u‘? Uz)
b W(0,0%)

where > 0. The analyst selects T' = argmax; ¢;. As
discussed in Section V, bias decreases as the signal strength p

Ifi=1I*
Ifi#I*

21

increases, and this follows transparently from our information
theoretic bound. Indeed, as p grows T' concentrates on I*, and

H(T) = iP(T =1i)log (ID(TLZ))

i=1

I(T; ¢) =

decreases. This scaling is intuitive. As 7" concentrates on [*
the selection protocol becomes less and less adaptive, and
hence we expect both the selection bias as well as the bias
bound which depends on I(T’; ¢) to decrease.

In contrast max-information has the opposite scaling in
this setting: it increases as the signal p increases and bias
decreases. In fact,

I(T5¢) = nl{%xlog< (f y’; - >2))
_ rrl;leog< (T —ZId) y )
_ mgmxlog(P(T:Z_)),

where the maximum is over y € R™ and is attained for
any y with ¢ = argmax;y;. By symmetry, Io(T;¢) =
log (P(T Z I*)>, which increases as the the probability of
selecting I'* grows. Therefore, max—information is minimized
when the data analyst inappropriately uses rank-selection even
though there is no signal in the data (u = 0). As p increases,
so the data-analyst detects I* with probability tending to 1,
max-information increases toward infinity.

The related notion of approximate max-information can
exhibit similar counter-intuitive behavior. Following [18], the
approximate max-information at level [ is defined to be

P(T:9)€0)-5)
P(T:¢)€0) /)

1% (T: ¢) := 1
% (15 ) oA og(
P((T,¢)€0)>p

Lemma 4. If T = f(¢) is a deterministic function of ¢, then

I8.(T; ¢) > max log <P(T1:z)) —log(2)
P(T— z)>25
for any i € {1,..m} with P(T =) > 20.

Proof. Let q~5 denote a random variable drawn from the
marginal distribution of ¢, but drawn independently of 7.
Define ®; = {z € R™ : f(z) = i} to be the decision region

corresponding to element ¢. Then
P(T=i,¢pc®)

=P(T=i)P(pe®|T =i)=

whereas



If P(T =1i) > 23, then O = {(i,z) : € ®;} is feasible,
and therefore

15.(T; ¢)

Y

(P(T:i,qbe @i)—ﬁ)
8 P(T=i,¢cd)

(2

When there is signal in the data, P(T = 4) is small for
those ¢; that do not have signal (i.e. a true null). When S is
sufficiently small so that P(T" = i) > 20, the above lemma
shows that 12 (T'; ¢) can be large, and can increase as P(T =
i) deviates farther from the uniform distribution.

ACKNOWLEDGMENT

The authors would like to thank John Duchi, Cynthia
Dwork, Vitaly Feldman, Aaron Roth, Adam Smith, Thomas
Steinke, David Tse and Tsachy Weissman for feedback. J.Z.
is supported by NSF AF 1763191 and grants from the Chan-
Zuckerberg Initiative.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

REFERENCES

J. P. Simmons, L. D. Nelson, and U. Simonsohn, “False-
positive psychology undisclosed flexibility in data col-
lection and analysis allows presenting anything as sig-
nificant,” Psychological science, p. 0956797611417632,
2011.

Y. Benjamini and Y. Hochberg, “Controlling the false
discovery rate: a practical and powerful approach to
multiple testing,” Journal of the Royal Statistical Society.
Series B (Methodological), pp. 289-300, 1995.

Y. Benjamini and D. Yekutieli, “The control of the false
discovery rate in multiple testing under dependency,’
Annals of statistics, pp. 1165-1188, 2001.

A. Belloni, V. Chernozhukov, and C. Hansen, “Infer-
ence on treatment effects after selection among high-
dimensional controls,” Review of Economic Studies,
vol. 81, no. 287, pp. 608-650, 2014.

S. Van de Geer, P. Buhlmann, Y. Ritov, R. Dezeure et al.,
“On asymptotically optimal confidence regions and tests
for high-dimensional models,” The Annals of Statistics,
vol. 42, no. 3, pp. 1166-1202, 2014.

