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Fast and covariate-adaptive method amplifies
detection power in large-scale multiple hypothesis
testing
Martin J. Zhang 1, Fei Xia 1 & James Zou 1,2,3

Multiple hypothesis testing is an essential component of modern data science. In many

settings, in addition to the p-value, additional covariates for each hypothesis are available,

e.g., functional annotation of variants in genome-wide association studies. Such information is

ignored by popular multiple testing approaches such as the Benjamini-Hochberg procedure

(BH). Here we introduce AdaFDR, a fast and flexible method that adaptively learns the

optimal p-value threshold from covariates to significantly improve detection power. On eQTL

analysis of the GTEx data, AdaFDR discovers 32% more associations than BH at the same

false discovery rate. We prove that AdaFDR controls false discovery proportion and show

that it makes substantially more discoveries while controlling false discovery rate (FDR) in

extensive experiments. AdaFDR is computationally efficient and allows multi-dimensional

covariates with both numeric and categorical values, making it broadly useful across many

applications.
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M
ultiple hypothesis testing (or multiple testing correc-
tion) is an essential component in many modern data
analysis workflows. A common objective is to maximize

the number of discoveries while controlling the fraction of false
discoveries (FD). For example, we may want to identify as many
genes as possible that are differentially expressed between two
populations such that less than, say, 10% of these identified genes
are false positives.

In the standard setting, the data for each hypothesis is sum-
marized by a p-value, with a smaller value presenting stronger
evidence against the null hypothesis that there is no association.
Commonly-used procedures such as the Benjamini-Hochberg
procedure (BH)1 works solely with this list of p-values2–6. Despite
being widely used, these multiple testing procedures fail to utilize
additional information that is often available in modern appli-
cations but not directly captured by the p-value.

For example, in expression quantitative trait loci (eQTL)
mapping or genome-wide association studies (GWAS), single
nucleotide polymorphisms (SNPs) in active chromatin states are
more likely to be significantly associated with the phenotype7.
Such chromatin information is readily available in public data-
bases8, but is not used by standard multiple hypothesis testing
procedures—it is sometimes used for post hoc biological inter-
pretation. Similarly, the location of the SNP, its conservation
score, etc., can alter the likelihood for the SNP to be an eQTL.
Together such additional information, called covariates, forms a
feature representation of the hypothesis; this feature vector is
ignored by the standard multiple hypothesis testing procedures.

Here we present AdaFDR, a fast and flexible method that
adaptively learns the decision threshold from covariates to sig-
nificantly improve the detection power while having the false
discovery proportion (FDP) controlled at a user-specified level. A
schematic diagram for AdaFDR is shown in Fig. 1. AdaFDR takes
as input a list of hypotheses, each with a p-value and a covariate
vector; it outputs a set of selected (also called rejected) hypoth-
eses. Conventional methods like BH and Storey-BH (SBH)3 use
only p-values and have the same p-value threshold for all
hypotheses (Fig. 1 top right). However, as illustrated in the
bottom-left panel, the data may have an enrichment of small
p-values for certain values of the covariate, which suggests an
enrichment of alternative hypotheses around these covariate
values. Intuitively, allocating more false discovery rate (FDR)
budget to hypotheses with such covariate values could increase
the detection power. AdaFDR adaptively learns such a pattern
using both p-values and covariates, resulting in a covariate-
dependent threshold that makes more discoveries under the same
FDP constraint (Fig. 1 bottom right).

AdaFDR learns the covariate-dependent threshold by first fit-
ting a mixture model using an expectation-maximization (EM)
algorithm, where the mixture model is a combination of a gen-
eralized linear model (GLM) and Gaussian mixtures9–11. Then it
makes local adjustments in the p-value threshold by optimizing
for more discoveries. The standard assumption of AdaFDR and
other related methods is that the covariates should not affect the
p-values under the null hypothesis; we prove that AdaFDR

controls FDP under such assumption (see the “Methods” section).
AdaFDR is developed to be fast and flexible—it can simulta-
neously process more than 100 million hypotheses within an hour
and allows multi-dimensional covariates with both numeric and
categorical values. In addition, AdaFDR provides exploratory
plots visualizing how each covariate is related to the significance
of hypotheses, allowing users to interpret their findings. We also
provide a much faster but slightly less powerful version,
AdaFDR-fast, which uses only the EM step and skips the
subsequent optimization. It can process more than 100 million
hypotheses in around 5 min on a standard laptop.

