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Abstract

Monte Carlo (MC) permutation test is considered

the gold standard for statistical hypothesis testing,

especially when standard parametric assumptions

are not clear or likely to fail. However, in mod-

ern data science settings where a large number

of hypothesis tests need to be performed simul-

taneously, it is rarely used due to its prohibitive

computational cost. In genome-wide association

studies, for example, the number of hypothesis

tests m is around 106 while the number of MC

samples n for each test could be greater than 108,

totaling more than nm=1014 samples. In this pa-

per, we propose Adaptive MC multiple Testing

(AMT) to estimate MC p-values and control false

discovery rate in multiple testing. The algorithm

outputs the same result as the standard full MC

approach with high probability while requiring

only Õ(
√
nm) samples. This sample complexity

is shown to be optimal. On a Parkinson GWAS

dataset, the algorithm reduces the running time

from 2 months for full MC to an hour. The AMT

algorithm is derived based on the theory of multi-

armed bandits.

1. Introduction

Monte Carlo (MC) permutation testing is considered

the gold standard for statistical hypothesis testing. It

has the broad advantage of estimating significance non-

parametrically, thereby safeguarding against inflated false

positives (Dwass, 1957; Davison et al., 1997; Boos & Zhang,

2000; Lehmann & Romano, 2006; Phipson & Smyth, 2010).

It is especially useful in cases where the distributional as-

sumption of the data is not apparent or likely to be violated.

A good example is genome-wide association study (GWAS),
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whose goal is to identify associations between the geno-

types (single nucleotide polymorphisms or SNPs) and the

phenotypes (traits) (Visscher et al., 2017). For testing the

association between a SNP and the phenotype, the p-value

is often derived via closed-form methods like the analysis

of variance (ANOVA) or the Pearson’s Chi-squared test

(Purcell et al., 2007). However, these methods rely on cer-

tain assumptions on the null distribution, the violation of

which can lead to a large number of false positives (Yang

et al., 2014; Che et al., 2014). MC permutation test does

not require distributional assumption and is preferable in

such cases from a statistical consideration (Gao et al., 2010).

However, the main challenge of applying MC permutation

test to GWAS is computational.

MC permutation test is a special type of MC test where

the p-values are estimated by MC sampling from the null

distribution — permutation test computes such MC samples

by evaluating the test statistic on the data points but with

the responses (labels) randomly permuted. Let T obs be the

observed test statistic and T null
1 , T null

2 , · · · , T null
n be n inde-

pendently and identically distributed (i.i.d.) test statistics

randomly generated under the null hypothesis. The MC

p-value is written as

PMC(n) def
=

1

n+ 1



1 +

n
∑

j=1

I{T null
j ≥ T obs}



 , (1)

which conservatively estimates the ideal p-value P∞ def
=

P(T null ≥ T obs). In addition, PMC(n) converges to the ideal

p-value P∞ as the number of MC samples n → ∞.

GWAS is an example of large-scale multiple testing: each

SNP is tested for association with the phenotype, and there

are many SNPs to test. For performing m such tests si-

multaneously, the data is collected and each of the m null

hypotheses is associated with an ideal p-value (Fig.1a). A

common practice, as visualized in Fig.1b, is to first compute

an MC p-value for each test using n MC samples and then

apply a multiple testing procedure to the set of MC p-values

{PMC(n)
i } to control the false positives, e.g., using the Bon-

ferroni procedure (Dunn, 1961) or the Benjamini-Hochberg

procedure (BH) (Benjamini & Hochberg, 1995). Here, as

folklore, the number of MC samples n is usually chosen to
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possible permutations; MC permutation test is used where

the permutations are uniformly sampled from S .

FDR control. For simultaneously testing m null hypotheses

with p-values P1, · · · , Pm, a common goal is to control

FDR, defined as the expected proportion of false discoveries

FDR
def
= E

[

Number of false discoveries

Number of discoveries

]

. (2)

The most widely-used FDR control algorithm is the BH

procedure (Benjamini & Hochberg, 1995). Let P(i) be the

ith smallest p-value. The BH procedure rejects hypotheses

P(1), · · · , P(r∗), where r∗ is the critical rank defined as

r∗
def
= max

{

r : P(r) ≤ r
m
α, r ∈ {1, 2, · · · ,m}

}

. The BH

procedure controls FDR under the assumption that the null

p-values are independent and stochastically greater than the

uniform distribution.

1.2. Related works

The idea of algorithm acceleration by converting a compu-

tational problem into a statistical estimation problem and

designing the adaptive sampling procedure via MAB has

witnessed a few successes. An early example of such works

is the Monte Carlo tree search method (Chang et al., 2005;

Kocsis & Szepesvári, 2006) to solve large-scale Markov

decision problems, a central component of modern game

playing systems like AlphaZero (Silver et al., 2017). More

recent examples include adaptive hyper-parameter tuning

for deep neural networks (Jamieson & Talwalkar, 2016; Li

et al., 2016) and medoid computation (Bagaria et al., 2018a).

The latter work gives a clear illustration of the power of such

an approach. The medoid of a set of n points is the point

in the set with the smallest average distance to other points.

The work shows that by adaptively estimating instead of

exactly computing the average distance for each point, the

computational complexity can be improved from n2 of the

naive method to almost linear in n. This idea is further

generalized in AMO (Bagaria et al., 2018b) that considers

optimizing an arbitrary objective function over a finite set

of inputs. In all these works, the adaptive sampling is by

standard best-arm identification algorithms. This present

work also accelerates the fMC procedure by turning it into a

statistical estimation problem. However, no MAB algorithm

is readily available for this particular problem.

Our work applies MAB to FDR control by building an ef-

ficient computational tool to run the BH procedure given

the data. There are recent works that also apply MAB to

FDR control but in a statistical inference setting where the

data collection process itself can be made adaptive over the

different tests. In these works, each arm also corresponds

to a test, but each arm parameter takes on a value that cor-

responds to either null or alternative. Fresh data can be

adaptively sampled for each arm and the goal is to select

a subset of arms while controlling FDR (Yang et al., 2017;

Jamieson & Jain, 2018). In such settings, each observation

is a new data and the p-values for the alternative hypotheses

can be driven to zero. This is different from AMT where

the arm observations are MC samples simulated from the

data. As a result, the fMC p-values themselves are the arm

parameters and the goal is to compute them efficiently to

perform BH. In an application like GWAS, where all the

SNPs data are typically collected simultaneously via whole

genome sequencing, adaptive data collection does not apply

but overcoming the computational bottleneck of the full MC

procedure is an important problem addressed by the present

work. See more details of bandit FDR in Supp. Sec. 2.2.