A. Javanmard and A. Montanari, “Confidence intervals
and hypothesis testing for high-dimensional regression,”
The Journal of Machine Learning Research, vol. 15,
no. 1, pp. 2869-2909, 2014.

R. Lockhart, J. Taylor, R. J. Tibshirani, and R. Tibshirani,
“A significance test for the lasso,” Annals of Statistics,
vol. 42, no. 2, p. 413, 2014.

W. Fithian, D. Sun, and J. Taylor, “Optimal inference
after model selection,” arXiv preprint arXiv:1410.2597,
2014.

(9]

[10]

[11]

[17]

[24]

22

J. Taylor and R. J. Tibshirani, “Statistical learning and se-
lective inference,” Proceedings of the National Academy
of Sciences, vol. 112, no. 25, pp. 7629-7634, 2015.

J. Taylor, R. Lockhart, R. J. Tibshirani, and R. Tibshirani,
“Exact post-selection inference for forward stepwise and
least angle regression,” arXiv preprint arXiv:1401.3889,
2014.

J. D. Lee, D. L. Sun, Y. Sun, J. E. Taylor et al., “Exact
post-selection inference, with application to the lasso,”
The Annals of Statistics, vol. 44, no. 3, pp. 907-927,
2016.

O. Bousquet and A. Elisseeff, “Stability and generaliza-
tion,” Journal of Machine Learning Research, vol. 2, no.
Mar, pp. 499-526, 2002.

T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi,
“General conditions for predictivity in learning theory,”
Nature, vol. 428, no. 6981, pp. 419-422, 2004.

S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Srid-
haran, “Learnability, stability and uniform convergence,”
Journal of Machine Learning Research, vol. 11, no. Oct,
pp- 2635-2670, 2010.

D. McAllester, “A pac-Bayesian tutorial with a dropout
bound,” arXiv preprint arXiv:1307.2118, 2013.

A. Blum and M. Hardt, “The ladder: A reliable leader-
board for machine learning competitions,” in Interna-
tional Conference on Machine Learning, 2015, pp. 1006—
1014.

M. Hardt and J. Ullman, “Preventing false discovery
in interactive data analysis is hard,” in Foundations of
Computer Science (FOCS), 2014 IEEE 55th Annual
Symposium on. 1EEE, 2014, pp. 454-463.

C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold,
and A. Roth, “Generalization in adaptive data analysis
and holdout reuse,” in Advances in Neural Information
Processing Systems, 2015, pp. 2350-2358.

——, “The reusable holdout: Preserving validity in adap-
tive data analysis,” Science, vol. 349, no. 6248, pp. 636—
638, 2015.

R. Bourgon, R. Gentleman, and W. Huber, “Independent
filtering increases detection power for high-throughput
experiments,” Proceedings of the National Academy of
Sciences, vol. 107, no. 21, pp. 9546-9551, 2010.

S. Wu, A. Joseph, A. S. Hammonds, S. E. Celniker,
B. Yu, and E. Frise, “Stability-driven nonnegative matrix
factorization to interpret spatial gene expression and
build local gene networks,” Proceedings of the National
Academy of Sciences, p. 201521171, 2016.

J. Zou, C. Lippert, D. Heckerman, M. Aryee, and J. List-
garten, “Epigenome-wide association studies without the
need for cell-type composition,” Nature Methods, pp.
309-11, 2014.

I. Lee, G. Lushington, and M. Visvanathan, “A filter-
based feature selection approach for identifying potential
biomarkers for lung cancer,” Journal of Clinical Bioin-
formatics, 2011.

V. Anantharam, A. Gohari, S. Kamath, and C. Nair,
“On maximal correlation, hypercontractivity, and the data
processing inequality studied by Erkip and Cover,” arXiv



preprint arXiv:1304.6133, 2013.

[25] S. Kamath and C. Nair, “The strong data processing con-
stant for sums of iid random variables,” in Information
Theory (ISIT), 2015 IEEE International Symposium on.
IEEE, 2015, pp. 2550-2552.

