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How much does your data exploration overfit?

Controlling bias via information usage.
Daniel Russo and James Zou

Abstract—Modern data is messy and high-dimensional, and
it is often not clear a priori what are the right questions to
ask. Instead, the analyst typically needs to use the data to
search for interesting analyses to perform and hypotheses to
test. This is an adaptive process, where the choice of analysis
to be performed next depends on the results of the previous
analyses on the same data. Ultimately, which results are reported
can be heavily influenced by the data. It is widely recognized
that this process, even if well-intentioned, can lead to biases
and false discoveries, contributing to the crisis of reproducibility
in science. But while any data-exploration renders standard
statistical theory invalid, experience suggests that different types
of exploratory analysis can lead to disparate levels of bias,
and the degree of bias also depends on the particulars of the
data set. In this paper, we propose a general information usage
framework to quantify and provably bound the bias and other
error metrics of an arbitrary exploratory analysis. We prove that
our mutual information based bound is tight in natural settings,
and then use it to give rigorous insights into when commonly used
procedures do or do not lead to substantially biased estimation.
Through the lens of information usage, we analyze the bias of
specific exploration procedures such as filtering, rank selection
and clustering. Our general framework also naturally motivates
randomization techniques that provably reduce exploration bias
while preserving the utility of the data analysis. We discuss
the connections between our approach and related ideas from
differential privacy and blinded data analysis, and supplement
our results with illustrative simulations.

Index Terms—Adaptive data analysis; Data snooping; Mutual
information; Over-fitting;

I. INTRODUCTION

MODERN data is messy and high dimensional, and it

is often not clear a priori what is the right analysis

to perform. To extract the most insight, the analyst typically

needs to perform exploratory analysis to make sense of the

data and identify interesting hypotheses. This is invariably an

adaptive process; patterns in the data observed in the first

stages of analysis inform which tests are run next and the

process iterates. Ultimately, the data itself may influence which

results the analyst chooses to report, introducing researcher

degrees of freedom: an additional source of over-fitting that

isn’t accounted for in reported statistical estimates [1]. Even

if the analyst is well-intentioned, this exploration can lead to

false discovery or large bias in reported estimates.

The practice of data-exploration is largely outside the do-

main of classical statistical theory. Standard tools of multiple
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hypothesis testing and false discovery rate (FDR) control

assume that all the hypotheses to be tested, and the procedure

for testing them, are chosen independently of the dataset. Any

“peeking” at the data before committing to an analysis proce-

dure renders classical statistical theory invalid. Nevertheless,

data exploration is ubiquitous, and folklore and experience

suggest the risk of false discoveries differs substantially de-

pending on how the analyst explores the data. This creates

a glaring gap between the messy practice of data analysis,

and the standard theoretical frameworks used to understand

statistical procedures. In this paper, we aim to narrow this

gap. We develop a general framework based on the concept

of information usage and systematically study the degree of

bias introduced by different forms of exploratory analysis, in

which the choice of which function of the data to report is

made after observing and analyzing the dataset.

To concretely illustrate the challenges of data exploration,

consider two data scientists Alice and Bob.

Example 1. Alice has a dataset of 1000 individuals for a

weight-loss biomarker study. For each individual, she has their

weight measured at 3 time points and the current expression

values of 2000 genes assayed from blood samples. There

are three possible weight changes that Alice could have

looked at—the difference between time points 1 and 2, 2

and 3 or 1 and 3—but Alice decides ahead of time to only

analyze the weight change between 1 and 3. She computes

the correlation across individuals between the expression of

each gene and the weight change, and reports the gene

with the highest correlations along with its r2 value. This

is a canonical setting where we have tools for controlling

error in multiple-hypothesis testing and the false-discovery

rate (FDR). It is well-recognized that even if the reported

gene passes the multiple-testing threshold, its correlation in

independent replication studies tend to be smaller than the

reported correlation in the current study. This phenomenon is

also called the Winner’s Curse selection bias.

Example 2. Bob has the same data, and he performs some

simple data exploration. He first uses data visualization to

investigate the average expression of all the genes across

all the individuals at each of the time points, and observes

that there is very little difference between time 1 and 2 and

there is a large jump between time 2 and 3 in the average

expression. So he decides to focus on these later two time

points. Next, he realizes that half of the genes always have low

expression values and decides to simply filter them out. Finally,

he computes the correlations between the expression of the

1000 post-filtered genes and the weight change between time

2 and 3. He selects the gene with the largest correlation and

reports its value. Bob’s analysis consists of three steps and the
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results of each step depend on the results and decisions made

in the previous steps. This adaptivity in Bob’s exploration

makes it difficult to apply standard statistical frameworks.

We suspect there is also a selection bias here leading to the

reported correlation being systematically larger than the real

correlations if those genes are tested again. How do we think

about and quantify the selection bias and overfitting due to this

more complex data exploration? When is it larger or smaller

than Alice’s selection bias?

The toy examples of Alice and Bob illustrate several sub-

tleties of bias due to data exploration. First, the adaptivity

of Bob’s analysis makes it more difficult to quantify its bias

compared to Alice’s analysis. Second, for the same analysis

procedure, the amount of selection bias depends on the dataset.

Take Alice for example, if across the population one gene

is substantially more correlated with weight change than

all other genes, then we expect the magnitude of Winner’s

Curse decreases. Third, different steps of data exploration

introduce different amounts of selection bias. Intuitively, Bob’s

visualizing of aggregate expression values in the beginning

should not introduce as much selection bias as his selection

of the top gene at the last step.

This paper introduces a mathematical framework to for-

malize these intuitions and to study selection bias from data

exploration. The main tool we develop is a metric of the bad

information usage in the data exploration. The true signal in a

dataset is the signal that is preserved in a replication dataset,

and the noise is what changes across different replications.

Using Shannon’s mutual information, we quantify the degree

of dependence between the noise in the data and the choice

of which result is reported. We then prove that the bias

of an arbitrary data-exploration process is bounded by this

measure of its bad information usage. This bound provides a

quantitative measure of researcher degrees of freedom, and

offers a single lens through which we investigate different

forms of exploration.

In Section II, we present a general model of exploratory

data-analysis that encompasses the procedures used by Alice

and Bob. Then we define information usage and show how

it upper and lower bounds various measures of bias and

estimation error due to data exploration in Section IV. In

Section V, we study specific examples of data exploration

through the lens of information usage, which gives insight

into Bob’s practices of filtering, visualization, and maximum

selection. Information usage naturally motivates randomization

approaches to reduce bias and we explore this in Section VI.

In Section VI, we also study a model of a data analyst who–

like Bob–interacts adaptively with the data many times before

selecting values to report.

II. A MODEL OF DATA EXPLORATION

We consider a general framework in which a dataset D
is drawn from a probability distribution P over a set of

possible datasets D. The analyst is considering a large number

m of possible analyses on the data, but wants to report

only the most interesting results. She decides to report the

result of a single analysis, and chooses which one after

observing the realized dataset, D, or some summary statistics

of D. More formally, the data analyst considers m functions

φ1, ..., φm : D → R of the data, where φi(D) denotes the

output of the ith analysis on the realization D. Each function

φi is typically called an estimator; each φi(D) is an estimate

or statistic calculated from the sampled data, and is a random

variable due to the randomness in the realization of D. After

observing the sampled-data, the analyst chooses to report the

value φT (D)(D) for T (D) ∈ {1, ...,m}. The selection rule

T : D → {1, ...,m} captures how the analyst uses the data

and chooses which result to report. Because the choice made

by T is itself a function of the sampled-data, the reported

value φT (D)(D) may be significantly biased. For example,

E[φT (D)(D)] could be very far from zero even if each fixed

function φi(D) has zero mean.

Note that although the number of estimators is assumed to

be finite, it could be arbitrarily large; in particular m can be

exponential in the number of samples in the dataset. The φi’s
represent the set of all estimators that the analyst potentially

could have considered during the course of exploration. Also,

while for simplicity we focus on the case where exactly one

estimate is selected and reported, our results apply in settings

where the analyst selects and reports many estimates.1

Example 1. For Alice, D is a 1000-by-2003 matrix, where

the rows are the individuals and the columns are the 2000

genes plus the three possible weight changes. Here there are

m = 2000 potential estimators and φi is the correlation

between the ith gene and the weight change between times 1

and 3. Alice’s analysis corresponds to the selection procedure

T = argmaxi φi.
Example 2. Bob has the same dataset D. Because his

exploration could have led him to use any of the three possible

weight-change measures, the set of potential estimators are the

correlations between the expression of one gene and one of the

three weight changes and there are 2000× 3 such φi’s. Bob’s

adaptive exploration also corresponds to a selection procedure

T that takes the dataset and picks out a particular correlation

value φT to report.

Selection Bias. Denote the true value of estimator φi as

µi ≡ E[φi(D)]; this is the value that we expect if we apply φi
on multiple independent replication datasets. On a particular

dataset D, if T (D) = i is the selected test, the output of data

exploration is the value φi(D). The output and true-value can

be written more concisely as φT and µT . The difference φT −
µT captures the error in the reported value. We are interested in

quantifying the bias due to data-exploration, which is defined

as the average error E[φT−µT ]. We will quantify other metrics

of error, such as the expected absolute-error E[|φT − µT |] or

the squared-error E[(φT −µT )
2]. In each case, the expectation

is over all the randomness in the dataset D and any intrinsic

randomness in T .

III. RELATED WORK

There is a large body of work on methods for providing

meaningful statistical inference and preventing false discov-

1For example, if the analyst chooses to report m0 ≤ m results, our
framework can be used to bound the average bias of the reported values
by letting T be a random draw from the m0 selected analyses.
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ery. Much of this literature has focused on controlling the

false discovery rate in multiple-hypothesis testing where the

hypotheses are not adaptively chosen [2, 3]. Another line

of work studies confidence intervals and significance tests

for parameter estimates in sparse high dimensional linear

regression (see [4, 5, 6, 7] and the references therein).

One recent line of work [8, 9] proposes a framework for

assigning significance and confidence intervals in selective

inference, where model selection and significance testing are

performed on the same dataset. These papers correct for

selection bias by explicitly conditioning on the event that a

particular model was chosen. While some powerful results can

be derived in the selective inference framework (e.g. [10, 11]),

it requires that the conditional distribution P(φi = ·|T = i)
is known and can be directly analyzed. This requires that the

candidate models and the selection procedure T are mathemat-

ically tractable and specified by the analyst before looking at

the data. Our approach does not explicitly adjust for selection

bias, but it enables us to formalize insights that apply to very

general selection procedures. For example, the selection rule

T could represent the choice made by a data-analyst, like Bob,

after performing several rounds of exploratory analysis.

A powerful line of work in computer science and learning

theory [12, 13, 14] has explored the role of algorithmic stabil-

ity in preventing overfitting. Related to stability is PAC-Bayes

analysis, which provides powerful generalization bounds in

terms of KL-divergence [15]. There are two key differences

between stability and our framework of information usage.

First, stability is typically defined in the worst case setting

and is agnostic of the data distribution. An algorithm is stable

if, no matter the data distribution, changing one training point

does not affect the predictions too much. Information usage

gives more fine-grained bias bounds that depend on the data

distribution. For example, in Section V-C we show the same

learning algorithm has lower bias and lower information usage

as the signal in the data increases. The second difference is that

stability analysis has been traditionally applied to prediction

problems—i.e. to bounding generalization loss in prediction

tasks. Information usage applies to prediction—e.g. φi could

be the squared loss of a classifier—but it also applies to model

estimation where φi could be the value of the ith parameter.