In the broader statistical literature, adaptive procedures (Be-

sag & Clifford, 1991; Gandy et al., 2017) or importance

sampling methods (Yu et al., 2011; Shi et al., 2016) were de-

veloped to efficiently compute a single MC p-value. For test-

ing multiple hypotheses with MC tests, interesting heuristic

adaptive algorithms were proposed without formal FDR

guarantee (Sandve et al., 2011; Gandy & Hahn, 2017); the

latter (Gandy & Hahn, 2017) was developed via modifying

Thompson sampling, another MAB algorithm. Asymptotic

results were provided that the output of the adaptive algo-

rithms will converge to the desired set of discoveries (Guo &

Peddada, 2008; Gandy & Hahn, 2014; 2016). Specifically,

the most recent work (Gandy & Hahn, 2016) provided a

general result that incorporates virtually all popular multiple

testing procedures. However, none of the above works pro-

vide a standard FDR control guarantee (e.g., FDR ≤ α) nor

an analysis of the MC sample complexity; the MC sample

complexity was analyzed in another work only for the case

of using Bonferroni procedure (Hahn, 2015). In the present

work, standard FDR control guarantee is provided along

with upper and lower bounds on the MC sample complexity,

establishing the optimality of AMT.

There are also works on fast MC test for GWAS or eQTL

(expression quantitative trait loci) study (Pahl & Schäfer,

2010; Kimmel & Shamir, 2006; Browning, 2008; Jiang &

Salzman, 2012; Zhang et al., 2012); they consider a dif-

ferent goal which is to accelerate the process of separately

computing each MC p-value. In contrast, AMT accelerates

the entire workflow of both computing MC p-values and ap-

plying BH on them, where the decision for each hypothesis

also depends globally on others. The state-of-art method

is the sequential Monte Carlo procedure (sMC) that is im-

plemented in the popular GWAS package PLINK (Besag

& Clifford, 1991; Purcell et al., 2007; Che et al., 2014).

For each hypothesis, it keeps MC sampling until having

observed s extreme events or hit the sampling cap n. Then

BH is applied on the set of sMC p-values. Here we note

that the sMC p-values are conservative so this procedure

controls FDR. sMC is discussed and thoroughly compared

against in the rest of the paper.
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4. Theoretical Guarantee

We present the high probability recovery and FDR con-

trol result, the upper bound, and the lower bound in order.

For the upper bound, we first state the Õ(
√
nm) result in

Proposition 1, which is a direct consequence of the main

instance-wise upper bound as stated in Theorem 2.

4.1. Correctness

Theorem 1. (Correctness) AMT recovers the fMC result

with probability at least 1− δ, i.e.,

P(RAMT = RfMC) ≥ 1− δ. (9)

Moreover, AMT controls FDR at level π0α+ δ, where π0 is

the null proportion.

Remark 1. A stronger version is actually proved for (9):

AMT recovers the fMC result with probability at least 1− δ
conditional on any set of fMC p-values {P fMC

i } = {pi}, i.e.,

P

(

RAMT = RfMC
∣

∣

∣{P fMC
i } = {pi}

)

≥ 1− δ. (10)

This also corresponds to the δ-correctness definition in the

lower bound Theorem 3. For the FDR control argument, δ
is negligible as compared to α; δ is set to be a o(1) term,

e.g., δ = 1
m

. Hence, π0α+ δ ≤ α in most cases.

4.2. Upper bound

Without loss of generality, let us assume that the ideal p-

values, corresponding to the generation of the data, are

drawn i.i.d. from an unknown distribution F (p), which can

be understood as a mixture of the null distribution and the

alternative distribution, i.e., F (p) = π0p+ (1− π0)F1(p),
where π0 is the null proportion and F1(p) is the alternative

distribution. The following result shows that the sample

complexity of AMT is Õ(
√
nm) under mild assumptions of

F (p).

Proposition 1. Assume that the ideal p-values are drawn

i.i.d. from some unknown distribution F (p) with density

f(p) that is either constant (f(p) = 1) or continuous and

monotonically decreasing. With δ = 1
m

√
n

, the total number

of MC samples for AMT satisfies

E[N ] = Õ(
√
nm), (11)

where Õ hides logarithmic factors with respect to m and n.

Remark 2. The asymptotic regime is when m → ∞ while

n = Ω(m). This is because the number of MC sam-

ples n should always be larger than the number of hy-

pothesis tests m. A more complete result including δ is

Õ
(√

nm log 1
δ
+ δmn

)

.

For the assumption on the ideal p-value distribution F (p),
f(p) = 1 corresponds to the case where all hypotheses are

true null while f(p) being continuous and monotonically

decreasing essentially assumes that the alternative p-values

are stochastically smaller than uniform. Such assumption

includes many common cases, e.g., when the p-value is

calculated from the z-score Zi ∼ N (µ, 1) with µ = 0 under

the null and µ > 0 under the alternative (Hung et al., 1997).

A strictly weaker but less natural assumption is sufficient for

the Õ(
√
nm) result. Let τ∞ = sup[0,1]{τ : τ ≤ F (τ)α}.

It assumes that ∃c0, c1 > 0 s.t. ∀p ∈ [τ∞ − c0, 1],
f(p) ≤ 1

α
− c1. As shown in the proof, τ∞ is the BH

threshold in the limiting case and f(τ∞) < 1
α

as long as

f(p) is strictly decreasing on [0, τ∞]. Hence, this weaker

assumption contains most practical cases and the Õ(
√
nm)

result holds generally. However, this weaker assumption

involves the definition of τ∞ which is technical. We there-

fore chose the stronger but more natural assumption in the

statement of the corollary.

Proposition 1 is based on an instance-wise upper bound

conditional on the fMC p-values {P fMC
i } = {pi}, stated as

follows.

Theorem 2. Conditioning on any set of fMC p-values

{P fMC
i } = {pi}, let p(i) be the ith smallest p-value and

∆(i) = |p(i) − i∨r∗

m
α|. For the CBs satisfying (7), the total

number of MC samples N satisfies

E

[

N
∣

∣

∣{P fMC
i } = {pi}

]

≤
r∗
∑

i=1

n ∧
(

4(1 + γ)2c
(

δ
2mL

)

τ∗

∆2
(i)

)

+

m
∑

i=r∗+1

n ∧
(

max
k≥i

4(1 + γ)c
(

δ
2mL

)

p(k)

∆2
(k)

)

+ δmn.