AdaFDR is the mature development of and subsumes a pre-
vious, preliminary method that we called NeuralFDR12. Instead
of using a neural network to model the discovery threshold as in
NeuralFDR, AdaFDR uses a mixture model that lacks some
flexibility but is much faster to optimize. Among other related
methods13–20, IHW16,17 groups the hypotheses into a pre-
specified number of bins and applies a constant threshold for
each bin to maximize the discoveries. It is practical, well-received
by the community, and can scale up to one billion hypotheses.
Yet it only supports the covariate to be univariate and uses a
stepwise-constant function for the threshold, which limits its
detection power. Boca and Leek20 proposes a regression frame-
work (referred to as BL) to estimate the null proportion condi-
tional on the covariate, and perform multiple testing via
weighting the BH-adjusted p-values by their corresponding esti-
mated null proportion. It is fast and flexible, but the method does
not utilize the covariate-dependent alternative distribution
information which could reduce power; it does not provide the-
oretical results on FDR control either. AdaPT15 cleverly uses a
p-value masking procedure to control FDR. While IHW needs to
split the hypotheses into multiple folds for FDR control, AdaPT
can learn the threshold using virtually the entire data and
therefore has a higher power. However, such p-value masking
procedure takes many iterations of optimization and can be
computationally expensive. AdaFDR is designed to achieve the
best of both worlds: it has a speed comparable to IHW and BL
while using a flexible modeling strategy to have greater detection
power than AdaPT. Some other related works include non-
adaptive p-value weighting21–24, estimation of the covariate-
dependent null proportion25,26, and estimation of the local
FDR27–31. There are also application-specific methods that utilize
the domain knowledge to increase the detection power, such as
GSEA32 for gene pathway analysis, TORUS33 for eQTL study,
and StructFDR34 for microbiome-wide multiple testing.

We systematically evaluate the performance of AdaFDR across
multiple datasets. We first consider the problem of eQTL map-
ping using the data from the genotype-tissue expression (GTEx)
project7,35. As covariates, we consider the distance between the
SNP and the gene, the gene expression level, the AAF as well as
the chromatin states of the SNP. Across all 17 tissues considered
in the study, AdaFDR has an improvement of 32% over BH and
27% over the state-of-art IHW16,17. We next consider other
applications, including differential expression analysis for
three RNA-Seq datasets36–38 with the gene expression level as
the covariate, differential abundance analysis for two microbiome
datasets39,40 with ubiquity (proportion of samples where the
feature is detected) and the mean nonzero abundance as covari-
ates, differential abundance analysis for a proteomics dataset16,41

with the peptides level as the covariate, and signal detection for
two fMRI datasets42,43 with the Brodmann area label44 as the
covariate that represents different functional regions in human
brain. In all experiments, AdaFDR shows a similar improvement.
Finally, we perform extensive simulations to demonstrate that
AdaFDR has the highest detection power while controlling FDP
in various cases where the p-values may be either independent or
dependent.

Results
Discovering eQTLs in GTEx. We first consider detecting eQTLs
using data from GTEx7,35. The GTEx project has collected both
the genetic variation data (SNPs) and the gene expression data
(RNA-Seq) from 44 human tissues, with sample sizes ranging
from 70 (uterus) to 361 (muscle skeletal). Its goal is to study the
associations between genotype and gene expression across
humans. Each hypothesis test is to test if there is a significant
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association between a SNP and a gene, also referred to as an
eQTL. A standard caveat is that a selected eQTL (either through
small p-value or an FDR procedure) may not be a true causal SNP
—it could tag a nearby causal SNP due to linkage disequilibrium.
We should interpret the selected eQTLs with care; nonetheless, it
is still valuable to discover candidate associations and local
regions with strong associations while controlling FDR16.

We focus on cis-eQTLs where the SNP and the gene are close
to each other on the genome (<1 million base pairs). Previous
works provide evidence that various covariates could be
associated with the significance of cis-eQTLs7,33,35,45–47. In this
study, we consider four covariates for each SNP-gene pair: (1) the
distance from SNP to gene transcription start site (TSS); (2) the
log10 gene expression level; (3) the alternative allele frequency
(AAF) of the SNP; 4) the chromatin state of the SNP. Out of 44
tissues, we selected 17 whose chromatin state information is
available8 and have more than 100 biological samples. For each
tissue, p-values for all associations are tested simultaneously with
numbers of hypotheses ranging from 140 to 180 million for
different tissues, imposing a very-large-scale multiple hypothesis
testing problem. We use a nominal FDR level of 0.01. Such
an experiment of testing all SNP-gene pairs simultaneously is a
prescreening step for detecting casual eQTLs and is also
performed in some recent works16,17. A similar analysis workflow
is to first discover significant genes (eGenes) and then match
significant SNPs (eVariants) for each eGene33. There are also
works that, given the eQTL discoveries, prioritize the casual SNPs
based on regulatory annotations in a post-hoc fashion45 or use
eQTL findings to help identify casual SNPs in GWAS47.

As shown in Fig. 2a, AdaFDR and its fast version (AdaFDR-
fast) consistently make more discoveries than other methods in
every tissue. On average, it has an improvement of 32% over BH
and 27% over IHW (see Supplementary Fig. 3 for testing using