Exciting recent work in computer science [16, 17, 18, 19]

has leveraged the connection between algorithmic stability

and differential privacy to design specific differentially private

mechanisms that reduce bias in adaptive data analysis. In this

framework, the data analyst interacts with a dataset indirectly,

and sees only the noisy output of a differentially private

mechanism. In Section VI, we discuss how information usage

also motivates using various forms of randomization to reduce

bias. In the Appendix, we discuss the connections between

mutual information and a recently introduced measure called

max-information [19]. The results from this privacy literature

are designed for worst-case, adversarial data analysts. We

provide guarantees that vary with the selection rule, but apply

to all possible selection procedures, including ones that are

not differentially private. The results in algorithmic stability

and differential privacy are complementary to our framework:

these approaches are specific techniques that guarantee low

bias for worst-case analysts, while our framework quantifies

the bias of any general data-analyst.

Finally it is also important to note the various practical

approaches used in specific settings to quantify or reduce bias

from exploration. Using random subsets of data for validation

is a common prescription against overfitting. This is feasible

if the data points are independent and identically distributed

samples. However, for structured data—e.g. time-series or

network data—it is not clear how to create a validation set. The

bounds on overfitting we derive based on information usage do

not assume independence and apply to structured data. Special

cases of selection procedures T corresponding to filtering by

summary statistics of biomarkers [20] and selection matrix

factorization based on a stability criterion [21] have been

studied. The insights from these specific settings agree with

our general result that low information usage limits selection

bias.

IV. CONTROLLING EXPLORATION BIAS VIA INFORMATION

USAGE

Information usage upper bounds bias. In this paper, we

bound the degree of bias in terms of an information–theoretic

quantity: the mutual information between the choice T (D) of

which estimate to report, and the actual realized value of the

estimates (φ1(D), ..., φm(D)). We state this result in a general

framework, where φ = (φ1, ..., φm) : Ω → R
m and T :

Ω→ {1, ..,m} are any random variables defined on a common

probability space. Let µ = (µ1, ..., µm) , E[φ] denote the

mean of φ. Recall that a real-valued random variable X is

σ–sub-Gaussian if for all λ ∈ R, E[eλX ] ≤ eλ
2σ2/2 so that

the moment generating function of X is dominated by that

of a normal random variable. Zero–mean Gaussian random

variables are sub-Gaussian, as are bounded random variables.

Proposition 1. If φi − µi is σ–sub-Gaussian for each i ∈
{1, ...,m}, then,

|E [φT − µT ] | ≤ σ
√

2I(T ;φ),

where I denotes mutual information2.

The randomness of φ is due to the randomness in the

realization of the data D ∼ P . This captures how each es-

timate φi varies if a replication dataset is collected, and hence

captures the noise in the statistics. The mutual information

I(T ;φ), which we call information usage, then quantifies

the dependence of the selection process on the noise in the

estimates. Intuitively, a selection process that is more sensitive

to the noise (high I) is at a greater risk for bias. We will also

refer to I(T ;φ) as bad information usage to highlight the

intuition that it really captures how much information about

the noise in the data goes into selecting which estimate to

report. We normally think of data analysis as trying to extract

the good information, i.e. the true signal, from data. The more

bad information is used, the more likely the analysis procedure

is to overfit.

2The mutual information between two random variables X,Y is defined

as I(X;Y ) =
∑

x,y P(x, y) log
(

P(x,y)
P(x)P(y)

)

.
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When T is determined entirely from the values

{φ1, ..., φm}, mutual information I(T ;φ) is equal to

entropy H(T ). This quantifies how much T varies over

different independent replications of the data.

The parameter σ provides the natural scaling for the values

of φi. The condition that φi is σ-sub-Gaussian ensures that

its tail is not too heavy3. In the Appendix, we show how this

condition can be relaxed to treat cases where φi is a sub-

Exponential random variables (Proposition 9) as well as set-

tings where the φi’s have different scaling σi’s (Proposition 8).

Proposition 1 applies in a very general setting. The mag-

nitude of overfitting depends on the generating distribution

of the data set, and on the size of the data, and this is

all implicitly captured in by the mutual-information I(T ;φ).
For example, a common type of estimate of interest is

φi = n−1
∑n

j=1 fi(Xj), the sample average of some func-

tion fi based on an iid sequence X1, ..., Xn. Note that if

fi(Xj) − E[fi(Xj)] is sub-Gaussian with parameter σ, then

φi − µi is sub-Gaussian with parameter σ/
√
n and therefore

|E[φT ]−E[µT ]| ≤ σ
√

2I(T ;φ)

n
.

To illustrate Proposition 1, we consider two extreme set-

tings: one where T is chosen independently of the data and

one where T heavily depends on the values of all the φi’s.

The subsequent sections will investigate the applications of

information usage in depth in settings that interpolate between

these two extremes.

Example: data-agnostic exploration. Suppose T is inde-

pendent of φ. This may happen if the choice of which estimate

to report is decided ahead of time and cannot change based on

the actual data. It may also occur when the dataset can be split

into two statistically independent parts, and separate parts are

reserved for data-exploration and estimation. In such cases,

one expects there is no bias because the selection does not

depend on the actual values of the estimates. This is reflected

in our bound: since T is independent of φ, I(T ;φ) = 0 and

therefore E[φT ] = E[µT ].

Example: maximum of Gaussians. Suppose each φi is an

independent sample from the zero-mean normal N (0, σ2). If

T = argmax
1≤i≤m

φi, then I(T ;φ) = H(T ) = log(m) because

all m φi’s are symmetric and have equal chance of being

selected by T . Applying Proposition 1 gives E[φT − µT ] =
E[φT ] ≤ σ

√

2 log(m). This is the well known inequality

for the maximum of Gaussian random variables. Moreover,

it is also known that this equation approaches equality as

the number of Gaussians, m, increases, implying that the

information usage I(T ;φ) precisely measures the bias of max-

selection in this setting. It is illustrative to also consider a more

general selection T which first ranks the φi’s from the largest

to the smallest and then uniformly randomly selects one of the

m0 largest φi’s to report. Here I(T ;φ) = H(T ) −H(T |φ),
where H(T ) = logm (by the symmetry of φi as before) and

H(T |φ) = logm0 (since given the values of φi’s there is still

3A random variable X is said to be σ-sub-Gaussian if E
[

eλ(X−E[X])
]

≤

eσ
2λ2/2 for all λ.

uniform randomness over which of the top m0 is selected).

We immediately have the following corollary.

Corollary 1. Suppose for each i ∈ {1, ...,m}, φi is a zero-

centered sub-Gaussian random variable with parameter σ. Let

φ(1) ≥ φ(2) ≥ ... ≥ φ(m) denote the values of φi sorted from

the largest to the smallest. Then

E

[

1

m0

m0∑

i=1

φ(i)

]

≤ σ
√

2 log
m

m0
.

In Appendix C, we show that this bound is also tight as m
and m0 increase.

Information usage bounds other metrics of exploration

error. So far we have discussed how mutual information

upper bounds the bias |E [φT − µT ] |. In different application

settings, it might be useful to control other measures of explo-

ration error, such as the absolute error deviation E [|φT − µT |]
and the squared error E

[
(φT − µT )

2
]
.

Here we extend Proposition 1 and show how
√

I(T ;φ)
and I(T ;φ) can be used to bound absolute error deviation

and squared error. Note that due to inherent noise even in the

absence of selection bias, the absolute or squared error can

be of order σ or σ2, respectively. The next result effectively

bounds the additional error introduced by data-exploration in

terms of information-usage.

Proposition 2. Suppose for each i ∈ {1, ...,m}, φi − µi is σ
sub-Gaussian. Then

E[|φT − µT |] ≤ σ + c1σ
√

2I(T ;φ)

and

E[(φT − µT )
2] ≤ 1.25σ2 + c2σ

2I(T ;φ).

where c1 < 36 and c2 ≤ 10 are universal constants.

Information usage also lower bounds error. In the max-

imum of Gaussians example, we have already seen a setting

where information usage precisely quantifies bias. Here we

show that this is a more general phenomenon by exhibiting

a much broader setting in which mutual-information lower

bounds expected-error. This complements the upper bounds

of Proposition 1 and Proposition 2.

Suppose T = argmaxi φi where φ ∼ N (µ, I). Because

T is a deterministic function of φ, mutual information is

equal to entropy. The probability T = i is a complicated

function of the mean vector µ, and the entropy H(T ) provides

a single number measuring the uncertainty in the selection

process. Proposition 2 upper bounds the average squared

distance between φT and µT by entropy. The next proposition

provides a matching lower bound, and therefore establishes a

fundamental link between information usage and selection-risk

in a natural family of models.

Proposition 3. Let T = argmax1≤i≤m φi where φ ∼
N (µ, I). There exist universal numerical constants c1 = 1/8,

c2 < 2.5 , c3 = 10, and c4 = 1.5 such that for any m ∈ N

and µ ∈ R
m,

c1H(T )− c2 ≤ E[(φT − µT )
2] ≤ c3H(T ) + c4.
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Recall that the entropy of T is defined as

H(T ) =
∑

i

P(T = i) log

(
1

P(T = i)

)

.

Here log(1/P(T = i)) is often interpreted as the “surprise”

associated with the event {T = i} and entropy is interpreted as

expected surprise in the realization of T . Proposition 3 relies

on a link between the surprise associated with the selection of

statistic i, and the squared error (φi − µi)
2 on events when it

is selected.

To understand this result, it is instructive to instead consider

a simpler setting; imagine m = 2 , φ1 = x always, φ2 ∼
N (0, 1), and the selection rule is T = argmaxi φi. When

x >> 0 is large,

log(1/P(T = 2)) = log(1/P(φ2 ≥ x)) ≈ x2/2
and so the surprise associated with the event {T = 2} scales

with the squared gap between the selection threshold x and

the true mean of φ2. One can show that as x→∞,

H(Tx) ∼ P(Tx = 2) log(1/P(Tx = 2))

∼ P(Tx = 2)x2

∼ E[(φTx
− µTx

)2]

where Tx denotes the selection rule with threshold x and

f(x) ∼ g(x) if f(x)/g(x)→ 1 as x→∞.

In the Appendix, we investigate additional threshold-based

selection policies applied to Gaussian and exponential random

variables, allowing for arbitrary correlation among the φi’s,

and show that H(T ) also provides a natural lower bound on

estimation-error.

V. WHEN IS BIAS LARGE OR SMALL? THE VIEW FROM

INFORMATION USAGE

In this section, we consider several simple but commonly

used procedures of feature selection and parameter estimation.

In many applications, such feature selection and estimation are

performed on the same dataset. Information usage provides

a unified framework to understand selection bias in these

settings. Our results inform when these these procedures

introduce significant selection bias and when they do not. The

key idea is to understand which structures in the data and

the selection procedure make the mutual information I(T ;φ)
significantly smaller than the worst-case value of log(m). We

provide several simulation experiments as illustrations.

A. Filtering by marginal statistics

Imagine that T is chosen after observing some dataset D.

This dataset determines the values of φ1, ..., φm, but may also

contain a great deal of other information. Manipulating the

mutual information shows

I(T ;φ) = H(T )−H(T |φ)
≤ H(T )− I(T ;D|φ)
= (1− α)H(T )

where α = I(T ;D|φ)/H(T ) captures the fraction of the

uncertainty in T that is explained by the data in D beyond the

values φ1, ..., φm. In many cases, instead of being a function

of φ, the choice T is a function of data that is more loosely

coupled with φ, and therefore we expect that I(T ;φ) is much

smaller than H(T ) (which itself can be less than log(m)).
One setting when the selection of T depends on the statistics

of D that are only loosely coupled with φ is variance based

feature selection [22, 23]. Suppose we have n samples and m
bio-markers. Let Xi,j denote the value of the i-th bio-marker

on sample j. Here D = {Xi,j}. Let φi = n−1
∑n

j=1Xi,j

be the empirical mean values of the i-th biomarker. We are

interested in identifying the markers that show significant non-

zero mean. Many studies first perform a filtering step to select

only the markers that have high variance and remove the

rest. The rationale is that markers that do not vary could be

measurement errors or are likely to be less important. A natural

question is whether such variance filtering introduces bias.