Remark 3. Note that L = logγ n and for common CBs,

c(δ) = log 1
δ

. By setting δ = 1
m

and γ = 1.1, we have

E

[

N
∣

∣

∣{P fMC
i } = {pi}

]

≤
r∗
∑

i=1

n ∧
(

18 log(50m2 log n)τ∗

∆2
(i)

)

+

m
∑

i=r∗+1

n ∧
(

max
k≥i

9 log(50m2 log n)p(k)

∆2
(k)

)

+ n.

The terms in the summations correspond to the number of

MC samples for each hypothesis test. The denominator ∆2
(i)

represents the hardness for determining if to reject each

hypothesis while the hypothesis-dependent numerator (τ∗

in the first summation and p(k) in the second) represents

a natural scaling of the binomial proportion confidence

bound. The max in the second term corresponds to the

specific behavior of the top-down approach; it is easy to

construct examples where this is necessary. The factor

log(50m2 log n) corresponds to the high probability bound

which is log in m and loglog in n. This is preferable since

n may be much larger than m. Overall, the bound is conjec-

tured to be tight except improvements on the logm term (to

perhaps log logm).
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J., van der Brug, M., Cai, F., Kerchner, G. A., Ayalon, G.,

Bingol, B., Sheng, M., et al. A meta-analysis of genome-

wide association studies identifies 17 new parkinson’s

disease risk loci. Nature genetics, 49(10):1511, 2017.

Chang, H. S., Fu, M. C., Hu, J., and Marcus, S. I. An

adaptive sampling algorithm for solving markov decision

processes. Operations Research, 53(1):126–139, 2005.

Che, R., Jack, J. R., Motsinger-Reif, A. A., and Brown,

C. C. An adaptive permutation approach for genome-

wide association study: evaluation and recommendations

for use. BioData mining, 7(1):9, 2014.

Chen, L., Li, J., and Qiao, M. Nearly instance optimal

sample complexity bounds for top-k arm selection. arXiv

preprint arXiv:1702.03605, 2017.

Consortium, I. H. et al. The international hapmap project.

Nature, 426(6968):789, 2003.

Davison, A. C., Hinkley, D. V., et al. Bootstrap methods

and their application, volume 1. Cambridge university

press, 1997.

Dunn, O. J. Multiple comparisons among means. Journal

of the American statistical association, 56(293):52–64,

1961.

Dwass, M. Modified randomization tests for nonparametric

hypotheses. The Annals of Mathematical Statistics, pp.

181–187, 1957.

Fung, H.-C., Scholz, S., Matarin, M., Simón-Sánchez, J.,

Hernandez, D., Britton, A., Gibbs, J. R., Langefeld, C.,

Stiegert, M. L., Schymick, J., et al. Genome-wide geno-

typing in parkinson’s disease and neurologically normal

controls: first stage analysis and public release of data.

The Lancet Neurology, 5(11):911–916, 2006.

Gandy, A. and Hahn, G. Mmctesta safe algorithm for imple-

menting multiple monte carlo tests. Scandinavian Journal

of Statistics, 41(4):1083–1101, 2014.

Gandy, A. and Hahn, G. A framework for monte carlo based

multiple testing. Scandinavian Journal of Statistics, 43

(4):1046–1063, 2016.

Gandy, A. and Hahn, G. Quickmmctest: quick multiple

monte carlo testing. Statistics and Computing, 27(3):

823–832, 2017.



Adaptive Monte Carlo Multiple Testing

Gandy, A., Hahn, G., and Ding, D. Implementing

monte carlo tests with p-value buckets. arXiv preprint

arXiv:1703.09305, 2017.

Gao, X., Becker, L. C., Becker, D. M., Starmer, J. D., and

Province, M. A. Avoiding the high bonferroni penalty

in genome-wide association studies. Genetic Epidemiol-

ogy: The Official Publication of the International Genetic

Epidemiology Society, 34(1):100–105, 2010.

Guo, W. and Peddada, S. Adaptive choice of the number of

bootstrap samples in large scale multiple testing. Statisti-

cal applications in genetics and molecular biology, 7(1),

2008.

Hahn, G. Optimal allocation of samples to multiple hypoth-

esis tests. arXiv preprint arXiv:1502.07864, 2015.

Hung, H. J., O’Neill, R. T., Bauer, P., and Kohne, K. The

behavior of the p-value when the alternative hypothesis

is true. Biometrics, pp. 11–22, 1997.

Jamieson, K. and Jain, L. A bandit approach to multi-

ple testing with false discovery control. arXiv preprint

arXiv:1809.02235, 2018.

Jamieson, K. and Talwalkar, A. Non-stochastic best arm

identification and hyperparameter optimization. In Artifi-

cial Intelligence and Statistics, pp. 240–248, 2016.

Jamieson, K., Malloy, M., Nowak, R., and Bubeck, S. lilucb:

An optimal exploration algorithm for multi-armed bandits.

In Conference on Learning Theory, pp. 423–439, 2014.

Jiang, H. and Salzman, J. Statistical properties of an

early stopping rule for resampling-based multiple test-

ing. Biometrika, 99(4):973–980, 2012.

Johnson, R. C., Nelson, G. W., Troyer, J. L., Lautenberger,

J. A., Kessing, B. D., Winkler, C. A., and O’Brien, S. J.

Accounting for multiple comparisons in a genome-wide

association study (gwas). BMC genomics, 11(1):724,

2010.

Kalyanakrishnan, S., Tewari, A., Auer, P., and Stone, P. Pac

subset selection in stochastic multi-armed bandits. In

ICML, volume 12, pp. 655–662, 2012.

Kimmel, G. and Shamir, R. A fast method for computing

high-significance disease association in large population-

based studies. The American Journal of Human Genetics,

79(3):481–492, 2006.
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Supplemental Materials

The supplementary material is organized as follows. First

we provide additional empirical results and discussions in

Supp. Section 1 and Supp. Section 2 respectively. Next we

present the technical proofs. Specifically, the correctness

result Theorem 1 is proved in Supp. Section 3. The instance-

wise upper bound Theorem 2 is proved in Supp. Section 4

while the Õ(
√
nm) upper bound Proposition 1 is proved in

Supp. Section 5. The lower bound Theorem 3 is proved in

Supp. Section 6. Finally, the auxiliary lemmas are in Supp.