each covariate separately). Next, we investigate whether using the
eQTL p-values of an existing tissue could boost the power of
discovering eQTLs in a new tissue. To simulate this scenario, we
consider specifically the two adipose tissues, Adipose_Subcuta-
neous and Adipose_Visceral_Omentum. For each of them, we use
the −log10 p-values from the other tissue as an additional
covariate—e.g., for Adipose_Subcutaneous, the −log10 p-value of
Adipose_Visceral_Omentum is used as an extra covariate.
Leveraging previous eQTL results substantially increases dis-
covery power (Fig. 2b); the p-value augmentation (AdaFDR
(aug)) yields 56% and 83% more discoveries for the two adipose
tissues compared to BH. We then perform a control experiment,
where the augmented p-values, instead of coming from the other
adipose tissue that is similar to the one under investigation, are
from a brain tissue (Brain_Caudate_basal_ganglia) that is very
different from the adipose tissue (Fig. 2 in the GTEx paper7). In
this case, the improvement in the number of discoveries due to
the extra covariate vanishes for the two tissues (AdaFDR (ctrl)),
which is consistent with the idea that AdaFDR learns to leverage
shared genetic architecture in closely related tissues to improve
power. This analysis suggests that we can potentially greatly
improve eQTL discovery by leveraging related tissues during
multiple hypothesis testing. We provide additional supporting
experiments for the two colon tissues in Supplementary Fig. 1a.

AdaFDR also characterizes how each covariate affects the
significance level of the hypotheses. The results for Adipose_-
Subcutaneous are shown in Fig. 2c as an example. We first
consider the distance from TSS and the top-left panel provides a
simple visualization, where for each hypothesis (downsampled
to 10 k), the p-values are plotted against the distances from TSS.
There is a strong enrichment of small p-values when the distance
is close to 0, indicating that the SNP and gene are more likely to
have a significant association if they are close to each other. In the
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Fig. 2 Analysis of the GTEx data. a Results of 17 tissues considered in the study. AdaFDR and its fast version AdaFDR-fast consistently make more

discoveries than other methods. Source data are provided as a Source Data file. b Results on the two adipose tissues where the −log10 p-value from

another tissue was added as an extra covariate. Using p-values from a similar tissue (AdaFDR (aug)) yields significantly more discoveries than using

p-values from an unrelated tissue (AdaFDR (ctrl)). c Top-left: p-values (y-axis) plotted against the distances from TSS (x-axis); each dot corresponds to

one SNP-gene pair. Small p-values at the center suggest that there is an enrichment of significant associations when the distance from TSS is small. Other

panels: AdaFDR-estimated marginal covariate distribution for the null hypotheses (blue) and the alternative hypotheses (orange). Higher values of the

orange distribution suggest an enrichment of alternative hypotheses. d Top: Discoveries made by SBH and AdaFDR. Middle: The p-values of these

discoveries—SBH-only p-values are smaller than AdaFDR-only p-values on GTEx. Bottom: The p-values of the same set of discoveries on the independent

MuTHER data, where AdaFDR-only p-values are smaller than SBH-only p-values, suggesting that AdaFDR-only discoveries are more likely to be true

discoveries
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top-center panel, AdaFDR characterizes such relationship by
providing estimates of the marginal covariate distribution for the
null hypotheses (blue) and the alternative hypotheses (orange)
respectively. It learns that the distance is smaller for significant
associations, consistent with previous works7,35.

AdaFDR interprets other covariates in a similar fashion.
Figure 2c top-right panel indicates that genes expression levels are
higher for significant associations, in agreement with previous
observations15,16. SNPs also have AAF closer to 0.5 for significant
associations. In addition, the bottom-center panel indicates that
for significant associations, there are more SNPs in active
chromatin states—Tx (strong transcription), TxWk (weak
transcription), TssA (active TSS)—as compared to inactive
states—Quies (quiescent), ReprPC (repressed PolyComb)
ReprPCWk (weak repressed PolyComb). Finally, the bottom-
right panel shows that p-values from the augmented tissue
Adipose_Visceral_Omentum are positively correlated with the
significance of the associations. See Supplementary Fig. 1b for
similar results on the Colon_Sigmoid tissue.

We use adipose eQTL data from the Multiple Tissue Human
Expression Resource (MuTHER) project48 to validate our GTEx
eQTL discoveries. The participants in MuTHER are disjoint from
the GTEx participants, making MuTHER an independent dataset.
For this analysis, we compare the testing results of AdaFDR on
Adipose_Subcutaneous with that of Storey-BH (SBH), which is
known to be a better baseline than BH. As shown in the top panel
of Fig. 2d, AdaFDR detects almost all discoveries made by SBH
while having 26% more discoveries (see results for all 17 tissues in
Supplementary Fig. 2a and covariate distribution of these
discoveries in Supplementary Fig. 2b). The p-values of these
discoveries are shown in the middle panel of Fig. 2d, where
the x-axis is the p-value quantile and the y-axis is the −log10
p-value. Hypotheses discovered by both methods have signifi-
cantly smaller GTEx p-values while SBH-only p-values are smaller
than AdaFDR-only p-values in the GTEx data; the latter is due to
the fact that SBH uses the same threshold for all p-values. On the
MuTHER validation data, the eQTLs discovered only by AdaFDR
have more significant p-values than the eQTLs discovered only by
SBH. This reveals a counter-intuitive behavior of AdaFDR: it
rejects some hypotheses with larger p-values if these SNPs have
covariates that indicate a higher likelihood of eQTL. The
MuTHER data validates this strategy—AdaFDR is able to discover
more eQTLs on GTEx and the discovered eQTLs have more
significant replication results on MuTHER. See more results on
using the MuTHER adipose eQTL data to validate GTEx
Adipose_Visceral_Omentum discoveries and using the MuTHER
lymphocytes (LCL) eQTL data to validate GTEx Cells_EBV-
transformed_lymphocytes discoveries in Supplementary Fig. 1c.