In our framework, variance selection is exemplified by the

selection rule T = argmaxi Vi where Vi =
∑n

j=1(Xi,j−φi)2.

Here we consider the case where only the marker with the

largest variance is selected, but all the discussion applies to

softer selection when we select the K markers with the largest

variance. The resulting bias is E[φT−µT ]. Proposition 1 states

that variance selection has low bias if I(T ;φ) is small, which

is the case if the empirical means and variances, φi and Vi, are

not too dependent. In fact, when the Xi,j are i.i.d. Gaussian

samples, φ1, ..., φm are independent of V1, ..., Vm . Therefore

I(T ;φ) = 0 and we can guarantee that there is no bias from

variance selection.

This illustrates an important point that the bias bound

depends on I(T ;φ) instead of I(T ;D). The selection process

T may depend heavily on the dataset D and I(T ;D) could

be large. However as long as the statistics of the data used for

selection have low mutual information with the estimators φi,
there is low bias on the reported values.

We can apply our framework to analyze biases that arise

from feature filtering more generally. A common practice in

data analysis is to reduce multiple hypotheses testing burden

and increase discovery power by first filtering out covariates

or features that are unlikely to be relevant or interesting [20].

This can be viewed as a two-step procedure. For each feature

i, two marginal statistics are computed from the data, ψi

and φi. Filtering corresponds to a selection protocol on ψi.

Since I(T ;φ) ≤ I(ψ;φ), if the ψi’s do not reveal too much

information about φi’s then the filtering step does not create

too much bias. In our example above, ψi is the sample variance

and φi is the sample mean of feature i. General principles for

creating independent ψi and φi are given in [20].

More generally, suppose the dataset determines two sets

of statistics φ = (φ1, .., φm) and ψ = (ψi, ..., ψm′). We

report φT and want to quantify its bias, but the selection rule

depends only on the ψi’s, i.e. T = f(ψi) can be expressed

as a function of the ψi’s. This captures the general situation

where data processing and feature selection uses one set of

summary statistics (ψ) and we want to quantify the bias

introduced in these steps on another set of statistics (φ). The

dependence structure can be expressed as a Markov chain

T − ψ − φ, where this notation indicates that conditioned

on ψ, T is independent of φ. The data processing inequality
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Proposition 5. Let x ≡ (x1, ..., xn), Y ≡ (Y1, ..., Yn),
f̂(x) ≡ (f̂(x1), ...f̂(xn)) and log+(z) ≡ max{1, log(z)}.
Then,

E[L(f̂)− L̂(f̂)] ≤

√

I(f̂(x);Y)

2n
.

If F has VC-dimension d <∞, then

I(f̂(x);Y) ≤ d log+
(ne

d

)

.

The proof of the information usage bound follows by an

easy reduction to Proposition 1. The proof of the second claim

relies on a known link between VC-dimension and a notion

of the log-covering numbers of the function-class.

It is worth highlighting that because VC-dimension depends

only on the class of functions F , bounds based on this

measure can’t shed light on which types of data-generating

distributions and fitting procedures (X,Y) 7→ f̂ allow for

effective generalization. Information usage depends on both,

and a result could be much smaller than VC-dimension; for

example, this occurs when some classifiers in F are much

more likely to be selected after training than others. This can

occur naturally due to properties of the training procedure, like

regularization, or properties of the data-generating distribution.

G. Approximately independent data splitting.

A data scientist has access to data in the form of n samples

(s1, . . . , sn) from a Markov chain. She would like to mimic

the honest data-splitting she uses with i.i.d data. To do this,

she splits the into three parts: (s1, .., sn1
), (sn1+1, .., sn2

)
and (sn2+1, .., sn). The first part is used for selection, the

third for estimation, and the middle data is thrown away. In

particular, φ = φ1, ..., φm : (sn2+1, .., sn) → R
m and that

T : (s1, .., sn1
) 7→ {1, . . . ,m}. One expects that if n2 − n1 is

large so there is a sufficient delay between the two samples,

then the risk of bias and overfitting will be low. We’ll see that

this is easy to formalize via an information usage lens.

We assume the Markov process is stationary and time homo-

geneous with stationary distribution π. Moreover, it satisfies a

uniform mixing condition

max
s
D(P(sτ = ·|s1 = s) ||π) ≤ c0e−c1τ ∀τ ∈ N.

We then claim that

I(T ;φ) ≤ c0e−c1(n2−n1)

and so a sufficient delay between the sample used for selection

and the sample used for estimation guarantees low bias. We

have immediately that,

I(st+τ ; st) =
∑

s

P(st = s)D(P(st+τ = ·|st = s) ||P(st = ·))

≤ c0e−c1τ

where we used that P(st = s) = π(s). Then, by the data

processing inequality

I(T ;φ) ≤ I((s1, .., sn1
) ; (sn2+1, .., sn))

≤ I(sn1
; sn2+1)

≤ c0e−c1(n2−n1).

H. Bias control via FDR control

There has been intense interest in large-scale hypothesis

testing procedures that control the false-discovery rate. Here

we consider the bias and error incurred when estimation is

performed after variables are selected in this manner, and

bound this in terms of the false discovery rate and the rates

of type I and type II errors.

As motivation, consider analysis of a large micro-array

experiment. There is a large set of gene-expression data

D ∈ R
n×m consisting of m gene expression levels drawn from

n samples, where there first n1 samples were taken from tissue

with a cancerous tumor and the remaining n2 = n− n1 were

taken from healthy tissue. A scientist would like to identify

genes with large differential between the expression levels

across the two tissue types. She casts this as a multiple hypoth-

esis testing problem, where rejecting a given null hypothesis

indicates strength of evidence that an observed differential

is unlikely due to random chance. Many procedures exist

to control the false discovery rate, which is the expected

proportion of type I errors among rejected null hypotheses.

Consider for example the procedure proposed by Benjamini

and Hochberg. One first constructs p-values p1, . . . pm for m
separate hypothesis testing problems. These are then sorted

as p(1) ≤ p(2) ≤ . . . , p(m). To guarantee the false discovery

rate is controlled at some level q ∈ (0, 1), their procedure

specifies the selection of the the first t̂ hypotheses, where t̂ is

the largest number such that p(t) ≤ qt/m. Framed differently,

all hypotheses with p-values less than a random threshold

l̂ = qt̂/m are rejected. To gain some insight, let us consider

a simple model where each p-value is drawn either from a

uniform distribution (i.e. the null distribution) or an alternative

distribution F . Consider an asymptotic regime where the num-

ber of alternative m → ∞, but the proportion of alternatives

following the null distribution stays fixed. Then [29] show

that under regularity conditions on F , the random threshold l̂
converges in probability to a deterministic limit l∗. Therefore,

the rate of type I and type II errors, as well as the proportion

of false discoveries, all tend to a fixed levels asymptotically

as m → ∞. Whether a particular hypothesis is accepted or

rejected is still random and data-dependent, but when m is

large the overall proportions are nearly deterministic.

We consider a more abstract framework. There is some

random matrix D ∈ R
n×m, and a vector φ ∈ R

m that is

a function of D with µ = E[φ]. The indices {1, . . . ,m} are

partitioned into two sets H0 and H1. A selection procedure

is a map ψ : Rn×m → {0, 1}m, where ψ(D)i = 1 indicates

variable i was selected. We set S1 ⊂ {1, . . . ,m} to be the set

of selected variables and S0 to be its complement.

To form the analogy with the story above, we think of φ
as a vector of summary statistics of the columns of D—e.g.

the observed gene expression differential between tumor tissue

and healthy tissue—and think of H0 as the set for which the

null distribution holds — e.g. across repeated samples there

would not be an observed differential. The selected variables

S1 is the set for which the null hypothesis was rejected. Set

α̂ = #(H0 ∩ S1)/#H0 and β̂ = #(H1 ∩ S0)/#H1 to be

analogues of the proportion of type I and type II errors. Note



9

that α̂ is the fraction of false discoveries relative to the total

number of nulls, and is different from what is called the False

Discovery Proportion or FDP. To simplify the discussion, we

assume there is always at least one selected variable, so S1

is nonempty. We are interested in the average error or bias in

reported estimates among selected, which leads to the study

of quantities like

1

#S1

∑

i∈S1

(φi − µi), (1)

1

#S1

∑

i∈S1

|φi − µi|,

or
1

#S1

∑

i∈S1

(φi − µi)
2.

These can be rewritten as E[φT − µT ], E[|φT − µT |] or

E[(φT−µT )
2] where, conditioned on D, T is drawn uniformly

at random from the set of selected of selected variables S1.

This leads naturally to the study of information usage I(T ;φ),
which bounds these quantities. The quantities in (1) reflect

whether, the estimation procedures applied to the selected

variables produce accurate results on average. For this reason,

we are able to provide meaningful guarantees that do not

degrade as m → ∞, a regime in which it is impossible to

guarantees that every selected variable is estimated accurately.

Now, let us define FDR = P(T ∈ H0) to be the false

discovery rate. This is the expected proportion of selected

variables S1 that are contained within the null set H0. The

next lemma bounds information usage in terms of the false

discovery rate, the rates of type I and II error, and an extra

error term that vanishes as the random proportion of realized

type I and II errors concentrate around their expected value.

A short proof is given in Appendix E.

Proposition 6. For the FDR control problem defined above,

I(T ;φ) ≤ h(FDR) + (1− FDR) · log
(

1

1− β

)

+ FDR · log
(
1

α

)

+ ξ

where h(p) = −p log(p)−(1−p) log(1−p) denotes the binary

entropy function, α = E[α̂] and β = E[β̂] denote the type I

and II error proportion relative to the total number of true

null and true alternative, respectively. The error term is

ξ = E

[

log+

(
1− β
1− β̂

)]

+E
[

log+

(α

α̂

)]

.

for log+(x) ≡ max{0, log(x)}.
This result further formalizes the insight that estimation

after selection is unlikely to overfit in settings where the

selection procedure works reliably. When the rates of false

discovery, type I error, and type II error are small, information

usage is guaranteed to also be low. The implied bounds on

estimation error after selection grow smoothly as the reliability

of the selection procedure degrades.

VI. LIMITING INFORMATION USAGE AND BIAS VIA

RANDOMIZATION

We have seen how information usage provides a unified

framework to investigate the magnitude of exploration bias

across different analysis procedures and datasets. It also

suggests that methods that reduces the mutual information

between T and φ can reduce bias. In this section, we explore

simple procedures that leverages randomization to reduce

information usage and hence bias, while still preserving the

utility of the data analysis.

We first revisit the rank-selection policy considered in the

previous subsection, and derive a variant of this scheme

that uses randomization to limit information usage. We then

consider a model of a human data analyst who interacts

sequentially with the data. We use a stylized model to show

that, even if the analysts procedure is unknown or difficult

to describe, adding noise during the data-exploration process

can provably limit the bias incurred. Many authors have

investigated adding noise as a technique to reduce selection

bias in specialized settings [28, 30]. The main goal of this

section is to illustrate how the effects of adding noise is

transparent through the lens of information usage.