Section 7.

1. Additional Results

Table 1. Small GWAS on chromosome 4.

dbSNP ID Original fMC Rej. at Rej. at
p-value p-value α=0.1 α=0.05

rs2242330 1.7e-6 8.0e-6
√ √

rs6826751 2.1e-6 1.6e-5
√ √

rs4862792 3.5e-5 4.0e-6
√ √

rs3775866 4.6e-5 3.6e-5
√ √

rs355477 7.9e-5 8.0e-5
√

×
rs355461 8.3e-5 8.0e-5

√
×

rs355506 8.3e-5 8.0e-6
√

×
rs355464 8.9e-5 1.3e-4

√
×

rs1497430 9.7e-5 5.2e-5
√ √

rs11946612 9.7e-5 4.8e-5
√ √

Table 2. Small GWAS on chromosome 1-3 (There is no discovery

reported on chromosomes 2-3 from the orignal paper).

dbSNP ID Chromosome Original fMC Rej. at
p-value p-value α=0.1

rs988421 1 4.9e-5 3.6e-5
√

rs1887279 1 5.7e-5 4.4e-5
√

rs2986574 1 6.3e-5 4.4e-5
√

rs3010040 1 8.0e-5 6.0e-5
√

rs2296713 1 8.0e-5 6.0e-5
√

2. Additional Discussions

2.1. Choosing the parameter for sMC

For sMC the parameter s need to be chosen a priori. A

back-of-the-envelope calculation shows that for a hypothesis

test with the ideal p-value p∞, the sMC p-value is around

p∞ ± p∞

√
s

while the fMC p-value is around p∞ ±
√

p∞

n
.

Suppose the BH threshold on the ideal p-values is τ∞. Since

it is desirable for the BH result on the MC p-values (sMC,

fMC) to be close to the BH result on the ideal p-values,

the accuracy of the MC p-values with corresponding ideal

p-values close to τ∞ can be thought of as the accuracy of

the entire multiple testing problem. Matching such accuracy

for sMC and fMC gives that s = τ∞n = r∞

m
αn. When

n=10m and α=0.1, we have that s=r∞. That is, s should

be at least 100 if there are more than 100 discoveries on the

ideal p-values. However, since we do not know r∞ before

running the experiment, a larger value is preferred. It is

noted that values s=30-120 are recommended in a recent

work (Thulin et al., 2014).

2.2. Comparison to bandit FDR

In the bandit FDR setting (Jamieson & Jain, 2018), each

arm has a parameter µi with µi = µ0 for null arms and

µi > µ0 +∆ for alternative arms, for some µ0 and ∆ > 0
given before the experiment. For arm i, i.i.d. observations

are available that are bounded and have expected value µi.

The goal is to select a subset of arms and the selected set

should control FDR while achieving a certain level of power.

Both bandit FDR and AMT aim to select a subset of “good

arms” as defined by comparing the arm parameters to a

threshold. In bandit FDR this threshold is given as µ0. In

AMT, however, this is the BH threshold that is not known

ahead of time and needs to be learned from the observed

data. The two frameworks also differ in the error crite-

rion. Bandit FDR considers FDR and power for the selected

set, a novel criterion in MAB literature. AMT, on the other

hand, adopts the traditional PAC-learning criterion of re-

covering the fMC discoveries with high probability. These

distinctions lead to different algorithms: bandit FDR uses

an algorithm similar to thresholding MAB (Locatelli et al.,

2016) but with carefully designed confidence bounds to

control FDR; AMT devises a new LUCB (lower and upper

confidence bound) algorithm that adaptively estimates two

things simultaneously: the BH threshold and how each arm

compares to the threshold.

2.3. Future works

We have shown that AMT improves the computational effi-

ciency of the fMC workflow, i.e., applying BH on the fMC

p-values. A direct extension is to the workflow of applying

the Storey-BH procedure (Storey et al., 2004) on the fMC

p-values. In addition, in many cases, especially in genetic re-

search, additional covariate information is available for each

null hypothesis, e.g., functional annotations of the SNPs in

GWAS, where a covariate-dependent rejection threshold can

be used to increase testing power (Xia et al., 2017; Zhang

et al., 2018). Extending AMT to such cases would allow both

efficient computation of MC p-values and increased power

via covariate-adaptive thresholding. Last but not least, MC

sampling is an important building block in some modern

multiple testing approaches like the model-X knockoff (Can-

des et al., 2018) or the conditional permutation test (Berrett

et al., 2018), where ideas in the present paper may be used
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to improve the computational efficiency.

3. Proof of Theorem 1

Proof. (Proof of Theorem 1) To show (9), it suffices to show

that conditional on any set of fMC p-values {P fMC
i } = {pi},

P

(

RAMT = RfMC
∣

∣

∣{P fMC
i } = {pi}

)

≥ 1− δ. (13)

Let E denote the event that all CBs hold. Since the number

of CBs is at most 2mL and each of them holds with proba-

bility at least 1− δ
2mL

conditional on the fMC p-values, by

union bound,

P

(

E
∣

∣

∣
{P fMC

i } = {pi}
)

≥ 1− δ.

Next we show that E implies RAMT = RfMC, which further

gives (13). Let T be the total number of rounds, which

is finite since at most mn MC samples will be computed.

For any round t, let “(t)” represent the corresponding val-

ues before the MC sampling of the round, e.g., r̂(t), τ̂(t),
Cg(t), Cl(t), U(t). Also, let (T + 1) represent the values at

termination. For any t ∈ [T + 1],

1. if r̂(t) > r∗, by (5) more than m− r̂(t) fMC p-values

are greater than τ̂(t) whereas |Cg(t)| = m−r̂(t). Thus,

there is at least one hypothesis that has fMC p-value

greater than τ̂(t) and is not in Cg(t). On E , it cannot

be in Cl(t). Hence, it is in U(t), giving that U(t) 6= ∅.

Thus, t 6= T + 1 and the algorithm will not terminate.

2. if r̂(t) = r∗, there are m − r∗ hypotheses in Cg(t)
corresponding to those with fMC p-values greater than

τ∗. Other hypotheses all have fMC p-values less than

τ∗ and hence, on E , will not enter Cg after further

sampling. Therefore, r̂(t) will not further decrease.

