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Abstract

Despite the lack of invariance problem (the many-to-many
mapping between acoustics and percepts), we experience
phonetic constancy and typically perceive what a speaker
intends. Models of human speech recognition have side-
stepped this problem, working with abstract, idealized inputs
and deferring the challenge of working with real speech. In
contrast, automatic speech recognition powered by deep
learning networks have allowed robust, real-world speech
recognition. However, the complexities of deep learning
architectures and training regimens make it difficult to use
them to provide direct insights into mechanisms that may
support human speech recognition. We developed a simple
network that borrows one element from automatic speech
recognition (long short-term memory nodes, which provide
dynamic memory for short and long spans). This allows the
network to learn to map real speech from multiple talkers to
semantic targets with high accuracy. Internal representations
emerge that resemble phonetically-organized responses in
human superior temporal gyrus, suggesting that the model
develops a distributed phonological code despite no explicit
training on phonetic or phonemic targets. The ability to work
with real speech is a major advance for cognitive models of
human speech recognition.
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Introduction

Human speech recognition (HSR) poses some of the greatest
unsolved scientific challenges in the cognitive and neural

sciences. Despite a many-to-many mapping between acoustic
patterns and percepts (for now, let us assume percepts are
phonemes, i.e., consonants and vowels), listeners experience
phonetic constancy: we hear what the speaker intends even
though the same acoustic pattern can cue different phonemes
depending on context, and different patterns can cue the same
phoneme. This challenge is the lack of invariance problem.

Many factors complicate the acoustic-perceptual mapping:
(a) coarticulation (temporal and articulatory overlap of
phonemes in series; Liberman et al., 1967), (b) lack of robust
boundaries between phonemes or words (Cole & Jakimik,
1980), and (c) shifts in the mapping due to variation in
speaking rate (Miller & Baer, 1983), talker characteristics
(Joos, 1948; Peterson & Bamey, 1952), phonetic context
(Liberman et al., 1967), coarticulation (Liberman et al.,
1952), and novelty of message content (Fowler & Hosum,
1987). Similar problems are found in other perceptual
domains (e.g., visual objects must be recognized despite
variation in size, rotation, and illumination; DiCarlo & Cox,
2007). However, the temporal and transient nature of speech
compounds the challenge.

Deep vs. minimal networks for speech recognition
One might suppose that the lack of invariance problem has
been solved in contemporary automatic speech recognition
(ASR) systems, such as those used daily by billions of
smartphone users. The deep-learning neural network models
underlying the best ASR (Hinton et al., 2012) provide robust



real-world application but little guidance for theories of HSR.
Deep nets for ASR require many complex and richly
connected layers, as well as complex, carefully engineered
training regimens.

That said, researchers interested in HSR have developed
less complex deep networks with the aim of illuminating
possible mechanisms supporting audition and HSR.
Nagamine et al. (2015), for example, examined hidden units
of a S5-layer network trained explicitly on phoneme
recognition and observed responses strikingly similar to
phonetically-structured responses in human superior
temporal gyrus (Mesgarani et al., 2014). Kell et al. (2018)
used a deep network to achieve human-like accuracy on two
unusual tasks: (1) recognizing the word at the center of a two
second sample of speech and (2) musical genre identification.
Their network had many layers and required complex
training. The first 7 layers were shared for speech and music,
but then it branched into specialized speech and music
pathways (with 5 additional layers). The model surpassed
standard spectrotemporal filter models of auditory cortex in
predicting human cortical responses to natural sounds
(measured with fMRI. Kell et al. suggested that deep
networks might provide the only computational approach
able to achieve human-like performance for natural stimuli.

We optimistically disagree. Our aim is to develop
maximally simple (minimal) models of HSR. Theoretical
progress will be difficult if our models approach the
complexity of their biological target (the neural basis for
HSR). At the same time, we aim to grapple with details that
have been left out of deep learning models of auditory
perception. First, several models have achieved high
accuracy by side-stepping the temporal nature of speech (e.g.,
by treating an utterance or sound as a static image, with time
as one axis) rather than as a time series. Furthermore, such
models have not addressed the kinds of human data of
greatest interest to psycholinguists who study human spoken
word recognition, such as the time course of lexical activation
and competition (Allopenna et al., 1998).