A. Regularization via randomized selection

Subsection V-C illustrates how signal in the data intrinsi-

cally reduces the bias of rank selection by reducing the entropy

term H(T ) in I(T ;φ) = H(T )−H(T |φ). A complementary

approach to potentially reduce bias is to increase conditional

entropy H(T |φ) by adding randomization to the selection pol-

icy T . Note that while this randomization increases H(T |φ),
it also increases H(T ) and thus could increase information

usage. It is easy to maximize conditional entropy by choosing

T uniformly at random from {1, ...,m}, independently of

φ. Imagine however that we want to not only ensure that

conditional entropy is large, but want to choose T such that

the selected value φT is large. After observing φ, it is natural

then to set the probability πi of setting T = i by solving a

maximization problem

maximize
π∈R

m
+

H(π)

subject to

k∑

i=1

πiφi ≥ b and

k∑

i=1

πi = 1.

The solution π∗ to this problem is the maximum entropy or

“Gibbs” distribution, which sets

π∗
i ∝ eβφi i ∈ {1, ..,m} (2)

for β > 0 that is chosen so that
∑

i π
∗
i φi = b. This procedure

effectively adds stability, or a kind of regularization, to the

selection strategy by adding randomization. Whereas tiny per-

turbations to φ may change the identity of T = argmaxi φi,
the distribution π∗ is relatively insensitive to small changes in

φ. Note that the strategy (2) is one of the most widely studied

algorithms in the field of online learning [31], where it is often

called exponential weights. It is also known as the exponential

mechanism in differential privacy. In our framework it is

transparent how it reduces bias.
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In general, we allow the analysis output YTK
to differ from

the empirical value of the test φTK
and a particularly useful

form is YTk
= φTk

+ noise . This captures blind analysis

settings, where the analyst intentionally adds noise throughout

the data analysis in order to reduce over-fitting. A natural

goal is to ensure that for every query Tk used in the adaptive

analysis, the reported result YTK
is close to true value µTK

.

We will show through analyzing the information usage that

noise addition can indeed guarantee such accuracy.

This adaptive analysis protocol can be viewed as a Markov

chain

Tk+1 ← Hk ≡ {T1, YT1
, ..., Tk, YTk

} ← D → φ,

where recall that φ denotes the vector {φ1, ..., φm}. By the in-

formation processing inequality [33], I(Tk+1;φ) ≤ I(Hk;φ).
Therefore, a procedure that controls the mutual information

between the history of feedback Hk and the statistics φ will

automatically control the mutual information I(Tk+1;φ). By

exploiting the structure of the adaptive analysis model, we

can decompose the cumulative mutual information I(Hk;φ)
into a sum of k terms. This is formalized in the following

composition lemma for mutual information.

Lemma 1. Let Hk = (T1, YT1 , T2, YT2 , ..., Tk, YTk
) denote the

history of interaction up to time k. Then, under the adaptive

analysis model

I(Tk+1;φ) ≤ I(Hk;φ) =

k∑

i=1

I(YTi
;φTi
|Hi−1, Ti)

The important takeaway from this lemma is that by bound-

ing the conditional mutual information between the response

and the queried value at each step, I(YTi
;φTi
|Hi−1, Ti), we

can bound I(Tk+1;φ) and hence bound the bias after k rounds

of adaptive queries. Given a dataset D, we can imagine

the analyst having a (mutual) information budget, Ib, which

is decided a priori based on the size of the data and her

tolerance for bias. At each step of the adaptive data analysis,

the analyst’s choice of statistic to query next (as a function

of her analysis history) incurs an information cost quantified

by I(YTi
;φTi
|Hi−1, Ti). The information costs accumulate

additively over the analysis steps, until it reaches Ib, at which

point the guarantee on bias requires the analysis to stop.

A trivial way to reduce mutual information is to return a

response YTi
that is independent of the query φTi

, in which

case the analyst learns nothing about the data and incurs no

bias. However in order for the data to be useful for the analyst,

we would like the results of the queries to also be accurate.

Adding randomization to reduce bias. As before let µi =
E[φi] denote the true answer of query φi. If each φi − µi is

σ–sub-Gaussian, then E[|φi − µi|] ≤ σ. Using Proposition 2,

we can bound the average excess error of the response YTk
,

E[|YTk
− µTk

|]− σ, by the sum of two terms,

E[|YTk
− µTk

|]− σ
≤ E[|YTk

− φTk
|] +E[|φTk

− µTk
| − σ]

≤ E[|YTk
− φTk

|]
︸ ︷︷ ︸

Distortion

+ cσ
√

2I(Tk;φ)
︸ ︷︷ ︸

Selection Bias

.

Response accuracy degrades with distortion, a measure of the

magnitude of the noise added to responses, but this distortion

also controls the degree of selection bias in future rounds. We

will explicitly analyze the tradeoff between these terms in a

stylized case of the general model.

Gaussian noise protocol. We analyze the following special

case.

1) Suppose φi ∼ N (µi,
σ2

n ) and (φ1, ..., φk) is jointly

Gaussian for any k.

2) For the jth query φTj
, j = 1, 2, ..., the protocol returns

a distorted response YTj
= φTj

+ Wj where Wj ∼
N (0,

ω2
j

n ). Note that unlike (φ1, φ2, ....), the sequence

(W1,W2, ....) is independent.

The term n can be thought of as the number of samples in the

data-set. Indeed, if φi is the empirical average of n samples

from a N (µi, σ
2) distribution, then φi ∼ N (µi, σ

2/n). The

ratio σ2/ω2
j is the signal-to-noise ratio of the kth response.

We want to choose the distortion levels (ω1, ω2, ...) so as to

guarantee that a large number of queries can be answered

accurately. In order to do this, we will use the next lemma

to relate the distortion levels to the information provided by a

response. The lemma gives a form for the mutual information

I(X;X + W ) where X and W are independent Gaussian

random variables. As one would expect, this shows that mutual

information is very small when the variance of W is much

larger than the variance of X . Lemma 3, provided in the

Appendix, provides a similar result when X is a general (not

necessarily Gaussian) random variable.

Lemma 2. If X ∼ N (0, σ2
1) and Y = X +W where W ∼

N (0, σ2
2) is independent of X , then

I(X;Y ) =
1

2
log (1 + β) ≤ β

2

where β = σ2
1/σ

2
2 is the signal to noise ratio.

Using Lemma 2, we provide an explicit bound on the

accuracy of YTk+1
as a function a function of n, σ and k.

Note that this result places no restriction on the procedure that

generates (T1, T2, ...) except that the choice Tk can depend on

φ only through the data {T1, YT1
, ...Tk−1, YTk−1

} available at

time k.

Proposition 7. Suppose φi ∼ N (µi,
σ2

n ) and (φ1, ..., φk) is

jointly Gaussian for any k. If for the jth query, YTj
= φTj

+

Wj where Wj ∼ N (0, σ
2√j
n ) and (W1,W2, ...) is independent

of φ, then for every k ∈ N

E[|YTk+1
− µTk+1

|] ≤ c
(
σk1/4

n1/2

)

where c denote a universal constant that is independent of

σ, ω, k, and n.

If the sequence of choices (T1, T2, T3, ...) were non-

adaptive, simply returning responses without any noise (YTi
=

φTi
) would guarantee E[|YTk+1

− µTk+1
|] ≤ σ/

√
n. In the

adaptive model, the first few queries are still answered with

accuracy of order σ/
√
n, but the error increases for the later

queries. This illustrates the fundamental tension that the longer
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the analyst explores the data, the more likely for the later

analysis to overfit.

The factor k1/4 can roughly be viewed as the worst-case

price of adaptivity. It is worth emphasizing this price would

be more severe if the system returned responses without any

noise. When no noise is added error can be as large as

E[|YTk+1
− µTk+1

|] = Ω(σ
√

k/n), as is demonstrated in

Example 1 in the Appendix. Therefore, adding noise offers

a fundamental improvement in attainable performance.

A similar insight was attained by [28], who noted that by

adding Laplacian noise it is possible to answer up to n2 queries

accurately, whereas without noise accuracy degrades after n
queries. In the Gaussian case, it’s clear from our bound that

as n, k →∞, all queries will be answered accurately as long

as k = o(n2).

VII. DISCUSSION

We have introduced a general information usage approach

to quantify bias that arises from data exploration. While we

focus on bias, we show our mutual information based metric

can be used to bound other error metrics of interest, such as

the average absolute error E[|φT − µT |]. It is interesting to

note that the same information usage also naturally appears in

the lower bound on error, suggesting it may be fundamentally

linked to exploration bias. This paper established lower bounds

when the selection process corresponds to solving optimization

problems—i.e. T = argmax. An interesting direction of

research is to understand more general exploration procedures

in which information usage provides a tight approximation to

bias.

One advantage of using mutual information to bound bias

is that we have many tools to analyze and compute mutual

information. This conceptual framework allow us to extract

insight into settings when common data analysis procedures

lead to severe bias and when they do not. In particular we show

how signal in the data can reduce selection bias. Information

usage also suggests engineering approaches to reduce mutual

information (and hence bias) by adding randomization to each

step of the data exploration. Another important project is to

investigate implementations of such randomization approaches

in practical analytic settings.

As discussed before, the information usage framework

proposed here is very much complementary to the excit-

ing developments in post-selection inference and differential

privacy. Post-selection inference, for very specific settings,

is able to exactly characterize and correct for exploration

biases—in this case exploration is feature and model selection.

Differential privacy lies at the other extreme in that it derives

powerful but potentially conservative results that apply to an

adversarial data-analyst. The modern practice of data science

often lies in between these two extremes—the analyst has

more flexibility than assumed in post-selection inference, but

is also interested in finding true signals and hence is much less

adversarial than the worst-case. Information usage provides a

bound on exploration bias in all settings. It is also important

that this bound is data-dependent. In practice, the same analyst

may be much less prone to false discoveries when exploring

a high-signal dataset versus a low-signal dataset, and this

should be reflected in the bias metric. An interesting goal is

to develop approaches that combine the sharpness of post-

selection inference and differential privacy with the generality

of information usage.

APPENDIX A

OVERVIEW OF THE APPENDIX

The appendix provides complete proofs of all the results

in the main text as well as extensions and additional ap-

plications of information usage. Section B gives the proof

of Proposition 1, which states that information usage can

be used to upper bounds selection bias. We also show that

more general results hold when the estimators have different

variances and when the estimators have heavier tales (i.e. sub-

exponential rather than sub-Gaussian). Section C then proves

that the error due to exploration is at least as large as the

information usage for several families of explorations, which

includes Proposition 3. Section D completes the proof of the

link between information usage and classification overfitting

(Proposition 5). In Section F, we provide additional applica-

tions to show how information usage can be used to control

the bias in other metrics of interest, such as p-values in a

multiple hypothesis testing problem and regret in optimization

under uncertainty. Section G provides additional details of the

experiments corresponding to Figure 2. Section H completes

the analysis of how randomization controls the bias of a

multi-step, flexibile data analyst. Section I discusses how our

information usage relates to other information measures such

as max-information.

APPENDIX B

PROOFS OF INFORMATION USAGE UPPER BOUNDS

A. Information Usage Upper Bounds Bias: Proof of Proposi-

tion 1

The proof of Proposition 1 relies on the following varia-

tional form of Kullback–Leibler divergence, which is given

in Theorem 5.2.1 of Robert Gray’s textbook Entropy and

Information Theory [34].

Fact 1. Fix two probability measures P and Q defined

on a common measurable space (Ω,F). Suppose that P is

absolutely continuous with respect to Q. Then

D (P||Q) = sup
X

{
EP[X]− logEQ[eX ]

}
,

where the supremum is taken over all random variables X
such that the expectation of X under P is well defined, and

eX is integrable under Q.