Therefore, r̂(T + 1) = r∗. Since U(T + 1) = ∅, on E ,

Cl(T + 1) contains all hypotheses with fMC p-values less

than τ∗, i.e., Cl(T + 1) = RfMC. Hence, we have shown

(13).

Next we prove FDR control. Let FDP(RfMC) and

FDR(RfMC) denote the false discovery proportion and

FDR of the set RfMC, respectively. It is noted that

FDR(RfMC) = E[FDP(RfMC)]. Let E1 denote the event

that RAMT = RfMC and Ec
1 be the complement of E1. Then

P(Ec
1) ≤ δ due to (9) that we have just proved. For AMT,

FDR(RAMT) = E[FDP(RAMT)] (14)

= E[FDP(RAMT)|E1]P(E1) + E[FDP(RAMT)|Ec
1 ]P(Ec

1).
(15)

The first term of (15)

E[FDP(RAMT)|E1]P(E1) = E[FDP(RfMC)|E1]P(E1)
≤ E[FDP(RfMC)] = FDR(RfMC) ≤ π0α,

where the last inequality is because the fMC p-values are

stochastically greater than the uniform distribution under the

null hypothesis, and hence, applying BH on them controls

FDR at level π0α.

The second term of (15) is upper bounded by δ as FDP is

always no greater than 1. Therefore,

FDR(RAMT) ≤ π0α+ δ.

4. Proof of Theorem 2

Proof. (Proof of Theorem 2) The entire analysis is condi-

tional on the fMC p-values {P fMC
i } = {pi}. Without loss

of generality assume p1 ≤ p2 ≤ · · · ≤ pm. Let T be the

total number of rounds, which is finite since at most mn
MC samples will be computed. For any round t, let “(t)”
represent the corresponding values before the MC sampling

of the round. Note that “(T + 1)” represent the values at

termination. The quantities useful to the analysis include

1. Ni(t): number of MC samples for arm i.

2. plb
i (t), p

ub
i (t): lower and upper CBs for arm i.

3. Empirical mean p̂i(t) =
1

Ni(t)

(

1 ∨∑Ni(t)
j=1 Bi,j

)

.

4. Cg(t), Cl(t), U(t): hypothesis sets as defined in (6).

5. r̂(t), τ̂(t): critical rank estimate and the corresponding

BH threshold estimate.

Let E denote the event that all CBs hold. Since the number

of CBs is at most 2mL and each of them holds with proba-

bility at least 1− δ
2mL

conditional on the fMC p-values, by

union bound,

P

(

E
∣

∣

∣{P fMC
i } = {pi}

)

≥ 1− δ.

Conditional on E , when the algorithm terminates, U(T +
1) = ∅. There are m− r∗ hypotheses in Cg(T + 1) and r∗

hypotheses in Cl(T + 1). We next upper the number of MC

samples for hypotheses in these two sets separately.

Step 1. Hypotheses in Cg(T + 1). On E , there are m− r∗

hypotheses in Cg(T +1). For any i ∈ [m− r∗], let gi be the

ith hypothesis entering Cg. For two hypotheses entering Cg

in the same round, the one is considered entering earlier if

it has a larger upper CB pub before the MC sampling in the

entering round.

Consider any gi that enters after MC sampling in round ti
and let gj be the first hypothesis entering Cg in the same
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round. Here, we note that ti = tj and the number of MC

samples Ngi(T + 1) = Ngj (T + 1). In addition,

Ngj (T + 1) = Ngj (tj + 1) ≤ (1 + γ)Ngj (tj), (16)

since the batch sizes is a geometric sequence with ratio γ.

Now we focus on Ngj (tj).

Since gj is sampled in round tj , we have that gj /∈ Cg(tj).
This indicates that in round tj , the lower CB of gj should

be no greater than the estimated threshold τ̂(tj) before MC

sampling; otherwise gj would have entered Cg before round

tj . Hence,

plb
gj
(tj) ≤ τ̂(tj). (17)

Also, being the first to enter Cg in round tj , its upper CB is

the largest among all elements in U(tj), i.e.,

pub
gj
(tj) = max

k∈U(tj)
pub
k (tj). (18)

Subtracting (17) from (18) to have the width of the confi-

dence interval

pub
gj
(tj)− plb

gj
(tj) ≥ max

k∈U(tj)
pub
k (tj)− τ̂(tj)

≥ max
k∈U(tj)

pk − τ̂(tj),
(19)

where the last inequality is conditional on E . Since

|Cg(tj)| = j − 1, we have that maxk∈U(tj) pk ≥ pm−j+1.

Therefore (19) can be further written as

pub
gj
(tj)− plb

gj
(tj) ≥ pm−j+1 − τ̂(tj) = ∆m−j+1. (20)

Since the CBs satisfy (7), equations (17) and (20) can be

rewritten as

p̂gj (tj)−
√

c
(

δ
2mL

)

p̂gj (tj)

Tgj (tj)
≤ τ̂(tj),

2

√

c
(

δ
2mL

)

p̂gj (tj)

Tgj (tj)
≥ ∆m−j+1.

(21)

Note that τ̂(tj) =
m−j+1

m
α. By Lemma 1,

Ngj (tj) ≤
4c
(

δ
2mL

)

(

m−j+1
m

α+
∆m−j+1

2

)

∆2
m−j+1

(22)

≤ 4c
(

δ
2mL

)

pm−j+1

∆2
m−j+1

. (23)

Since i ≥ j, we have that m−j+1 ≥ m− i+1. Therefore.

E[Ngi(T + 1)|E ] ≤ (1 + γ)E[Ngi(ti)|E ]

≤ (1 + γ)
4c
(

δ
2mL

)

pm−j+1

∆2
m−j+1

≤ max
k≥m−i+1

4(1 + γ)c
(

δ
2mL

)

pk

∆2
k

.

(24)

Step 2. Hypotheses in Cl(T+1). On E , Cl(T+1) = RfMC

and τ̂(T +1) = τ∗. Consider any hypothesis i ∈ Cl(T +1)
whose fMC p-value is pi ≤ τ∗. It will be sampled until its

upper CB is no greater than τ∗. Let its last sample round be

ti. Then,

pub
gi
(ti) > τ∗, pub

gi
(ti + 1) ≤ τ∗, plb

gi
(ti) ≤ pi. (25)

Subtracting the third term from the first term yields

pub
gi
(ti)− plb

gi
(ti) > ∆i. (26)

Since the CBs satisfy (7), the second term in (25) along with

(26) can be rewritten as

p̂i(ti + 1) +

√

c
(

δ
2mL

)

p̂i(ti + 1)

Ni(ti + 1)
≤ τ∗,

2

√

c
(

δ
2mL

)

p̂i(ti)

Ni(ti)
> ∆i.