AdaFDR can be broadly applied to any multiple testing
problem where we have covariates for the hypotheses. This
includes many high-throughput biological studies beyond eQTL.
Here we evaluate its applications to RNA-Seq, microbiome,
proteomics and fMRI imaging data. In all cases, AdaFDR

significantly outperforms current state-of-the-art methods.

Small GTEx data. AdaPT and BL cannot be run on the full GTEx
data due to their computational limitations. In order to perform a
direct comparison, we created a small GTEx data that contains
the first 300 k associations from chromosome 21 for the two
adipose tissues. This small data takes AdaPT around 15 h to
process compared to less than 20 min for AdaFDR. As shown in
Fig. 3a, AdaFDR has the highest number of discoveries in both
experiments while AdaPT has slightly fewer. In addition, all
covariate-adaptive methods except BL have significant improve-
ment over the non-adaptive methods (BH, SBH).

RNA-Seq data. We considered three RNA-Seq datasets that were
used for differential expression analysis in AdaPT and IHW, i.e.,
the Bottomly data37, the Pasilla data38 and the airway data36.
Here, the log expression level is used as the covariate, and the
FDR level is set to be 0.1. The results are shown in Fig. 3a, where
AdaFDR and AdaPT have a similar number of discoveries
(AdaFDR is consistently higher), and both are substantially more
powerful than others. All covariate-adaptive methods make sig-
nificantly more discoveries than the non-adaptive methods. In
addition, the covariate patterns learned by AdaFDR are shown in
Fig. 3b for the Bottomly data and the Pasilla data, and in Sup-
plementary Fig. 6c for the airway data. The gene expression levels
are higher for significantly differentially expressed genes, con-
sistent with previous findings15–17.

Microbiome data. We considered a subset of microbiome data
from the Ecosystems and Networks Integrated with Genes and
Molecular Assemblies (ENIGMA), where samples were acquired
from monitoring wells in a site contaminated by former waste
disposal ponds and all sampled wells have various geochemical
and physical measurements39,40. Following the original study, we
performed two experiments to test for correlations between the
operational taxonomic units (OTUs) and the pH, Al respectively.
Ubiquity and the mean nonzero abundance are used are covari-
ates, where the ubiquity is defined as the proportion of samples in
which the OTU is present. The FDR level is set to be 0.2 for more
discoveries and the fast version of AdaFDR is used due to the
small sample size. As shown in Fig. 3a, AdaFDR is significantly
more powerful than other methods. The covariates are visualized
in Fig. 3c for the pH test and Supplementary Fig. 6b for the Al
test. Both the ubiquity and the mean nonzero abundance are
higher for significant microbiomes. This may be because a higher
level of these two quantities improves the detection power similar
to the expression level in the RNA-Seq case.

Proteomics data. We considered a proteomics dataset where
yeast cells treated with rapamycin were compared to yeast cells
treated with dimethyl sulfoxide (2 × 6 biological replicates)16,41.
Differential abundance of 2,666 proteins is evaluated using
Welch’s t-test. The total number of peptides is used as covariate
that is quantified across all samples for each protein. The FDR
level is set to be 0.1 and the fast version of AdaFDR is used due to
the small sample size. As shown in Fig. 3a, AdaFDR and BL have
similar performance and are significantly more powerful than
other methods. The covariate is visualized in Fig. 3d where the
peptides levels are higher for significant proteins. This is expected
since the peptides level is similar to the expression level in the
RNA-Seq data.

fMRI data. We considered two functional magnetic resonance
imaging (fMRI) experiments where the human brain is divided
spatially into isotropic voxels and the null hypothesis for each
voxel is that there is no response to the stimulus42. The first
experiment was done on a single participant with auditory sti-
mulus and the second was done on a healthy adult female par-
ticipant where the stimulus was to ask the person to imagine
playing tennis43. We use the Brodmann area label, which repre-
sents different functional regions of the human brain44, as cov-
ariate for each voxel. The FDR level is set to be 0.1 and the fast
version of AdaFDR is used because there is an inflation of
p-values at 1 and, as a result, the mirror estimator would not
function properly for the optimization step. As shown in Fig. 3a,
AdaFDR is significantly more powerful than other methods. The
result of AdaPT is omitted since it does not support categorical
covariates, and directly running the GAM model yields a result
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much worse than BH. The covariate is visualized in Fig. 3e. For
the auditory experiment, the Brodmann areas corresponding to
auditory cortices, namely 41, 42, 22, are among areas enriched
with significant discoveries. For the tennis imagination experi-
ment, multiple cortices seem to respond to this stimulus,
including auditory cortex (42), visual cortices (18, 19), and motor
cortices (4, 6, 7).