Proof of Proposition 1.

I(T ;φ) =

n∑

i=1

P(T = i)D (P(φ = ·|T = i) ||P(φ = ·))

≥
n∑

i=1

P(T = i)D (P(φi = ·|T = i) ||P(φi = ·))
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Applying Fact 1 with P = P(φi = ·|T = i), Q = P(φi = ·),
and X = λ(φi − µi), we have

D (P(φi = ·|T = i) ||P(φi = ·)) ≥ sup
λ
λ∆i − λ2σ2/2

where ∆i ≡ E[φi|T = i] − µi. Taking the derivative with

respect to λ, we find that the optimizer is λ = ∆i/σ
2. This

gives

2σ2I(T ;φ) ≥
n∑

i=1

P(T = i)∆2
i = E[∆2

T ].

By the tower property of conditional expectation and Jensen’s

inequality

E[φT − µT ] = E[∆T ] ≤
√

E[∆2
T ] ≤ σ

√

2I(T ;φ).

Remark. In the first step of the proof of Proposition 1, we

used the fact that, for all i ∈ {1, ...,m},
D (P(φ = ·|T = i) ||P(φ = ·))

≥ D (P(φi = ·|T = i) ||P(φi = ·)) ,
which follows from the information processing inequality. The

application of this inequality is not tight in general and can

lead to gaps between the actual bias and our upper bound

based on I(T ;φ). Consider the following scenario. Suppose

T : φ1 → [2, ...,m], i.e. T is a deterministic function that uses

the realized value of φ1 to decide which other φj to select. For

example, imagine φ1 ∼ Uniform[0, 1] and T is defined so that

T = 2 if φ1 ∈ [0, 1/(m−1)], T = 3 if φi ∈ [1/(m−1), 2/(m−
1)], and so on. Here T is deterministic, I(T ;φ) = logm,

and this is manifested in D (P(φ = ·|T = i) ||P(φ = ·)) > 0.

However, if φj , j 6= 1 is independent of each other φi,
then D (P(φi = ·|T = i) ||P(φi = ·)) = 0 and the bias is

also 0. The upper bound of Proposition 1 is tight in other

settings; it is also useful in general because the mutual

information I(T ;φ) is amenable to analysis and explicit

calculation. In cases where there is a gap, we may study

P(T = i)D (P(φi = ·|T = i) ||P(φi = ·)) directly.

B. Extension to Unequal Variances

We can prove a generalization of Proposition 1 for settings

when the estimates φi have unequal variances.

Proposition 8. Suppose that for each i ∈ {1, ...,m}, φi − µi

is σi–sub-Gaussian. Then,

|E[φT ]−E[µT ]| ≤
√

E[σ2
T ]
√

2I(T ;φ)

where I denotes mutual information.

Proof. The first part of the proof is the same as that of

Proposition 1. For each i ∈ {1, ...,m},
D (P(φi = ·|T = i) ||P(φi = ·)) ≥ sup

λ
λ∆i − λ2σ2

i /2

where ∆i ≡ E[φi|T = i]− µi. The optimizer is λi = ∆i/σ
2
i .

Rearranging the terms gives

∆i ≤ σi
√

2D (P(φi = ·|T = i) ||P(φi = ·)).

This implies

E[∆T ]

=
∑

i

∆iP(T = i)

≤
∑

i

σiP(T = i)
√

2D (P(φi = ·|T = i) ||P(φi = ·))

≤
√
∑

i

σ2
iP(φi = ·|T = i)

×
√

2
∑

i

P(φi = ·|T = i)D (P(φi = ·|T = i) ||P(φi = ·))

=
√

E[σ2
T ]
√

2I(T ;φ).

where we have used Cauchy-Schwartz for the second inequal-

ity.

C. Extension to Sub-exponential Random Variables

Recall that a random variable X is sub-Gaussian with

parameter σ if E[eλ(X−E[X])] ≤ eλ
2σ2/2 for all real-values

λ. While many random variables are sub-Gaussian, there are

other important classes of random variables that are light

tailed, but not quite sub-Gaussian. Here, we will show how

our information-usage bounds extend to the larger class of

sub-exponential random variables. We say that X is sub-

exponential with parameters (σ, b) if E[eλ(X−E[X])] ≤ eλ2σ2/2

whenever |λ| < 1/b. For example if X ∼ χ2
n follows a chi-

squared distribution with n ≥ 1 degrees of freedom, then it is

sub-exponential with parameters (2
√
n, 4).

Proposition 9. Suppose that for each i ∈ {1, ...,m}, φi − µi

is sub-exponential with parameters (σ, b). Then

E[φT − µT ] ≤ bI(T ;φ) +
σ2

2b
.

Moreover, if b < 1, we also have

E[φT − µT ] ≤
√
bI(T ;φ) +

σ2

2
√
b
.

Proof. Following the same analysis as in the sub-Gaussian

setting (Prop. 1), we have

D (P(φi = ·|T = i) ||P(φi = ·)) ≥ sup
λ<1/b

λ∆i − λ2σ2/2

The RHS is greater than the value from setting λ = 1/b.
Therefore, we have

D (P(φi = ·|T = i) ||P(φi = ·)) ≥
∆i

b
− σ2

2b2
.

Multiplying each side by P (T = i) and summing over i ∈
{1, ..,m} gives

I(T ;φ) ≥ E[φT − µT ]

b
− σ2

2b2

and hence

E[φT − µT ] ≤ bI(T ;φ) +
σ2

2b
.
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When b < 1, λ = 1/
√
b < 1/b is also a feasible point. Putting

in this value of λ into the calculations above gives the second

bound

E[φT − µT ] ≤
√
bI(T ;φ) +

σ2

2
√
b
.

D. Extension to Other Metrics of Exploration Error

Proposition 2 - Part (1). Suppose for each i ∈ {1, ...,m},
φi − µi is σ sub-Gaussian. Then

E[|φT − µT |] ≤ σ + c · σ
√

2I(T ;φ)

where c < 36 is a universal constant.

Proof. Let Ui = φi − µi which is assumed to be σ sub-

Gaussian and let γi = E[|φi − µi|] and Yi = |Ui| − γi. We

show below that Yi is sub-Gaussian with parameter cσ where

c ≤ 36. This implies the result, since by Proposition 1 and the

data-processing inequality,

E[|φT − µT | − γT ] = E[YT ] ≤ cσ
√

2I(T ;Y ) ≤
√

2I(T ;φ).

Since γi ≤ σ for all i, γT ≤ σ, and we have

E[|φT − µT |] ≤ σ + 36σ
√

2I(T ;φ).

The remainder of the proof shows Y ≡ |U |−E[|U |] is sub-

Gaussian whenever U is sub-Gaussian. We use the following

equivalent definition of a sub-Gaussian random variable.

a) Fact 1.: [35] Given a zero-mean random variable Y ,

Suppose there is a constant c ≥ 1 and Gaussian random

variable Z ∼ N (0, τ2) such that

P(|Y | ≥ s) ≤ c(P(|Z| ≥ s)) for all s ≥ 0.

Then Y is sub-Gaussian with parameter
√
2cτ .

b) Fact 2.: [35] Suppose Y is a zero-mean sub-Gaussian

random variable with parameter σ. Then

P(|Y | ≥ s) ≤
√
8eP(|Z| ≥ s)

where Z ∼ N (0, 2σ2).
Let U be a zero-mean random variable that is sub-Gaussian

with parameter σ. Let γ ≡ E[|U |] and Y ≡ |U | − γ. We want

to determine the sub-Gaussian parameter of Y . We have

P(|Y | ≥ s) = P(|U | ≥ s+ γ) +P(|U | ≤ γ − s)
≤
√
8eP(|Z| ≥ s) +P(|U | ≤ γ − s)

where Z ∼ N (0, 2σ2) and we have used Fact 2. Moreover

P(|U | ≤ γ − s) ≤ P(|Z| ≥ s)
P(|Z| ≥ γ)

since the RHS exceeds 1 for s ≤ γ and the LHS is 0 for

s > γ. Hence

P(|Y | ≥ s) ≤
(√

8e+
1

P(|Z| ≥ γ)

)

P(|Z| ≥ s)

and, by Fact 1, Y is sub-Gaussian with parameter 2(
√
8e +

1/P(|Z| ≥ γ))σ. We can simplify this expression further.

Since U is σ sub-Gaussian, its variance is bounded above by

σ2. Therefore γ ≤
√

E[U2] ≤ σ, which implies

P(|Z| ≥ γ) > P(|Z| ≥ σ) > 0.1

and Y is sub-Gaussian with parameter 36σ.

This bound is similar to a bias-variance decomposition,

where the σ term is the variance and the mutual–information

term is the bias. When selection is over many φi’s, the

bias term tends to dominate. The parameter σ captures the

magnitude of noise in the estimates, and therefore implicitly

captures the number of samples in the data set. In particular, If

φi = n−1
∑n

j=1 fi(Xj) where {fi(Xj)}nj=1 is an independent

sequence of σ-sub-Gaussian random variables, then

E[|φT − µT |] ≤
σ√
n
+ c · σ√

n

√

2I(T ;φ).

Using the fact that the square of a sub-Gaussian random

variable is sub-exponential and Proposition 9, we can also

control the mean squared distance between φT and µT .

Proposition 2 - Part (2). Suppose φi−µi is σ sub-Gaussian

for each i ∈ {1, ...,m}. Then

E[(φT − µT )
2] ≤ σ2 (1.25 + 10I(T ;φ)) .

Proof. We use the following fact about sub-Gaussian random

variables.

c) Fact 3.: [35] If Y be a zero-mean sub-Gaussian

variable with parameter σ, then

E
[

e
λY 2

2σ2

]

≤ 1√
1− λ

for all λ ∈ [0, 1).

Given such a Y , we would like to derive the sub-exponential

parameters of Y 2 − γ, where γ ≡ E[Y 2] ≥ 0. Applying Fact

3, we have

E

[

e
λ(Y 2

−γ)

2σ2

]

≤ 1√
1− λ

≤ e10λ2

for λ ∈ [0, 0.1)

where the last inequality can be verified numerically. Using

the substitution t ≡ λ/σ2, we have

E
[

et(Y
2−γ)

]

≤ e10σ4t2 for t ∈
[

0,
0.1

σ2

)

which implies that Y 2− γ is sub-exponential with parameters

(
√
5σ2, 10σ2).
In our setting, Yi = φi − µi is σ sub-Gaussian and γi =

E[(φi − µi)
2] ≤ σ2. Applying Proposition 9 to Y 2

i , we have

E[(φT − µT )
2] ≤ σ2 + 10σ2I(T ;Y 2) +

σ2

4
≤ σ2

(
1.25 + 10I(T ;Y 2)

)

≤ σ2 (1.25 + 10I(T ;φ)) .

where Y 2 ≡ (Y 2
1 , ...Y

2
m) and the final step uses the data-

processing inequality.

In the next result, we think of φ = (φ1, .., φm) and T
as a collection of estimates and a choice of which one to

report made based on common data-set D, while we think

of φ̃ = (φ̃1, ..., φ̃m) as these same estimates computed on a
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fresh replication data-set D̃. The next result bounds the KL-

divergence between φT and φ̃T , which captures the change

in the distribution of the reported result due to performing

selection and estimation on a common data-set.

Proposition 10. Let φ̃ denote a random variable drawn from

the marginal distribution of φ, but drawn independently of T
and φ. Then

D
(

P(φT = ·) ||P(φ̃T = ·)
)

≤ I (T ;φ) .

Proof.