(27)

Note that Ni(ti + 1) ≤ (1 + γ)Ni(ti) and p̂i(ti + 1) ≥
1

1+γ
p̂i(ti), (27) can be further written as

p̂i(ti) +

√

c
(

δ
2mL

)

p̂i(ti)

Ni(ti)
≤ (1 + γ)τ∗

2

√

c
(

δ
2mL

)

p̂i(ti)

Ni(ti)
> ∆i.

(28)

Furthermore,

Ni(ti) ≤
4(1 + γ)c

(

δ
2mL

)

τ∗

∆2
i

. (29)

and the number of MC samples for hypothesis i

E[Ni(T + 1)|E ] ≤ (1 + γ)E[Ni(ti)|E ]

≤ 4(1 + γ)2c
(

δ
2mL

)

τ∗

∆2
i

.
(30)

Step 3. Combine the result. Finally, noting that a hypoth-

esis can be at most sampled n times, the total expected MC

samples

E[N ] ≤ E

[

m
∑

i=1

Ni(T + 1)
∣

∣

∣E
]

+ δmn (31)

≤
r∗
∑

i=1

n ∧
(

4(1 + γ)2c
(

δ
2mL

)

τ∗

∆2
i

)

(32)

m
∑

i=r∗+1

n ∧
(

max
k≥i

4(1 + γ)c
(

δ
2mL

)

pk

∆2
k

)

+ δmn.

(33)
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5. Proof of Proposition 1

Proof. (Proof of Proposition 1) First let us consider the case

where f(p) is continuous and monotonically decreasing.

The case where f(p) = 1 is easy and is dealt with at the

end.

Step 0. Notations. Since this proof is an asymptotic analy-

sis, we use subscript “n,m” to denote the quantities for

the fMC p-values with n MC samples and m hypothe-

ses. We are interested in the regime where m → ∞ while

n = Ω(m).

For an instance with m hypotheses and n MC samples for

each hypothesis, let τ̃n,m be the BH threshold and F̃n,m be

the empirical distribution of the fMC p-values F̃n,m(x) =
1
m

∑m
i=1 I{P fMC

i ≤ x}. Also let f̃n,m be the probability

mass function f̃n,m(x) = 1
m

∑m
i=1 I{P fMC

i = x}.

For the distribution of the ideal p-values F , define g(x) =
x − F (x)α and let τ∗ = sup[0,1]{τ : g(τ) ≤ 0}. τ∗ is

actually the BH threshold in the limiting case, as will be

shown in Step 2 below. There are a few properties we

would like to point out. By definition g(τ∗) = 0. As a re-

sult, F (τ∗) = τ∗

α
. Since f(p) is monotonically decreasing,

f(τ∗) < F (τ∗)
τ∗ = 1

α
. Furthermore, g′(τ∗) = 1−f(τ∗)α >

0.

Step 1. F̃n,m converges uniformly to F . Let Fn be the

distribution of the fMC p-values with n MC samples. Then

Fn converges uniformly to F . Furthermore, by Glivenko-

Cantelli theorem F̃n,m converges uniformly to Fn. There-

fore, F̃n,m converges uniformly to F .

Step 2. τ̃n,m converges in probability to τ∗. For an in-

stance with m hypotheses and n MC samples for each hy-

pothesis, let g̃n,m(x) = x − F̃n,m(x)α. Then τ̃n,m =

sup[0,1]{τ : g̃n,m(τ) ≤ 0}. Since F̃n,m converges uni-

formly to F , g̃n,m converges uniformly to g. Since g′(τ∗) >
0 and is continuous at τ∗, ∃ǫ0 > 0 such that g(x) is mono-

tonically increasing on [τ∗ − ǫ0, τ
∗ + ǫ0]. Since g̃n,m con-

verges uniformly to g on this interval, for any 0 < ǫ′ < ǫ,

P(|τ̃n,m − τ∗| > ǫ′) → 0. Thus, τ̃n,m
p→ τ∗.

Step 3. Upper bound E[N ]. Let δ = 1
mn

and let c̃ denote

any log factor (in both m and n) in general. Then for the

fMC p-values with n MC samples and m hypotheses, by

Theorem 1, and omitting additive constants,

E[N ] ≤ c̃E

[

r∗
∑

i=1

n ∧ τ̃n,m
∆2

(i)

+

m
∑

i=r∗+1

n ∧max
k≥i

P fMC
(k)

∆2
(k)

]

≤ c̃E

[

r∗
∑

i=1

n ∧ 1

∆2
(i)

+

m
∑

i=r∗+1

n ∧max
k≥i

1

∆2
(k)

]

.

(34)

Notice that F̃n,m(P fMC
(k) ) ≥ k

m
where the inequality is be-

cause there might be several hypotheses with the same value.

Therefore for any P fMC
(k) > τ̃n,m,

1

∆2
(k)

=
1

(

P fMC
(k) − k

m
α
)2

≤ 1
(

P fMC
(k) − F̃n,m(P fMC

(k) )α
)2 =

1

g̃n,m(P fMC
(k) )2

.

Hence, summing over all possible values of the em-

pirical distribution of the fMC p-values, i.e., P fMC =
1

n+1 ,
2

n+1 , · · · , 1 (note the definition of the fMC p-values

in (4)), to further write (34) as

E[N ] ≤

c̃mE







⌊(n+1)τ̃n,m⌋
∑

i=1






n ∧ 1

(

i
n+1 − τ̃n,m

)2






f̃n,m

(

i

n+ 1

)

+

n+1
∑

i=⌈(n+1)τ̃n,m⌉

(

n ∧max
k≥i

1

g̃n,m( k
n+1 )

2

)

f̃n,m

(

i

n+ 1

)



 .

(35)

Since f(x) is continuous, g′(x) is also continuous. Recall

that g′(τ∗) > 0. Hence, ∃ǫ, c0 > 0 such that ∀x ∈ [τ∗ −
ǫ, 1], g′(x) > c0. Recall that g̃m,n converges uniformly to

g and τ̃n,m
p→ τ∗. Note that by definition g̃n,m(τ̃n,m) = 0.