Simulation studies. In order to systematically quantify the FDP
and power of all methods, we conducted extensive analyses of
synthetic data where we know the ground truth. Each experiment
is repeated 10 times and 95% confidence intervals are provided.
In Fig. 4a, the top two panels correspond to a simulated data with
one covariate while the bottom two panels correspond to a

simulated data with weakly-dependent p-values generated
according to a previous paper4. In both simulations, all methods
control FDR while AdaFDR has significantly higher power.
Additional simulation experiments with strongly-dependent
p-values and higher dimensional covariates can be found in
Supplementary Fig. 8a, where similar results are observed.
Detailed descriptions of the synthetic data can be found in Sup-
plementary Note 2.

We also investigate the running time of different methods. In
Fig. 4b, all experiments are repeated 5 times and the 95%
confidence intervals are provided. The top panel uses a simulated
dataset with a 2d covariate, with the number of hypotheses
varying from 20 to 100 k. AdaFDR-fast takes 10 s to run while
AdaFDR, IHW and BL finished within a reasonable time of
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Fig. 3 Results on other applications. a The number of discoveries of various methods on two small GTEx eQTL datasets, three RNA-Seq datasets, two

microbiome datasets, one proteomics dataset, and two fMRI datasets. AdaFDR is used for the small GTEx and the RNA-Seq datasets while AdaFDR-fast

is used for others, due to their smaller data size. The fMRI results for AdaPT are omitted since the AdaPT software does not support categorical covariates.

b Covariate visualization for RNA-Seq datasets. c Covariate visualization for the microbiome dataset. d Covariate visualization for the proteomics dataset.

e Covariate visualization for fMRI datasets
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around 100 s. AdaPT, however, needs a few hours to finish,
significantly slower than other methods. In the bottom panel, the
number of hypotheses is fixed to be 50 k and the covariate
dimension varies from 2 to 8; a similar result is observed.

We also consider the main simulation benchmark in a recent
comparison paper40 that includes two RNA-Seq in silico
experiments, one experiment with an uninformative covariate,
and another two experiments that vary the number of hypotheses
and the null proportion respectively. We run AdaFDR on this
benchmark without any modification or tuning; AdaFDR

achieves greater power than all other methods while controlling
FDR (Supplementary Figs. 9 and 10). AdaFDR reduces to SBH
when the covariate is not informative, indicating that it is not
overfitting the uninformative covariate (Supplementary Figs. 9e
and 10e).

Comparison with NeuralFDR. AdaFDR is the mature devel-
opment of and subsumes a previous, preliminary method that we
called NeuralFDR12. Instead of using a neural network to model
the discovery threshold as in NeuralFDR, AdaFDR uses a
mixture model that lacks some flexibility but is much faster to
optimize—for the GTEx data used in the NeuralFDR paper, it
takes NeuralFDR 10+ hours to process but only 9 min for
AdaFDR. Yet, AdaFDR maintains a similar discovery power on
the benchmark data used to test NeuralFDR (Supplementary
Fig. 8b).

Discussion
Here we propose AdaFDR, a fast and flexible method that effi-
ciently utilizes covariate information to increase detection power.

Extensive experiments show that AdaFDR has greater power than
existing approaches while controlling FDR. We discuss some of
its characteristics and limitations.

Our theory proves that AdaFDR controls FDP in the setting
when the null hypotheses are independent (the alternative
hypotheses can have arbitrary correlations, see Theorem 1). This
is a standard assumption also used in BH, SBH, IHW and AdaPT.
In practice, the user can make p-value histograms stratified by
covariates as diagnostic plots to check the model assumption
(Supplementary Figs. 4 and 5). To investigate the robustness of
AdaFDR when there is a model mismatch, we have performed
systematic simulations with different p-value correlation struc-
tures to demonstrate that AdaFDR still controls FDP even when
the null hypotheses are not independent. Moreover, although
there are correlations among SNPs in the eQTL study, we show
that the discoveries made by AdaFDR on the GTEx data replicate
well on the independent MuTHER data with a different cohort.
These suggest that AdaFDR behaves well when there is a
dependency between null p-values. Since none of the other
methods popular methods—BH, SBH, IHW, AdaPT—provides
FDR control under arbitrary dependency, our comparison
experiments are fair. AdaFDR can potentially be extended to
allow for controlling FDR under arbitrary dependency using a
similar idea as discussed in the extended IHW paper17 (see Sup-
plementary Note 1.4 for more details).

The typical use-case for AdaFDR is when there are many
hypotheses to be tested simultaneously—ideally more than 10 k.
This is because AdaFDR needs many data to learn the covariate-
adaptive threshold and to have an accurate estimate of FDP. A
similar recommendation on the number of hypotheses is also
made for IHW. When there are fewer hypotheses (<10 k) or it is

a Simulation study for FDP and power
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expected to have very few discoveries (less than a few hundreds),
AdaFDR-fast is recommended as a more robust choice.
AdaFDR-fast is also recommended when there is an inflation
of p-values at 1 since the mirror estimator for the optimization
step would produce an overly conservative result in this case. In
addition, AdaFDR may produce slightly different results (<10%)
in two runs with different random seeds because of the random
hypotheses splitting step (see Supplementary Fig. 7 for more
details). It is recommended to fix the random seed for better
reproducibility. Nonetheless, in all cases the discoveries are valid
in that the FDR is controlled.