D
(

P(φT = ·) ||P(φ̃T = ·)
)

≤ D
(

P(φT = ·, T = ·) ||P(φ̃T = ·, T = ·)
)

≤
m∑

T=1

P(T = i)D
(

P(φT = ·|T = i) ||P(φ̃T = ·|T = i)
)

=

m∑

T=1

P(T = i)D (P(φi = ·|T = i) ||P(φi = ·))

≤
m∑

T=1

P(T = i)D (P(φ = ·|T = i) ||P(φ = ·))

= I(T ;φ),

where both inequalities follow from the data-processing in-

equality for KL divergence.

APPENDIX C

INFORMATION USAGE ALSO LOWER BOUNDS BIAS

A. Top-k selection: a lower bound for Corollary 1

Here we show that the bound of Corollary 1 is tight as

m/m0 → ∞. For convenience, we show this when m is

divisible by m0. Consider the following alternative selection

policy T̂ . Randomly partition the φi’s into m0 groups of size

m/m0. Within each group, select the maximal φi and from

these m0 maximal φi’s randomly select one as φT̃ . Because the

average among the m0 group leaders is less than the average

among the φ(1), ..., φ(m0), we have E[φT̃ ] ≤ E[φT ]. Moreover,

each group leader converges to σ
√

2 logm/m0 and since the

groups are independent, the average E[φT̃ ] also converges to

σ
√

2 logm/m0.

B. Maximum of Gaussians: Proof of Proposition 3

Recall the statement of Proposition 3.

Proposition 3. Let T = argmax1≤i≤m φi where φ ∼
N (µ, I). There exist universal numerical constants c1 = 1/8,

c2 < 2.5 , c3 = 10, and c4 = 1.5 such that for any m ∈ N

and µ ∈ R
m,

c1H(T )− c2 ≤ E[(φT − µT )
2] ≤ c3H(T ) + c4.

The upper bound above follows by Proposition 2. Here we

will focus on establishing the lower bound.

Throughout, we will use the notation M , φT = maxi φi
and M−i , maxj 6=i φj . We rely on the following facts. The

first shows that the maximum of Gaussian random variables is

itself a sub-Gaussian random variable. The second establishes

a tail bound for normal random variables.

Fact 2. M , maxi φi is 1-subgaussian. In particular,

E[eλ(M−E[M ]] ≤ eλ
2/2. This implies the variance bound

E[(M − E[M ])]2 ≤ 1 and the tail bounds P(M ≥ E[M ] +
λ) ≤ e−λ2/2. Similarly, M−i is 1-sub–Gaussian for all i.

Fact 3. If X ∼ N (0, 1) then for all x > 0

P(X > x) ≥ 1√
2π

(
x

x2 + 1

)

e−x2/2

Proposition 3 provides an analogous lower bound. To un-

derstand this result, recall that entropy the entropy of T is

H(T ) =
∑

i

P(T = i) log(1/P(T = i)).

Consider a setting where E[M ] significantly exceeds µi.

Then, since M concentrates around E[M ], the probability

i is maximal is close to the probability φi exceeds E[M ].
By the above fact, one expects that log(1/P(T = i)) ≈
logP(φi > E[M ]) ≈ (E[M ] − µi)

2/2. This is roughly the

intuition behind the following result. Along with our upper

bound, this describes a natural family of problems in which

E[(φT − µT )
2] = Θ(1 +H(T )).

Proof. We focus on establishing the lower bound, as the upper

bound follows from Proposition 2.

By definition, T = i if and only if M−i ≤ φi. Our proof

will separately consider two cases, depending on whether

E[M−i] ≥ µi + 1. Let I ≡ {i : E[M−i] ≥ µi + 1} denote

the set of estimates whose mean is at least a full standard

deviation below that of M−i.

The entropy of T can be decomposed as

H(T ) =
∑

i/∈I

P(T = i) log

(
1

P(T = i)

)

+
∑

i∈I

P(T = i) log

(
1

P(T = i)

)

.

We first upper bound the sum over i /∈ I . We do this by

lower bounding P(T = i), which yields an upper bound

on log(1/P(T = i)). For any constant λ > 0, and i /∈ I ,

P(M−i < E[M−i] + λ) > 1 − e−λ2/2. Using the fact that

E[M−i] < µi + 1, we have for all λ ≥ 0

P(T = i) = P(M−i < φi)

≥ P(M−i < E[M−i] + λ) ·P(φi > E[M−i] + λ)

≥ P(M−i < E[M−i] + λ) ·P(φi > µi + 1 + λ)

≥
(

1− e−λ2/2
) 1√

2π

(
1 + λ

(1 + λ)2 + 1

)

e−(1+λ)2/2

, p(λ).
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Therefore

∑

i 6∈I

P(T = i) log

(
1

P(T = i)

)

≤ P(T 6∈ I)max
i/∈I

log

(
1

P(T = i)

)

≤ log

(
1

p(1)

)

, c−I .

Direct calculation shows c−I < 5.

Now we consider the case i ∈ I . To simplify notation,

consider the shifted random variables X ≡ φi−µi ∼ N (0, 1)
and Y ≡ M−i − µi. We lower bound log(1/P(T = i)) by a

function of E[Y ]2. We have

P(T = i)

=

∞∫

−∞

P(X > x)P(Y = dx)

≥
∞∫

1

P(X > x)P(Y = dx)

= P(Y ≥ 1)

∞∫

1

P(X > x)P(Y = dx|Y ≥ 1)

≥ P(Y ≥ 1)√
2π

∞∫

1

(
x

x2 + 1

)

e−x2/2P(Y = dx|Y ≥ 1).

By Jensen’s inequality,

logP(T = i) ≥ log(1/
√
2π) + log(P(Y ≥ 1))

+

∞∫

1

(

log

(
x

x2 + 1

)

− x2/2
)

×P(Y = dx|Y ≥ 1),

which can be rewritten as

log

(
1

P(T = i)

)

≤ log(
√
2π) + log

(
1

P(Y ≥ 1)

)

+E

[

log

(
Y 2 + 1

Y

)

|Y > 1

]

+
E[Y 2|Y > 1]

2
.

For Y ≥ 1, one has log((Y 2 + 1)/Y ) ≤ log(1 + Y ) ≤ Y .

Therefore,

log

(
1

P(T = i)

)

≤ log(
√
2π) + log

(
1

P(Y ≥ 1)

)

+ 1.5E[Y 2|Y > 1].

Now,

E[Y 2|Y > 1] ≤ E[Y 2]/P(Y > 1)

=
(
E[(Y −E[Y ])2] +E[Y ]2

)
/P(Y > 1).

Since Y = M−i − µi, the variance of Y is bounded by 1.

Using as well that P(Y > 1) ≥ 1− 1/
√
e gives the bound

log

(
1

P(T = i)

)

≤ log(
√
2π) + log

(
1

P(Y ≥ 1)

)

+
1.5(1 +E[Y ]2)

P(Y ≥ 1)

<5 + 4E[Y ]2.

Now, plugging in E[Y ] = E[M−i] − µi and putting

everything together, we find

H(T ) =
∑

i

P(T = i) log(1/P(T = i))

≤ c−I + 5 + 4
∑

i∈I

P(T = i)(E[M−i]− µi)
2

≤ c−I + 5 + 4
∑

i∈I

P(T = i)(E[M ]− µi)
2

≤ c−I + 5 + 4‖E[M ]− µT ‖2

where ‖X‖ ≡
√

E[X2] denotes the L2 norm a random

variable X and the second inequality uses that E[M ] ≥
E[M−i] ≥ µi.

We complete the proof by relating ‖E[M ]−µT ‖ to ‖φT −
µT ‖. Recall that φT is 1-sub–Gaussian and E[φT ] = E[M ].
Therefore

‖E[M ]− φT ‖ = E[(φT −E[φT ])
2] ≤ 1.

Combining this with the triangle inequality shows

‖E[M ]−µT ‖ = ‖E[M ]−φT +φT −µT ‖ ≤ 1+ ‖φT −µT ‖.
We can then conclude

‖E[M ]− µT ‖2 ≤ (1 + ‖φT − µT ‖)2 ≤ 2 + 2‖φT − µT ‖2

where the inequality uses that maxx∈R f(x) = 0 for f(x) ≡
(1 + x)2 − 2− 2x2. Together, this shows

H(T ) ≤ c−I + 5 + 8 + 8‖φT − µT ‖2

or

‖φT − µT ‖2 ≥ c1H(T )− c2
where c1 = 1/8 and c2 = (c−I + 13)/8 < 2.5.

C. Threshold Selection with Gaussian Random Variables

In addition to the max-selection policy, we analyze a softer

threshold selection policy and prove that the information usage

lower bounds bias here as well. Let each φi correspond to a

Gaussian of variance 1, and we allow the Gaussians to have

different means and be correlated.

Let M be a constant. The threshold-M selection procedure

does the following:

1) If at least one φi is larger than M , uniformly randomly

select one of these φi’s to report. For this, we exclude

φ−1.

2) Otherwise, always report an arbitrary, fixed φ−1.

In what follows, we will show that for M sufficiently large,

the entropy H(T ) lower bounds the square-loss bias E[(ZT −
µT )

2], where, recall that ZT = E[φi|T = i]. Let N−i =
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|{φj ≥ M, j 6= i, j 6= −1}|. As M increases, E[N−i|φi ≥
M ] decreases. We want the threshold to be high enough so

that only a few φi’s are expected to pass the threshold. Let

N̂(M) = maxi E[N−i|φi ≥M ].

Theorem 1. Suppose

M −max
i
µi

≥
√

2 log[2π (1 +E [N−i|φi ≥M ]) (M −max
i
µi)] + 3,

then

E[(φT − µT )
2] ≥ H(T ).

Proof. For i 6= −1, define pi = P(T = i). Then we have

pi = P(φi ≥M)
n−1∑

k=0

P(N−i = k
∣
∣φi ≥M)

1

k + 1

= P(φi ≥M)E

[
1

1 +N−i
|φi ≥M

]

.

Let p =
∑
pi denote the probability that at least one φi, i 6=

−1, passes the threshold. Note that here and below, when we

write
∑
pi, we always mean the sum of over i 6= −1. We can

write the entropy as

H(T ) =
∑

pi log
1

pi
+ (1− p) log 1

1− p
=
∑

pi log
1

P(φi ≥M)

+
∑

pi log

(

1/E

[
1

1 +N−i

∣
∣φi ≥M

])

+ (1− p) log 1

1− p
≤
∑

pi log
1

P(φi ≥M)

+
∑

pi log (1 +E [N−i|φi ≥M ])

+ (1− p) log 1

1− p
≤
∑

pi log
1

P(φi ≥M)

+
∑

pi log (1 +E [N−i|φi ≥M ]) + p.

We can rewrite the inequality as

∑

pi log
1

P(φi ≥M)
≥H(T )

−
∑

pi log (1 +E [N−i|φi ≥M ])

− p.

Since φi ∼ N (µi, 1) and M > µi, we have the bounds

(M − µi)
2

2
≥ log

1

P(φi ≥M)
− log(M − µi)−

1

2
log(2π)

− 1

(M − µi)2
.

After some algebra we have

E[(φT − µT )
2]

≥
∑

pi(M − µi)
2

≥
∑

pi

[
(M − µi)

2

2
− log (1 +E [N−i|φi ≥M ])

− log 2π

2
− log(M − µi)−

1

(M − µi)2
− 1

]

+H(T )

≥H(T )

where the second inequality used the above inequalities

for
(M−µi)

2

2 and
∑
pi log

1
P(φi≥M) ; and the third in-

equality used the condition that M − maxi µi exceeds
√

2 log[2π (1 +E [N−i|φi ≥M ]) (M −maxi µi)] + 3.