Simpler shallow computational models have been applied
to grappled with over-time inputs and time course of lexical
competition, but with two different limitations: (1) they do
not use real speech as input (instead using, for example,
labstract distributed phonetic features over time (TRACE:
McClelland & Elman, 1986) or human diphone confusion
probabilities (Shortlist B: Norris & McQueen, 2008); (2) they
tend not to address learning. Models developed since the mid
1980s have either adopted these simplifications in order to
address the time course of spoken word recognition with
large vocabularies, or have strived for greater realism but in
small-inventory models (e.g., Grossberg et al., 1997), or have
attempted to incorporate ASR approaches into cognitive
models of spoken word recognition (e.g., Scharenborg, 2010;
Scharenborg et al., 2005). Such approaches have led to
genuine insights, but the models tend to have low accuracy,
limited empirical coverage, or both.

Minimal models from long short-term memory nodes
Our aim is to develop a minimal cognitive model of HSR that

could learn to map over-time speech to semantics, without
explicit phonetic training, that remains simple enough to
generate hypotheses for mechanisms that could support HSR.
However, current network-based cognitive models of HSR
do not appear adequate for processing real speech.

Thus, we examined a variety of network architectures and
elements used in network models used for ASR. We found
that a two-layer recurrent network provides the needed power
for our goal domain if its hidden units are long short-term
memory (LSTM) nodes (Hochreiter & Schmidhuber, 1997).
LSTM nodes add 3 internal gates and a memory cell that
allow nodes to develop sensitivity to information over long
time scales, mitigating the vanishing gradient problem
(Hochreiter et al., 2001). In the following sections, we
describe a new neural network model of HSR, EARSHOT
(Emulation of Auditory Recognition of Speech by Humans
Over Time), that we believe approaches the minimal
complexity required to map real speech to semantics.

Methods

Network structure and parameters

The EARSHOT network is schematized in Fig. 1. Its 256
input units are fully connected to 512 LSTM hidden units.
The hidden layer is fully recurrent (i.e., every unit has a
connection to every other unit). A tanh activation function is
applied to hidden outputs. The hidden units are fully
connected to 300 output units. High accuracy on our task
(described below) required ~500 hidden units (performance
is not improved by increasing to 750 or 1000 hidden nodes).

Materials

We pseudo-randomly selected 1000 words from a list of
uninflected English words, with the constraints that (a) word
length varied from 1-8 phonemes (mean = 5.5) and (b) every
phoneme had to occur in at least 10 words. We created speech
files for each of the 1000 words pronounced by 10 talkers in
the Apple text-to-speech application, say (5 females [Agnes,
Kathy, Princess, Vicki, Victoria] and 5 males [Alex, Bruce,
Fred, Junior, Ralph]). Mean duration was 659 ms (range:
289-1121 ms). We also created 360 consonant-vowel (CV)
and VC syllables for testing purposes (using 15 vowels and
24 consonants). Sound files were converted to spectrographic
representations with 256 channels in 10 ms steps with
sampling rate of 8000 hz.

We created random sparse vectors for each word as a proxy
for semantic representations. Vectors had 300 elements, with
10 “on” (set to 1, others set to 0). This common simplification
is considered acceptable given the largely arbitrary mapping
from form to menaing (e.g., Lazlo & Plaut, 2012).

Training method

We trained 10 instantiations of EARSHOT. For each model,
a different one of the 10 talkers was excluded from training
(reserved to test generalization to a novel talker). We
excluded 100 different randomly selected words from each
trained-on talker (reserved to test generalization to unseen



items from trained-on talkers). So for each model, the training
set was 8100 input-output patterns, with all 10,000 pairs
included for testing.

Each training epoch included one presentation of each of
the 8100 training items in random order with no pause or
other indication of word boundaries. The target pattern was
the semantic vector for the current word, and it was compared
to the output at each time step. To enhance learning, we used
minibatch gradient descent, Noam decay, and Adam
optimizing (Vaswani et al., 2017). Full details are available in
a longer preprint (Magnuson et al., 2018). Connections were
trained using backpropagation through time (Werbos, 1988).
Training accuracy largely plateaued by 8000 epochs. We then
resumed training with formerly excluded talkers included.
The logic was that when humans encounter new talkers, we
presumably learn to adapt to them by learning any
idiosyncratic aspects of their acoustics-to-percepts mapping
(e.g., by using lexical hypotheses to guide learning). In
simple tests of generalization, the model cannot learn. We
continued training for another 2000 epochs (8001-10,000).

Testing method Every 1000 epochs, models were tested with
all 10,000 words (including excluded words and talkers).
Successful recognition was operationalized as the output
vector’s cosine similarity to the target exceed any other
item’s cosine similarity to the output by at least 0.05 for at
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Figure 1. Model input and structure. (A) Audio files are
converted to spectrograms (B), with 256 channels (rows) in
10 ms steps (columns). Color indicates amplitude (blue-red
indicates low-high). (C). The model is a standard recurrent
network, except "long short-term memory" nodes are used in
the hidden layer, allowing it to become sensitive to multiple
temporal grains.

least 100 ms, and subsequently, no item could exceed the
target’s cosine similarity to the output before word offset.