The scalability of AdaFDR and its ability to handle multivariate
discrete and continuous covariates makes it broadly applicable to
any multiple testing applications where additional information is
available. While we focus on genomics experiments in this paper
—because most of the previous methods were also evaluated on
genomics experiments—it would be interesting to also apply
AdaFDR to other domains such as imaging association analysis.

Methods
Definitions and notations. Suppose we have N hypothesis tests and each of them
can be characterized by a p-value Pi, a d-dimensional covariate xi, and an indicator
variable hi with hi= 1 representing the hypothesis to be true alternative. Then the
set of true null hypotheses H0 and the set of true alternative hypotheses H1 can be

written as H0 ¼
def
fi : i 2 ½N�; hi ¼ 0g and H1 ¼

def
fi : i 2 ½N�; hi ¼ 1g, where we

adopt the notation ½N� ¼
def
f1; 2; � � � ;Ng. Given a threshold function t(x), we reject

the ith null hypothesis if Pi ≤ t(xi). The number of discoveries D(t) and the number

of false discoveries FD(t) can be written as DðtÞ ¼
def P

i2½N�

IfPi�tðxiÞg
and

FDðtÞ ¼
def P

i2H0

IfPi�tðxiÞg
. The FDP is defined as FDPðtÞ ¼

def FDðtÞ
DðtÞ_1, where

a _ b ¼
def

maxða; bÞ. The expected value of FDP is FDR1: FDR ¼ E½FDP�.

Multiple testing via AdaFDR. AdaFDR can take as input a multi-dimensional
covariate x. The key assumption is that the null p-values remain uniform regardless
of the covariate value while others, including the alternative p-values and the
likelihood for the hypotheses to be true null/alternative, may have arbitrary
dependencies on the covariate. This is a standard assumption in the literature1,15,16.
For example, in the case of AAF, the null p-values are uniformly distributed
independent of AAF since the gene expression has no association with the SNP
under the null hypothesis. However, the alternative p-values may depend on AAF
since the associations are easier to detect/yield smaller p-values if the AAF is close
to 0.5.

AdaFDR aims to optimize over a set of decision rules tðxÞ 2 T to maximize the
number of discoveries, subject to the constraint that the FDP is less than a user-
specified nominal level α. Conceptually, this optimization problem can be written
as

maximizet2T DðtÞ; s:t: FDPðtÞ � α: ð1Þ

There are three challenges in this optimization problem: (1) the set of decision
thresholds T needs to be parameterized in such a way that both captures the
covariate information and scales well with the covariate dimension; (2) the actual
FDP is not directly available from the data; (3) direct optimization of (1) may cause
overfitting and hence lose FDR control.

For the first challenge, intuitively, the decision threshold should have large
values where the alternative hypotheses are enriched. Such enrichment pattern, as
discussed the NeuralFDR paper12, usually consists of local “bumps” at certain
covariate locations and a global “slope” that represents generic monotonic
relationships. For example, the distance from TSS and the AAF in Fig. 2c
correspond to the bump structure (at 0 and 0.5 respectively) whereas the rest of the
covariates correspond to the slope structure. AdaFDR addresses these two
structures by using a mixture of GLM and K-component Gaussian mixture (with
diagonal covariance matrices), i.e.,

tðxÞ ¼ expðaTx þ bÞ þ
XK

k¼1

exp wk � ðx � μkÞ
TdiagðσkÞðx � μkÞ

h i
; ð2Þ

where diag(σk) represents a diagonal matrix with diagonal elements specified by the
d-dimensional vector σk. The set of parameters to optimize can be written as

fa 2 R
d ; b 2 R; fwk 2 R; μk 2 R

d ; σk 2 R
dgKk¼1g. We choose to use the diagonal

covariance matrices for Gaussian mixture to speed up the optimization. As a result,
the number of parameters grows linearly with respect to the covariate dimension d,
and the parameters can be easily initialized via an EM algorithm, as
described below.

For the second challenge, we use a “mirror estimator” to estimate the number of
FD of a given threshold function t,

mirror estimator : cFDðtÞ ¼def
XN

i¼1

IfPi�1�tðxiÞg
:

Such estimator has been used in recent works12,15,49,50 and yields a conservative
estimate of the true number of FD, in the sense that its expected value is larger than
that of the true FD under mild assumptions (Lemma 1 in Supplementary

Materials). Furthermore, FDP can be simply estimated as dFDPðtÞ ¼ bFDðtÞ
DðtÞ .

For the third challenge, AdaFDR controls FDP with high probability via
hypotheses splitting. The hypotheses are randomly split into two folds; a separate
decision threshold is learned on each fold and applied on the other. Since the
learned threshold does not depend on the fold of data onto which it is applied, FDP
can be controlled with high probability—such a statement is made formal in
Theorem 1. We note that in multiple testing by AdaFDR, the learning-and-testing
process is repeated twice, with each fold being the training set at one time and the
testing set at the other. Figure 5 shows one of such process with fold 1 being the
training set.