Therefore, ∃c1 > 0 such that for large enough n,m, for any

k ≥ ⌈(n+ 1)τ̃n,m⌉,

g̃n,m

(

k

n+ 1

)

= g̃n,m

(

k

n+ 1

)

− g̃n,m(τ̃n,m) (36)

≥ c1

(

k

n+ 1
− τ̃n,m

)

. (37)

Hence, (35) can be further rewritten as

E[N ] ≤

c̃mE







⌊(n+1)τ̃n,m⌋
∑

i=1






n ∧ 1

(

i
n+1 − τ̃n,m

)2






f̃n,m

(

i

n+ 1

)

+

n+1
∑

i=⌈(n+1)τ̃n,m⌉






n ∧ 1

c21

(

i
n+1 − τ̃n,m

)2






f̃n,m

(

i

n+ 1

)







≤ c̃

c21
mE

[

n+1
∑

i=1

n ∧ 1

( i
n
− τ̃n,m)2

f̃n,m

(

i

n+ 1

)

]

=
c̃

c21
mE

[

n ∧ 1

(P fMC
i − τ̃n,m)2

]

.
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Since Fn converges uniformly to F and τ̃n,m
p→ τ∗, by

Slutsky’s theorem and the continuous mapping theorem, the

RHS will converge to

c̃

c21
mE

[

n ∧ 1

(P∞
i − τ∗)2

]

. (38)

Last we evaluation the expectation:

E

[

n ∧ 1

(P∞
i − τ∗)2

]

=

∫ τ∗− 1√
n

0

1

(p− τ∗)2
dF (p)

+

∫ τ∗+ 1√
n

τ∗− 1√
n

ndF (p) +

∫ 1

τ∗+ 1√
n

1

(p− τ∗)2
dF (p).

By noting that f(τ∗) < 1
α

and f(p) is monotonically de-

creasing it is clear that all three terms are Õ(
√
n), which

concludes the proof of this case.

When f(p) = 1, the limiting BH threshold τ∗ = 0. Further-

more, g(x) = (1− α)x and g′(x) = 1− α > 0. Therefore,

g( k
n+1 ) ≥ (1− α)( k

n+1 − τ̃n,m). Then, similarly we have

the total number of MC samples

E[N ] ≤ c̃

(1− α)2
mE

[

n ∧ 1

(P fMC
i − τ̃n,m)2

]

, (39)

which converges to

c̃

(1− α)2
mE

[

n ∧ 1

(P∞
i )2

]

(40)

that is Õ(
√
nm).

6. Proof of Theorem 3

Proof. (Proof of Theorem 3) Let Fn be the distribution

of the fMC p-values with n MC samples. By Lemma 2,

conditional on the fMC p-values {P fMC
i } = {pi}, ∃δ0 > 0,

c0 > 0, c1 > 0, s.t. ∀δ < δ0, a δ-correct algorithm satisfies

E

[

N
∣

∣

∣{P fMC
i } = {pi}

]

≥ c0n

m
∑

i=1

I{τ∗ < pi ≤ τ∗ +
c1√
n
}.

(41)

Taking expectation with respect to the fMC p-values to have

E [N ] ≥ c0nmP

[

τ∗ < P fMC
i ≤ τ∗ +

c1√
n

]

. (42)

Since the null fMC p-values follow a uniform distribution,

E [N ] ≥ c0π0nm
c1√
n
= c0c1π0

√
nm, (43)

which completes the proof.

7. Auxiliary Lemmas

Lemma 1. For c > 0, p̂ > 0, ∆ > 0, τ > 0, if

p̂−
√

cp̂

n
≤ τ, 2

√

cp̂

n
≥ ∆, (44)

then

n ≤ 4c(τ + ∆
2 )

∆2
. (45)

Proof. (Proof of Lemma 1) Rearranging the first inequality

in (44) and taking square of both sides to have

p̂2 − 2τ p̂+ τ2 ≤ cp̂

n
.

This further gives that

p̂ ≤ τ +
c

2n
+

√

c

n
τ +

c2

4n2
.

Combining the above with the second inequality in (44) to

have

∆2

4c
n ≤ p̂ ≤ τ +

c

2n
+

√

c

n
τ +

c2

4n2
,

which can be rearranged as

∆2

4c
n− τ − c

2n
≤
√

c

n
τ +

c2

4n2
.

Taking square of both sides and cancel the repeated terms

to have

(

∆2

4c
n

)2

− ∆2τ

2c
n+ τ2 − ∆2

4
≤ 0,

which is equivalent to

(

∆2

4c
n− τ

)2

≤ ∆2

4
.

Taking square root of both sides and we completed the

proof.

Lemma 2. Given the fMC p-values {P fMC
i } = {pi} with

BH threshold τ∗, ∃δ0 ∈ (0, 0.5), c0 > 0, c1 > 0, s.t.

∀δ < δ0, a δ-correct algorithm satisfies

E

[

N
∣

∣

∣{P fMC
i } = {pi}

]

≥ c0n

m
∑

i=1

I{τ∗ < pi ≤ τ∗ +
c1√
n
}.

Proof. (Proof of Lemma 2) Consider any δ-correct algo-

rithm and let us denote the true (unknown) fMC p-values
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by {qi}. For any null hypothesis l with fMC p-value

τ∗ < pl ≤ τ∗ + c1√
n

, consider the following settings:

H0 : qi = pi, for i ∈ [m], (46)

Hl : ql = τ∗, qi = pi, for i 6= l. (47)

The δ-correct algorithm should accept the lth null hypothesis

under H0 and reject it under Hl, both with probability at

least 1− δ. For x ∈ {0, l}, we use Ex and Px to denote the

expectation and probability, respectively, conditional on the

fMC p-values {P fMC
i } = {qi}, under the algorithm being

considered and under setting Hx. Let Nl be the total number

of MC samples computed for null hypothesis l. In order

to show Lemma 2, it suffices to show that E0[Nl] ≥ c0n.

We prove by contradiction that if E0[Nl] < c0n and if the

algorithm is correct under H0 with probability at least 0.5,

the probability that it makes a mistake under Hl is bounded

away from 0.