Replicability We trained all 10 models 3 times; only minor
variations were observed between iterations. We present
results from the first run of each model in this report.

Hardware and software Simulations were conducted on a
Windows 10 workstation with an i7-6700k CPU, 64-gb of
RAM, and a Titan-X (12-gb) graphics card. Simulations were
implemented using Python 3.6 and TensorFlow 1.7. Each
model required approximately 10 hours for training.

Alternative architectures In developing EARSHOT, we
explored dozens of combinations of candidate architectures
and model elements. We limited networks to 2 layers of
forward connections (inputs—>hidden—> outputs). We varied 3
aspects of models: number of hidden units (typically from
100 to 1000 nodes before rejecting a model if accuracy
plateaued below 90%), hidden unit type (standard integrative
nodes vs. LSTMs), and degree of recurrence (full recurrence,
as in the model reported here, vs. single-step recurrence, as
in simple recurrent networks; Elman, 1990). For inputs, we
explored spectrograms at various resolutions, Mel Frequency
Cepstral Coefficients (MFCCs), and cochleagrams. Most
combinations failed to achieve high accuracy. Aside from the
model reported here, the only combinations that achieved
greater than 90% accuracy was an MFCC-based model that
failed to show human-like time course despite high accuracy.
Note that this does not mean that only a single set of
parameters worked; the model described above begins
achieving high accuracy with more than 256 LSTM hidden
units, and maximal accuracy with ~500 or more LSTM nodes.

Results
Accuracy and time course

We present key model behavior results in Fig. 2. Mean
accuracy on training items was quite high (88%) after 8000
epochs. Accuracy was 67% for excluded words from trained-
on talkers but only 33% for excluded talkers, with a very wide
range (4% to 78%). When training resumed with all talkers
and items included, performance improved rapidly (to 89%
and 86% for excluded words and talkers, respectively, 93%
for previously trained-on items).

Next, we consider the challenge of simulating the time
course of HSR (Allopenna et al., 1998). This is a central
behavioral target in psycholinguistics but has not been
addressed in deep learning models of speech (Kell et al.,
2018; Nagamine et al., 2015). Our minimal model exhibits
the correct qualitative pattern for phonological competition
(Fig. 2B) and makes predictions similar to the gold-standard
of HSR, TRACE (Fig. 2C; McClelland & Elman, 1986). This
similarity might suggest that any model that can map speech
inputs to word-form outputs (as in TRACE) or semantic
outputs (EARSHOT) would exhibit this human-like time
course. However, this is not the case. As we noted above, an
MFCC-based model was able to achieve high accuracy, but
could not simulate the patterns seen in Figs. 2B and 2C.
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Figure 2. Model performance. (A) Accuracy by epoch averaged over 10 models. When training resumed with all items included (epochs
8001-10,000), high performance was achieved quickly for all talkers. (B) Competition time course (correct trials), for 2 criterial competitor
types. For a target (e.g., CAT), “Cohort” represents mean cosine similarity for words overlapping in the first 2 phonemes (CAN, CASTLE).
“Rhyme” words rhyme with the target (BAT, SAT). “Unrelated” is the average for all words phonologically dissimilar from the target. This
pattern closely follows human performance (Allopenna et al., 1998). (C) For comparison, we conducted simulations with the TRACE model,
with its standard 212-word lexicon, 14-phoneme inventory, and idealized “pseudo-spectral” inputs. Crucially, EARSHOT displays the same
rank ordering and similar timing for competitor types as the gold-standard TRACE model.

Unpacking the model

How can we determine how the model works, and how can
its mechanisms guide theories of HSR (both cognitive and
neural)? To address this, we borrowed an approach that
Mesgarani et al. (2014) developed for decoding human
electrocorticography data. We presented the model with all
possible CV and VC vowels, and examined the responses of
every hidden unit over time. For every hidden unit paired
with every phoneme, we calculated a Phonetic Sensitivity
Index (PSI). For example, for unit 239, we would note its
mean activation in response to /b/ from the onset of /b/ to 100
ms later. We then subtract unit 239’s response to each other
phoneme in turn from its response to /b/. When the difference
is > 0.3, the PSI for {239, /b/} would be incremented. We
repeat this for all 39 phonemes. The maximum PSI for a unit-
phoneme pair would be 38 (indicating a unit that responded
more strongly to that phoneme than to any other).