As M increases, unless the φi’s are very highly correlated,

E[N−i|φi ≥ M ]) decreases and H(T ) dominates in the

inequality. This shows that H(T ) is a natural lower bound

on E(Z2
T ) and hence

√

H(T ) lower bounds bias. Actually

we can improve this lower bound by considering I(T |Φ) =
H(T )−H(T |Φ) using the fact that

H(T |Φ) =
∑

N=1

P(N = i)H(T |N = i)

=
∑

N=1

P(N = i) log i

= E[logN |N ≥ 1]

where N = |{φi, φi ≥M}|. Assuming that φi’s are indepen-

dent, we need to control the gap between E[Z2
T ] and I(T,Φ),

we need to upper bound p log(1 +E[N ])−E[logN |N ≥ 1].

D. Threshold Selection with Exponential Random Variables

We can prove the analogous lower bound for the threshold

policy with exponential random variables. Let φi = λi +
exp(1) be the shifted exponential random variable. So for

x ≥ λi, P(φi = x) = e−(x−λi) and P(φi = x) = 0 for

x < λi. Different φi’s can have different λi and we allow

them to be correlated. The mean of φi is µi = λi + 1. As

before, let N̂(M) = maxi E[N−i|φi ≥M ].

Theorem 2. Suppose M −maxλi ≥ 4 + 2 log(1 + N̂(M)),

E[φT − µT ] ≥ H(T )/2.

Proof. The proof follows the same structure as before. Since

P(φi > M) = e−(M−λi), we have log 1/P(φi > M) =
M − λi and

H(T ) =
∑

i 6=−1

pi(M − λi)

+
∑

i 6=−1

pi log

(

1/E

[
1

1 +N−i

∣
∣φi ≥M

])

+ (1− p) log 1

1− p .
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On the other hand,

E[φT − µT ]

≥
∑

i 6=−1

pi(M − µi)

=
∑

i 6=−1

pi(M − λi)− p

≥ H(T )−
∑

i 6=−1

log

(

1/E

[
1

1 +N−i
|φi ≥M

])

− 2p

≥ H(T )−
∑

i 6=−1

log(1 +E[N−i

∣
∣φi ≥M ])− 2p

≥ H(T )/2.

APPENDIX D

INFORMATION USAGE AND CLASSIFICATION

OVERFITTING: PROOF OF PROP. 5

Proof. The empirical L̂(f) and expected L(f) loss of a

classifier f ∈ F on the training examples x ≡ (x1, ..., xn)
depend only on the predictions f(x) ≡ (f(x1), ..., f(xn)) it

makes on these examples. Let Fx = {f(x) : f ∈ F} and note

that m = |Fx| ≤ 2n is finite. Let f1, ..., fm be functions that

make different classifications at x, so ∪m1 {f(x)} = Fx.

Now, the overfitting problem studied in Prop. 5 can be cast

in the same framework as the rest of the paper. For each i ∈
{1, ...,m}, set φi = L̂(fi) and µi = L(fi) to be the training

error and expected error of classifier fi. Let T ∈ {1, ..,m} be

the random index satisfying f̂(x) = fT (x). Then, our result

follows by bounding |E[φT − µT ]|.
If X ∼ Bern(p) is a Bernoulli random variable with param-

eter p, then X − p is sub-Gaussian with parameter less than

1/4 [36]. Similarly, if X1, ..Xn are Bernoulli random variables

with respective parameters p1, ..., pn, then n−1
∑n

i=1(Xi−pi)
is sub-Gaussian with parameter not exceeding 1/4

√
n. This

immediately implies φi−µi is σ–sub-Gaussian with σ ≤ 1/2n,

so applying Prop. 1 implies

|E[φT − µT ]| ≤
√

I(T ;φ)

2n
≤
√

I(T ;Y)

2n
.

Using the information-processing inequality, and the definition

of T , we have

I(T ;φ) ≤ I(T ;Y) = I(f̂(x),Y),

which completes the proof of the first claim.

The second claim uses a standard link between VC-

dimension and the size of Fx. Set SF (n) = max{|Fx| : x ∈
Xn} to be the maximum number of ways n points can be

classified by the function class. This is often called the growth

function of F . We have immediately that I(T ;φ) ≤ H(T ) ≤
logSF (n). Sauer’s lemma (see Lemma 1 of [37]) shows that

SF (n) ≤
{

2n if n < d
(
en
d

)d
if n ≥ d

where d < ∞ is the VC-dimension of F . This implies

logSF (n) ≤ d log+
(
en
d

)
.

APPENDIX E

BIAS CONTROL VIA FDR CONTROL: PROOF OF PROP. 6

Proof. Let χ = 1{T∈H0} denote an indicator for a false

discovery. Since this is a deterministic function of T ,

I(T ;φ) = I(T ; (χ,φ)) = I(T ;χ)+I(T ;φ | χ) ≤ H(χ)+I(T ;φ | χ)

Now, using the distribution of χ we have

I(T ;φ | χ) ≤ H(χ) +P(χ = 0)I(T ;φ | χ = 0)

+P(χ = 1)I(T ;φ | χ = 1)

= h(P(T ∈ H1)) +P(T ∈ H1)I(T ;φ | T ∈ H1)

+P(T ∈ H0)I(T ;φ | T ∈ H0)

≤ h(P(T ∈ H1)) +P(T ∈ H1)I(T ;D | T ∈ H1)

+P(T ∈ H0)I(T ;D | T ∈ H0)

where we have applied chain rule and the data-processing

inequality. Now, we have

I(T ;D | T ∈ H1) = H(T | T ∈ H1)−H(T |T ∈ H1, D)

≤ log(#H1)

−E[log (#(S1 ∩H1)) | T ∈ H1]

= log(#H1)

−E[log
(

(1− β̂) · (#H1)
)

| T ∈ H1]

= −E
[

log
(

1− β̂
)

| T ∈ H1

]

= − log (1− β) +E

[

log

(
1− β
1− β̂

)
∣
∣T ∈ H1

]

.

Then,

P(T ∈ H1)I(T ;D | T ∈ H1) ≤ −P(T ∈ H1) log(1− β)

+E

[

log

(
1− β
1− β̂

)

1{T∈H1}

]

≤ −P(T ∈ H1) log (1− β)

+E

[

log+

(
1− β
1− β̂

)]

.

Essentially the same calculation shows,

P(T ∈ H0)I(T ;X | T ∈ H0) ≤ −P(T ∈ H0) log(α)+E
[

log+

(α

α̂

)]

.

Plugging in P(T ∈ H0) = FDR concludes the proof.

APPENDIX F

ADDITIONAL APPLICATIONS OF INFORMATION USAGE

When a data analyst selects hypothesis tests to perform

after data exploration, they may compute extremely small p-

values even if there is no signal in the data, and all null

hypotheses hold. In this section we apply our information-

usage framework to quantify how severely the analyst must

explore the data to produce these small p-values. We also give

an illustration of mutual information bound in controlling the

value of information in decision-making under uncertainty.
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A. The Probability of Small p–values

Let φi be the observed p-value of the ith hypothesis and

suppose the analyst has to report the p-value φT corresponding

to a single hypothesis test from among a large collection of

φ1, ..., φm of observed p-values. Under the null hypothesis,

each p-value φi is uniformly distributed, so P(φi ≤ ǫ) = ǫ
for each ǫ ∈ [0, 1]. Suppose the data analyst rejects the

null hypothesis corresponding to T whenever φT ≤ .05. If

T is chosen adaptively so that φT is the smallest p-value

among φ1, ..φ5, then the probability of falsely rejecting the

null hypothesis is 1−(.95)5 ≈ .23. Therefore, at a significance

level of .05, even fairly mild forms of adaptivity can create a

substantial risk of false discovery. Nevertheless, we argue in

this section that very small p-values are very unlikely unless

the mutual information I(T ;φ) is large.

To build intuition, imagine that φ1, ..., φm
iid∼

Uniform(0, 1). If the hypothesis T = argmini≤m φi with the

smallest p-value is selected, the reported p-value is expected

to be of order 1/m. In particular, E[φT ] = 1/(m+ 1), and

P

(

φT ≤
1

m

)

= 1−
(

1− 1

m

)m

−→ 1− 1

e
.

Therefore, when selecting among m ≈ eB hypotheses, one

expects to observe p-values as small as ǫ ≈ e−B but not

smaller. Our next proposition extends this line of reasoning,

and replaces B = log(m) with the mutual information

between T and φ. It shows that when φ1, ..., φm are uniformly

distributed, but not necessarily independent, one is very un-

likely to observe a p value φT much smaller than e−I(T ;φ)

under an arbitrary adaptive selection procedure T .

In fact, the bound provided by the following proposition

is stronger. Instead of depending on I(T ;φ), it depends on

the mutual information between T and a more compressed

random variable Zǫ. Here Zǫ,i ≡ 1(φi < ǫ) and the term

I(T ;Zǫ) ≤ I(T ;φ) is a measure of the dependence of the

selection rule on the realization of extremely small p-values.

Proposition 11. Define Zǫ,i = 1(φi < ǫ) and let Zǫ =
(Zǫ,1, ..., Zǫ,m). If φi ∼ Uniform(0, 1) for all i ∈ {1, ..,m}
then

P(pT < ǫ) ≤ ǫ+
√

I(T ;Zǫ)

log(1/2ǫ)
.

Proof of Proposition 11. Since φi ∼ Uniform(0, 1), Zǫ,i =
1(φi < ǫ) is a Bernoulli random variable with parameter ǫ and

E[Zi] = ǫ. We use the fact [36] that a probability p Bernoulli

random variable is sub-Gaussian with parameter

σ =

√

1− 2p

2 log((1− p)/p) ≤
√

1

2 log(1/2p)
.

Combining this with Proposition 1, we have the desired result

E[ZT ]−E[µT ] = P(pT < ǫ)− ǫ ≤
√

I(T ;Zǫ)

log(1/2ǫ)
.

To interpret this result, suppose the selection procedure T
reports the minimal p-value and ǫ = 2−k. If we test 2k inde-

pendent hypotheses, then standard multiple hypotheses testing

theory tells us that there is a non-neglible probability that pT is

less than ǫ. This shows up in the bound of Proposition 11 since√
I(T ;Zǫ)
log(1/2ǫ) ≈ 1. However, when there is correlation among the

hypotheses, I(T ;Zǫ) can be significantly less than 2k, and

our bound quantifies the risk of false discovery in this more

nuanced setting.

B. Regret Analysis and the Value of Information

Consider a general problem of optimization under uncer-

tainty. A decision-maker would like to choose the action x
from a finite set X that solves maxx∈X fθ(x). Here θ is an

unknown parameter that is drawn from a prior distribution

over a set of possible parameters Θ. We consider the decision-

maker’s expected shortfall in performance due to not knowing

the parameter θ:

E[max
x∈X

fθ(x)]−max
x∈X

E[fθ(x)].

This measures the value of perfect information about θ: the

expected improvement in decision quality that would result

from resolving uncertainty about the identity of θ. This is

sometimes called the Bayes risk or Bayesian regret of the

decision argmaxx∈X E[fθ(x)].
Our main result provides an information theoretic bound

on Bayes risk. Let X∗ ∈ argmaxx∈X fθ(x) denote a true

maximizer of the function fθ. Here X∗ is a random variable,

since θ is random, and X∗ is a function of θ. Let µ(x) =
E[fθ(x)].