[26] Y. Polyanskiy and Y. Wu, “Dissipation of information in
channels with input constraints,” IEEE Transactions on
Information Theory, vol. 62, no. 1, pp. 35-55, 2016.

[27] B. Efron, T. Hastie, 1. Johnstone, R. Tibshirani et al.,
“Least angle regression,” The Annals of statistics, vol. 32,
no. 2, pp. 407-499, 2004.

[28] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold,
and A. Roth, “Preserving statistical validity in adaptive
data analysis,” in STOC 2015. ACM, 2014.

[29] C. Genovese and L. Wasserman, “Operating characteris-
tics and extensions of the false discovery rate procedure,”
Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology), vol. 64, no. 3, pp. 499-517, 2002.

[30] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Dif-
ferentially private empirical risk minimization,” Journal
of Machine Learning Research, vol. 12, no. Mar, pp.
1069-1109, 2011.

[31] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and
games. Cambridge University Press, 2006.

[32] R. MacCoun and S. Perlmutter, “Blind analysis: Hide
results to seek the truth.” Nature, vol. 526, no. 7572, pp.
187-189, 2015.

[33] T. Cover and J. Thomas, Elements of information theory.
John Wiley & Sons, 2012.

[34] R. Gray, Entropy and information theory.  Springer,
2011.

[35] M. Wainwright, “Basic tail and concentration bounds,”
2015.

[36] V. Buldygin and K. Moskvichova, “The sub-gaussian
norm of a binary random variable,” Theory of Probability
and Mathematical Statistics, vol. 86, pp. 33-49, 2013.

[37] O. Bousquet, S. Boucheron, and G. Lugosi, “Introduction
to statistical learning theory,” in Advanced lectures on
machine learning. Springer, 2004, pp. 169-207.

Daniel Russo Daniel Russo received his PhD from Stanford University in
2015. He was a postdoc at Microsoft Research from 2015 to 2016 and an
assistant professor at Northwestern’s Kellogg School of Management from
2016 to 2017. He is currently an assistant professor in the Decision, Risk,
and Operations Division at Columbia Business School.

James Zou James Zou received his Ph.D. in applied mathematics from
Harvard University in 2014. He was a postdoc at Microsoft Research from
2014 to 2016 and is currently an assistant professor at Stanford University.

23



	I Introduction
	II A Model of Data Exploration
	III Related Work
	IV Controlling Exploration Bias via Information Usage
	V When is bias large or small? The view from information usage
	V-A Filtering by marginal statistics
	V-B Bias due to data visualization
	V-C Rank selection with signal
	V-D Information usage along the Least Angle Regression path
	V-E Differentially private algorithms
	V-F Information usage and classification overfitting
	V-G Approximately independent data splitting.
	V-H Bias control via FDR control

	VI Limiting information usage and bias via randomization
	VI-A Regularization via randomized selection
	VI-B Randomization for a multi-step analyst

	VII Discussion
	Appendix A: OVERVIEW OF THE APPENDIX
	Appendix B: Proofs of Information Usage Upper Bounds
	B-A Information Usage Upper Bounds Bias: Proof of Proposition ?? 
	B-B Extension to Unequal Variances
	B-C Extension to Sub-exponential Random Variables
	B-D Extension to Other Metrics of Exploration Error

	Appendix C: Information Usage Also Lower Bounds Bias
	C-A Top-k selection: a lower bound for Corollary ?? 
	C-B Maximum of Gaussians: Proof of Proposition ??
	C-C Threshold Selection with Gaussian Random Variables
	C-D Threshold Selection with Exponential Random Variables

	Appendix D: Information Usage and Classification Overfitting: proof of Prop. ??
	Appendix E: Bias Control Via FDR Control: proof of Prop. ??
	Appendix F: Additional Applications of Information Usage
	F-A The Probability of Small p–values
	F-B Regret Analysis and the Value of Information

	Appendix G: Aditional experimental details
	Appendix H: Complete Analysis of the Multi-step Data Analysis Model
	Appendix I: Mutual-information vs max-information
	Biographies
	Daniel Russo
	James Zou