The full algorithm is described in Algorithm 1. Here, for example, Dtrain(t),
Dtest(t) are understood as the number of discoveries on the training set and the
testing set respectively. Similar notations are used for other quantities like FDP(t)

and the mirror estimate dFDPðtÞ without explicit definition.
AdaFDR follows a similar strategy as our preliminary work NeuralFDR12,

which it subsumes: both methods use the mirror estimator to estimate FDP and use
hypotheses splitting for FDP control. The main difference is on the modeling of the
decision threshold t: NeuralFDR uses a neural network, which is flexible enough
but hard to optimize. AdaFDR, in contrast, adopts the simpler mixture model that
may lack certain flexibility but is much easier to optimize. This change of modeling,
however, does not seems to reduce much of the detection power for AdaFDR. As
shown in Supplementary Fig. 8b, the performance of AdaFDR is similar to that of
NeuralFDR, while AdaFDR is orders of magnitude faster.
Algorithm 1

AdaFDR for multiple hypothesis testing

1: Randomly split the data D ¼ fðPi; xiÞg
N
i¼1 into two folds D ¼ D1 ∪D2 of equal size.

2: for (j, j′)= (1, 2), (2, 1) do

3: Set Dj to be the training set and Dj′ the testing set.

4: Learn the decision threshold t*(x) on the training set by optimizing

maximizet DtrainðtÞ s:t: dFDPtrainðtÞ � α: ð3Þ

5: Compute the best rescale factor γ* on the testing set

γ� ¼ sup
γ>0

fγ : dFDPtestðγt
�Þ � αg: ð4Þ

6: Reject the hypotheses Rj′ ¼ fi : i 2 Dj′; Pi � γ�t�ðxiÞg.

7: Report discoveries on both folds R ¼ R1 ∪R2 .

Optimization. Recall that the optimization is done solely on the training set Dtrain .
Substituting FDP in Eq. (1) with its mirror estimate, we can rewrite the optimi-
zation problem as

maximizet2T DtrainðtÞ; s:t:
cFDtrainðtÞ

DtrainðtÞ
� α; ð5Þ

where T , the set of decision thresholds to optimize over, corresponds to the
mixture model (2). Our strategy is to first compute a good initialization point and
then perform optimization by gradient descent on a relaxed problem. We note that
a better solution to the optimization problem will give a better detection power.
However, the FDP control guarantee holds regardless of the decision threshold we
come up with.

● Initialization: Let π0(x) and π1(x) be the covariate distribution for the null
hypotheses and the alternative hypotheses respectively. Following the intuition
that the threshold t(x) should be large when the number of alternative
hypotheses is high and the number of null hypotheses is low, it is a good
heuristic to let

tðxÞ /
π1ðxÞ

π0ðxÞ
:

This is done in AdaFDR as follows. First, covariates with p-values larger
than 0.75, i.e., fxi : i 2 Dtrain; Pi � 0:75g, are treated as an approximate
ensemble of the null hypotheses, and those with p-values smaller than the BH
threshold, i.e., fxi : i 2 Dtrain; Pi � tBHg, are treated as an approximate
ensemble of the alternative hypotheses. Then first, a mixture model same as
Eq. (2) is fitted on the null ensemble fxi : i 2 Dtrain;Pi � 0:75g using an EM
algorithm, resulting in an estimate of the null hypothesis distribution π̂0ðxÞ.
Second, each point in the alternative ensemble fxi : i 2 Dtrain; Pi � tBHg
receives a sample weight 1=π̂0ðxÞ. Last, the mixture model (2) is fitted on the
weighted alternative ensemble using an EM algorithm to obtain the final
initialization threshold. The details of the EM algorithm can be found in
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Supplementary Note 1.3.
● Optimization: First, a Lagrangian multiplier is used to deal with the

constraint:

minimizet2T � DtrainðtÞ þ λ1½cFDtrainðtÞ � αDtrainðtÞ� _ 0; ð6Þ

where λ1 is chosen heuristically to be 10/α. Second, the sigmoid function is used

to deal with the discontinuity of the indicator functions in Dtrain(t) and cFDtrainðtÞ:

DtrainðtÞ ¼
X

i2Dtrain

IfPi�tðxiÞg
�

X

i2Dtrain

S½λ0ðtðxiÞ � PiÞ�;

cFDtrainðtÞ ¼
X

i2Dtrain

IfPi�1�tðxiÞg
�

X

i2Dtrain

S½λ0ðPi � 1þ tðxiÞÞ�;

where Sð�Þ ¼ 1
1þe�x is the sigmoid function and λ0 is automatically chosen at the

beginning of the optimization such that the smoothed versions are good
approximations to the original ones. Finally, the Adam optimizer51 is used for
gradient descent.