Proposition 12. If for each for each x ∈ X , fθ(x)− µ(x) is

σ sub-Gaussian, then

E[max
x∈X

fθ(x)]−max
x∈X

µ(x) ≤ σ
√

2H(X∗)

Proof. Note that

max
x∈X

µ(x) ≥ E[µ(X∗)]

and

E[max
x∈X

fθ(x)] = E[fθ(X
∗)]

Therefore,

E[max
x∈X

fθ(x)]−max
x∈X

µ(x) ≤ E[fθ(X
∗)]− E[µ(X∗)]

≤ σ
√

2I(X∗; θ)

= σ
√

2H(X∗)

APPENDIX G

ADITIONAL EXPERIMENTAL DETAILS

Here we provide additional details for the LARS bias

experiments of Figure 2. We consider random design matrix

X ∈ R
100×1000 whose entries are i.i.d. samples from N (0, 1).

The rows of X are then normalized to have unit variance.

The effects are represented by the vector β ∈ R
1000. The

first 20 entries of β are set to a constant s—corresponding

to the signals—and rest of the entries are all set to be 0. By

increasing s, we increase the signal-to-noise in the data. The
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low, medium and high signal settings corresponds to setting

s = 0.04, 0.06 and 0.08, respectively. Finally the outcomes

are given by y = X · β + ǫ, where ǫ ∼ N (0, I100/10) is the

noise. We consider the full selection path of LARS on X and

y. Let the index Ti denote the ith feature to enter the subset

selected by LARS.

In this experiment, for simplicity, we quantify the bias

on the univariate regression coefficients. More concretely,

suppose we have the true values y∗ = X · β. Then we can

use least squares between y∗ and the jth column of X to

determine the true univariate coefficient β∗
j of the feature j.

From the noisy observations y, we can similarly compute the

noisy univariate coefficient β̂j . We quantify the bias β̂Ti
−β∗

Ti
,

for i = 1, 2, .... This bias quantifies how much LARS overfit

to the noise in the data.

APPENDIX H

COMPLETE ANALYSIS OF THE MULTI-STEP DATA

ANALYSIS MODEL

Proof of Lemma 1. Since, conditional on Hk, Tk+1 is in-

dependent of φ, the data-processing inequality for mutual

information implies,

I(Tk+1;φ) ≤ I(Hk;φ).

Now we have,

I(Hk;φ) =

k∑

i=1

I ((Ti, YTi
);φ|Hi−1) .

We complete the proof by simplifying the expression for

I ((Ti, YTi
);φ|Hi−1). Let φ(−i) = (φj : j 6= i). Then,

I ((Ti, YTi
);φ|Hi−1) = I (Ti;φ|Hi−1)

+I (YTi
;φ|Hi−1, Ti)

= I (YTi
;φ|Hi−1, Ti)

= I(YTi
;φTi
|Hi−1, Ti)

+I(YTi
;φ(−Ti)|Hi−1, Ti,φTi

)

= I(YTi
;φTi
|Hi−1, Ti),

where the final equality follows because, conditioned on φTi
,

YTi
is independent of φφφ(−Ti).

Proof of Lemma 2.

I(X;Y ) = −1

2
log

(

1− σ2
1

σ2
1 + σ2

2

)

= −1

2
log

σ2
2

σ2
1 + σ2

2

=
1

2
log

(

1 +
σ2
1

σ2
2

)

.

Lemma 3. Let X be a real value random variable with

variance σ2
X = (X − E[X])2] and W ∼ N (0, σ2

W ) be a

normal random variable that is independent of X . Then

I(X;X +W ) ≤ σ2
X

σ2
W

Proof. Let pX(x) denote the density of X with respect to

some base measure ν over X . Then we have

I(X;X +W )

=

∫

X

D(P(x+W = ·) ||P(X +W = ·))pX(x)dν(x)

(a)

≤
∫

X





∫

X

D(P(x1 +W = ·) ||P(x2 +W = ·))pX(x2)dν(x2)





×pX(x1)dν(x1)

(b)
=

∫

X

∫

X

(x1 − x2)2
2σ2

W

pX(x1)pX(x2)dν(x1)dν(x2)

(c)
=

σ2
X

σ2
W

.

Here inequality (a) uses the convexity of KL divergence,

(b) follows from the formula for the KL divergence between

univariate normal distributionsN (x1, σ
2) andN (x2, σ

2), and

(c) uses that if X1 and X2 are iid random variables with mean

µ, then

E[(X1 −X2)
2] = E[(X1 − µ+ µ−X2)

2] = 2E[(X1 − µ)2].

We prove a more general statement of Proposition 7.

Proposition 13. Suppose φi ∼ N (µi,
σ2

n ) and (φ1, ..., φk) is

jointly Gaussian for any k. If for the jth query, YTj
= φTj

+

Wj where Wj ∼ N (0,
ω2

j

n ) and (W1,W2, ...) is independent

of φ, then

E[|YTk+1
−µTk+1

|] ≤ σ√
n
+c1




ωk+1√
n

+ σ2

√
∑k

j=1 w
−2
j

n



 .

If ωj = σj1/4 for each j ∈ N, then for every k ∈ N

E[|YTk+1
− µTk+1

|] ≤ c2
(
σk1/4

n1/2

)

where c1 and c2 denote universal constants that are indepen-

dent of σ, ω, k, and n.

Proof of Proposition 13.

E[|YTk+1
− µTk+1

|] ≤ E[|YTk+1
− φTk+1

|] +E[|φTk+1
− µTk+1

|]

≤
√

2ωk+1

πn
+E[|φTk+1

− µTk+1
|]

≤
√

2ωk+1

πn
+

σ√
n
+ c · σ

√

2I(Tk+1;φ)

n

where c is a universal numerical constant. The second inequal-

ity uses the expected value of the half-normal distribution, and

the third inequality follows from Proposition 2.

The desired result follows by bounding the mutual informa-

tion term. Applying Lemma 1, we have

I(Tk+1;φ) ≤
k∑

i=1

I(YTi
;φTi
|Hi−1, Ti)
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where Hk = (T1, YT1
, T2, YT2

, ..., Tk, YTk
) denotes the history

of interaction up to time k. Because the φi’s are jointly

Gaussian, and observation noise is Gaussian, the posterior

P(φj = ·|Hi−1) is Gaussian with conditional variance less

than σ2/n. Moreover, conditional on Hi=1, Ti is independent

of (φ1, φ2...) and (Y1, Y2, ....), so φTi
|Hi−1, Ti is normally

distributed with variance less than σ2/n.

Lemma 2 implies

I(YTi
;φTi
|Hi−1, Ti) ≤

σ2/n

2ω2
i /n

=
σ2

2ω2
i

and therefore

I(Tk+1;φ) ≤
(
σ2

2

) k∑

i=1

ω−2
i .

Plugging this into the earlier bound implies

E[|YTk+1
− µTk+1

|] ≤
√

2ωk+1

πn
+

σ√
n
+ cσ2

√
∑k

i=1 ω
−2
i

n
,

which is the desired result.

Example 1 (Adaptively fitting a linear model [28]). A data-

analyst collects n samples of θ1, ...θn
iid∼ D of k dimensional

vectors drawn from an unknown distribution and θ̂ is the

average of the θi’s. She would like to find a unit vector x
that is highly correlated with this distribution, in the sense

that Eθ∼D[xT θ̂] is large. To do this, she looks to maximize

xT θ̂.

Suppose D = N (0, σ2I), so Eθ∼D[xT θ] = 0 for all x.

Nevertheless, the analyst can still find a vector with a large

inner product with θ̂. Imagine she collects k measurements

of θ̂, allowing her to completely uncover the vector, and then

chooses X = θ̂/‖θ̂‖ Then, since θ̂ ∼ N (0, σ
2

n I),

E[XT θ̂] = E[‖θ̂‖ = Θ

(

σ

√

k

n

)

.

APPENDIX I

MUTUAL-INFORMATION VS MAX-INFORMATION

Recent work has proposed max-information [19], and its

generalization, approximate max-information, as a metric to

control the error of a worst-case, adversarial, data analyst. This

notion was motivated by techniques from differential privacy,

which shows that a differentially private mechanism have low

approximate max-information, and hence has low error even

when the analyst is adversarial.

To understand the relationship between mutual–information

and max–information, we revisit the rank selection example

from Section V. While max–information provides a powerful

tool for analyzing the behavior of a worst-case adaptive

protocol, this example shows it can exhibit counter-intuitive

behavior when analyzing specific selection procedures.

We assume

φi ∼
{

N (µ, σ2) If i = I∗

N (0, σ2) If i 6= I∗

where µ ≥ 0. The analyst selects T = argmaxi φi. As

discussed in Section V, bias decreases as the signal strength µ

increases, and this follows transparently from our information

theoretic bound. Indeed, as µ grows T concentrates on I∗, and

I(T ;φ) = H(T ) =

m∑

i=1

P(T = i) log

(
1

P(T = i)

)

decreases. This scaling is intuitive. As T concentrates on I∗

the selection protocol becomes less and less adaptive, and

hence we expect both the selection bias as well as the bias

bound which depends on I(T ;φ) to decrease.

In contrast max-information has the opposite scaling in

this setting: it increases as the signal µ increases and bias

decreases. In fact,

I∞(T ;φ) = max
i,y

log

(
P(φ = y, T = i))

P(φ = y)P(T = i)

)

= max
i,y

log

(
P(T = i|φ = y))

P(T = i)

)

= max
i

log

(
1

P(T = i)

)

,

where the maximum is over y ∈ R
m and is attained for

any y with i = argmaxj yj . By symmetry, I∞(T ;φ) =

log
(

m−1
P(T 6=I∗)

)

, which increases as the the probability of

selecting I∗ grows. Therefore, max–information is minimized

when the data analyst inappropriately uses rank-selection even

though there is no signal in the data (µ = 0). As µ increases,

so the data-analyst detects I∗ with probability tending to 1,

max-information increases toward infinity.

The related notion of approximate max-information can

exhibit similar counter-intuitive behavior. Following [18], the

approximate max-information at level β is defined to be

Iβ∞ (T ;φ) := max
O⊂[m]×R

m

P((T,φ)∈O)≥β

log

(
P((T ;φ) ∈ O)− β
P((T ; φ̃) ∈ O)

)

.

Lemma 4. If T = f(φ) is a deterministic function of φ, then

Iβ∞(T ;φ) ≥ max
i≤m

P(T=i)≥2β

log

(
1

P(T = i)

)

− log(2)

for any i ∈ {1, ...m} with P(T = i) ≥ 2β.

Proof. Let φ̃ denote a random variable drawn from the

marginal distribution of φ, but drawn independently of T .

Define Φi = {x ∈ R
m : f(x) = i} to be the decision region

corresponding to element i. Then

P(T = i,φ ∈ Φi) = P(T = i)P(φ ∈ Φi|T = i) = P(T = i)

whereas

P(T = i, φ̃ ∈ Φi) = P(T = i)P(φ̃ ∈ Φi) = P(T = i)2.
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If P(T = i) ≥ 2β, then O = {(i, x) : x ∈ Φi} is feasible,

and therefore

Iβ∞ (T ;φ) ≥ log

(
P(T = i,φ ∈ Φi)− β
P(T = i, φ̃ ∈ Φi)

)

= log

(
P(T = i)− β
P(T = i)2

)

≥ log

( 1
2P(T = i)

P(T = i)2

)

= log

(
1

P(T = i)

)

− log(2).

When there is signal in the data, P(T = i) is small for

those φi that do not have signal (i.e. a true null). When β is

sufficiently small so that P(T = i) ≥ 2β, the above lemma

shows that Iβ∞(T ;φ) can be large, and can increase as P(T =
i) deviates farther from the uniform distribution.
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