Notations. Let Sl,t to be the number of ones when t MC

samples are collected for the lth null hypothesis. We also

let Sl be the number of ones when all Nl MC samples are

collected. Let k0 = (n + 1)pl − 1 and kl = (n + 1)τ∗ −
1. Given Nl, Sl follows hypergeometric distribution with

parameters (Nl, k0, n) and (Nl, kl, n) under H0 and Hl,

respectively. Let ∆k = k0 − kl. We note that

∆k = (n+ 1)(pl − τ∗) ∈ (0,
c1(n+ 1)√

n
]. (48)

Define key events. Let c0 = 1/8 and define the event

Al = {Nl ≤ 0.5n}. (49)

Then by Markov’s inequality, P0(Al) ≥ 3
4 .

Let Bl be the event that the lth null hypothesis is accepted.

Then P0(Bl) ≥ 1− δ > 1/2.

Let Cl be the event defined by

Cl =
{

max
1≤t≤0.5n

|Sl,t − tk0/n| < 2
√
n

}

. (50)

By Lemma 3 P0(Cl) ≥ 7/8.

Finally, define the event Sl by Sl = Al ∩ Bl ∩ Cl. Then

P0(Sl) > 1/8.

Lower bound the likelihood ratio. We let W be the

history of the process (the sequence of null hypotheses cho-

sen to sample at each round, and the sequence of observed

MC samples) until the algorithm terminates. We define the

likelihood function Ll by letting

Ll(w) = Pl(W = w), (51)

for every possible history w. Note that this function can be

used to define a random variable Ll(W ).

Given the history up to round t − 1, the null hypotheses

to sample at round t has the same probability distribution

under either setting H0 and Hl; similarly, the MC sample

at round t has the same probability setting, under either hy-

pothesis, except for the lth null hypothesis. For this reason,

the likelihood ratio

Ll(W )

L0(W )
=

(

kl

Sl

)(

n−kl

Nl−Sl

)

(

k0

Sl

)(

n−k0

Nl−Sl

)

=

Sl−1
∏

r=0

kl − r

k0 − r

Nl−Sl−1
∏

r=0

n− kl − r

n− k0 − r

=

Sl−1
∏

r=0

(

1− ∆k

k0 − r

)Nl−Sl−1
∏

r=0

(

1 +
∆k

n− k0 − r

)

(52)

Next we show that on the event Sl, the likelihood ratio is

bounded away from 0.

If Sl ≤ 100
√
n, then the likelihood ratio

Ll(W )

L0(W )
≥
(

1− ∆k

k0 − Sl

)Sl

≥
(

1− c2√
n

)100
√
n

> c3,

(53)

for some constants c2 > 0, c3 > 0.

If Sl > 100
√
n, further write (52) as

Ll(W )

L0(W )
=

Sl−1
∏

r=0

{[

1−
(

∆k

k0 − r

)2
]

(

1 +
∆k

k0 − r

)−1
}

Nl−Sl−1
∏

r=0

(

1 +
∆k

n− k0 − r

)

.

(54)

Since Sl > 100
√
n, on Cl, Nl−Sl

Sl
> 1. Note that if a ≥ 1,

then the mapping x 7→ (1+x)a is convex for x > −1. Thus,

(1 + x)a ≥ 1 + ax, which implies that for any 0 ≤ r ≤ k0,

(

1 +
∆k

Nl−Sl

Sl
(k0 − r)

)

Nl−Sl
Sl Cl≥

(

1 +
∆k

k0 − r

)

. (55)

Then, (54) can be further written as

Ll(W )

L0(W )

(55)

≥
Sl−1
∏

r=0

[

1−
(

∆k

k0 − r

)2
]

Sl−1
∏

r=0

(

1 +
∆k

Nl−Sl

Sl
(k0 − r)

)−Nl−Sl
Sl

Nl−Sl−1
∏

r=0

(

1 +
∆k

n− k0 − r

)

.

(56)
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Note that the 2nd term is no less than

Nl−Sl−1
∏

r=0

(

1 +
∆k

Nl−Sl

Sl
k0 − r

)−1

. (57)

Eq. (56) can be further written as

Ll(W )

L0(W )
≥

Sl−1
∏

r=0

[

1−
(

∆k

k0 − r

)2
]

Nl−Sl−1
∏

r=0





(

1 +
∆k

Nl−Sl

Sl
k0 − r

)−1
(

1 +
∆k

n− k0 − r

)





(58)

Next we show that both terms in (58) are bounded away

from 0.

First term in (58)

Sl−1
∏

r=0

[

1−
(

∆k

k0 − r

)2
]

≥
[

1−
(

∆k

k0 − Sl

)2
]Sl

(59)

Al,Cl

≥
(

1− c4
n

)n

≥ c5 > 0, (60)

for some constants c4 > 0, c5 > 0.

Second term in (55)

Nl−Sl−1
∏

r=0





(

1 +
∆k

Nl−Sl

Sl
k0 − r

)−1
(

1 +
∆k

n− k0 − r

)





=

Nl−Sl−1
∏

r=0






1 +

∆k

n−k0−r
− ∆k

Nl−Sl
Sl

k0−r

1 + ∆k
Nl−Sl

Sl
k0−r







=

Nl−Sl−1
∏

r=0









1 +
∆k

Nl

Sl

(

k0 − Sl

Nl
n
)

(

1 + ∆k
Nl−Sl

Sl
k0−r

)

(n− k0 − r)(Nl−Sl

Sl
k0 − r)









Al,Cl,Sl>100
√
n

≥
(

1− c6
Nl

√
n

)Nl

≥ c7,

(61)

for some constants c4 > 0, c5 > 0.

Hence ∃c8 > 0, such that on Sl the likelihood ratio

Ll(W )

L0(W )
≥ c8 > 0. (62)

Therefore, the probability of making an error under Hl

Pl(error) ≥ Pl(Sl) = El[I{Sl}]

= E0

[

I{Sl}
Ll(W )

L0(W )

]

≥ c8P0(Sl) ≥
c8
8
.

(63)

Hence, there does not exist a δ-correct algorithm for any

δ ≤ c8
8 , completing the proof.

Lemma 3. Let X1, · · · , Xn be random variables sampled

without replacement from the set {x1, · · · , xN}, where n ≤
N and xi ∈ {0, 1}. Let µ = 1

N

∑N
i=1 xi and for k ∈ [N ],

let Sk =
∑k

i=1 Xi. Then for any θ > 0,

P

(

max
1≤k≤n

|Sk − µk| ≥
√
nθ

)

≤ 1

θ
. (64)

This is a direct consequence of Corollary 1.2 in the paper

(Serfling, 1974).