FDP control. We would like to point out that the mirror estimate is more accurate
when its value is large. Hence, when the number of rejections is small (<100), the
result should be treated with precaution. However, this should not be a major
concern since in the target applications of AdaFDR, usually thousands to millions
of hypotheses are tested simultaneously, and hundreds to thousands of hypotheses
are rejected. In those cases, the mirror estimate is accurate. Hence for the theo-
retical result, we further require that for each fold, the best scale factor γ* should
have a number of discoveries exceeding c0N for some pre-specified small pro-
portion c0; failing to satisfy this condition will result in no rejection in this fold. In
other words, we consider a modified version of Algorithm 1 with Eq. (4) sub-
stituted by setting

γ� ¼ sup
γ≥ 0

fγ : dFDPtestðγt
�Þ � α;Dtestðγt

�Þ � c0Ng∪ f0g: ð7Þ

Our FDP control on this modified version can be stated as follows.
Theorem 1. (FDP control) Assume that all null p-values Pi 2 H0 , conditional on

the covariates, are independently and identically distributed (i.i.d.) following Unif[0,
1]. Then with probability at least 1-δ, AdaFDR with the modification (7) controls

FDP at level (1+ ϵ)α, where ϵ ¼ O

ffiffiffiffiffiffi
log1δ
αN

q� �
.

The assumption made in Theorem 1 is standard in the literature15,17 and can be
easily relaxed to the assumption that the null p-values, conditional on the
covariates, are independently distributed and stochastically greater than Unif[0, 1]

(Supplementary Note 3.1). In addition, Theorem 1 is strictly stronger than the one
for NeuralFDR (Supplementary Note 1.2).

Covariate visualization via AdaFDR_explore. AdaFDR also provides a Feature-
Explore function that can visualize the relationship between each covariate and the
significance of hypotheses, in terms of the marginal covariate distribution for the
null hypotheses and the alternative hypotheses respectively, as those shown in
Figs. 2c and 3b–e. Let xi be the univariate covariate under consideration and hi= 0/
1 indicate the ground truth (true null/alternative) for the ith hypothesis. Then here
we are trying to estimate the conditional covariate distribution given the hypothesis
label, i.e., Pðxijh ¼ 0Þ and Pðxijh ¼ 1Þ. Noting that as a function of xi,

Pðxijh ¼ 1Þ

Pðxijh ¼ 0Þ
/

Pðxi; h ¼ 1Þ

Pðxi; h ¼ 0Þ
¼

Pðh ¼ 1jxiÞ

Pðh ¼ 0jxiÞ
:

The ratio between the two distributions can also be interpreted, up to a scale factor,
as the the ratio of the hypothesis being true alternative/null given the covariate.

The estimation is done as follows. First, for the entire dataset, covariates with
p-values greater than 0.75, i.e., {xi:i∈ [N], Pi ≥ 0.75}, are treated as an approximate
ensemble of the null hypotheses, and those with p-values less than the BH
threshold, i.e. {xi:i∈ [N], Pi ≤ tBH}, are treated as an approximate ensemble of the
alternative hypotheses. Then for each covariate, the null hypothesis distribution
and the alternative hypothesis distribution are estimated from these two ensembles
using kernel density estimation (KDE) for continuous covariates and simple count
estimator for categorical covariates. In addition, for categorical covariates, the
categories are reordered based on the ratio between the estimated alternative
probability and null probability π̂1ðxÞ=π̂0ðxÞ.

Experiment details. The default parameters of AdaFDR are used for every
experiment in this paper, both real data analysis and simulations, without any
tuning. Specifically, the number of Gaussian mixture components K is fixed to be 5,
and the number of iterations for the optimization step is fixed to be 1500. We
found that the performance is not sensitive to these parameter choices. For input,
AdaFDR also allows filtered data with only small p-values close to 0 and large
p-values close to 1, which could accelerate the algorithm. For the GTEx data, the
data are filtered to have only data points with p-values Pi < 0.01 or Pi > 0.99. In such
a case, the original number of hypotheses (before filtering) is required as input to
control FDR. Details about this can be found in Supplementary Note 1.5. Details of
other methods can be found in Supplementary Note 1.6. Step-by-step doc-
umentation for most experiments can be found on GitHub (https://github.com/
martinjzhang/AdaFDRpaper).
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Fig. 5 Schematic of the AdaFDR learning and testing process. Fold 1 is the training set and fold 2 is the testing set (left panel). In step 1, a decision threshold

t*(x) is learned on the training set via solving the optimization problem (1) (upper-right panel). In step 2, as shown in the bottom-right panel, this learned

threshold t*(x) is first rescaled by a factor γ*, defined as the largest number whose corresponding mirror-estimated FDP on the testing set is less than α

(orange). Then all p-values on the testing set below the rescaled threshold are rejected. Here the nominal FDP is α= 0.1
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Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Most of the data, including the curated data for GTEx and all other applications, are

available at online data repository (https://osf.io/6krzn/) with downloading instructions

available on GitHub (https://github.com/martinjzhang/AdaFDRpaper). All other relevant

data are available upon request.

Code availability
We have released a Python implementation of AdaFDR on GitHub (https://github.com/

martinjzhang/adafdr) and an R wrapper on GitHub (https://github.com/fxia22/

RadaFDR). The Python package is also available at PyPI with the name adafdr. The

software version adafdr 0.1.7 is used for all experiments. The code and the

documentation for reproducing most of the results of the paper is available on GitHub

(https://github.com/martinjzhang/AdaFDRpaper).
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