We calculated the PSI for all unit-phoneme pairs. Then, we
subjected the resulting unit-by-phoneme matrix to
hierarchical clustering (Fig. 3). This allows us to ask whether
phonetic structure emerges as the model learns to map speech
to semantics, even though no explicit information about
phonetic features or phonemes is given in training.

About 50% of hidden units exhibited structured responses
in the SI time window (20% of electrodes examined by
Mesgarani et al. [2014] met their inclusion criteria). The
hierarchically clustered PSI solution bears remarkable
resemblance to that derived from electrodes in human
superior temporal gyrus, with selective responses for

phonetically similar phonemes.

The PSI analysis reveals an internal phonetic code that
emerges over training. However, hidden units have more
complex dynamics than are revealed by the PSIs. Profiles
include strong responses at phoneme onset, but also delayed
and sustained responses (see Magnuson et al., 2018). In
future work, we will explore how the full combination of
response profiles support EARSHOT’s robust performance.
It is also possible that the variety of response profiles
observed in the model could be the basis for hypotheses
regarding candidate response profiles that might occur in
human cortical recordings.

Discussion

Decades after the lack of invariance problem — the absence
of invariant cues to speech sounds (e.g., Joos, 1948;
Liberman et al., 1952; Peterson & Barney, 1952) — was first
described, speech science offers limited explanations for
human phonetic constancy. A significant obstacle is that
computational models of HSR have side-stepped the problem
of working directly on the speech signal. Instead, models
have focused on the challenges inherent in spoken word
recognition beyond initial encoding, using simplified inputs
such as gradient phonetic features (McClelland & Elman,
1986), phonemes (Hannagan et al., 2013; You & Magnuson,
2018), or human phoneme confusion probabilities (Norris &
McQueen, 2008) instead of real speech. Ironically,
simplifying assumptions can complicate theoretical
challenges (Magnuson, 2008) by masking constraints (in this



case, e.g., prosodic cues to phoneme identity or word length).

Simplifying assumptions about input were motivated by
complexity concerns. As McClelland and Elman (1986)
argued, models aimed at guiding psychological theory must
prioritize psychological over computational adequacy,
favoring simplicity and understandability over full, end-to-
end modeling. A comprehensive and robust model that is
itself too complex to understand offers little guidance to HSR
theories.

In developing EARSHOT, our aim was to maximally
conserve psychological adequacy (i.e., simplicity) in a model
that takes real speech as input. Borrowing one tool from ASR
— long short-term memory (LSTM) nodes (Hochreiter &
Schmidhuber, 1997) — allowed a shallow recurrent network
to learn to map from speech to pseudo-semantics while
exhibiting human-like dynamics of lexical activation and
competition (similar to TRACE; Fig. 2). Generalization (on
items from trained-on talkers that were not included in
training, as well as talkers wholly excluded from training)
was fairly low and quite variable. On the one hand, this
represents a major advance, since there simply are no other
cognitive models of HSR that operate on real speech. This is
the first time such a simple model has been applied to
problems entailed by doing so (talker variability, etc.). On the
other hand, relatively low and variable generalization may
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reflect the degree to which the model memorizes training
patterns. In ongoing work, we are exploring the use of more
variable inputs, but ultimately, we must move to using open-
ended training items produced by natural talkers.

Another contrast with other models of HSR is that
EARSHOT is a learning model. Although we have thus far
used an unnatural training regimen, EARSHOT allows the
exploration of more naturalistic learning.

Admittedly, #ow the model succeeds in learning to map
speech to semantics is not yet completely clear. By importing
techniques from human electrocorticography (Mesgarani et
al., 2014), we were able to track responses of hidden units to
specific phonemes (Fig. 3) and observe the model’s emergent
sensitivity to phonetic structure. It develops this sensitivity
without any explicit training or information about phonetic
features or phonemes. Deeper understanding will require
more complex analyses of not just hidden units, but also
output units and weight layers.

However, the preliminary similarity of EARSHOT’s
hidden unit responses to responses in human superior
temporal cortex (Mesgarani et al., 2014) suggests that our
approach has potential for new means of developing
cognitive models that are potentially linkable to the neural
substrates supporting HSR. Speculatively, we would propose
that response profiles observed in hidden units in a model like
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Fig. 3. Phonetic sensitivity revealed by hierarchical clustering. Phonetic Sensitivity Index (PSI) based on hidden unit (x-axis) responses in
the presence of specific phonemes. For every hidden unit-phoneme pair, PSI was incremented for every phoneme to which the hidden unit
responded substantially more weakly (yellow indicates high selectivity, with maximum PSI of 38, given 39 phonemes). 246 HUs showing

selective responses are included. We used hierarchical clustering to sort both axes, revealing substantial structure in hidden unit responses.



EARSHOT could provide hypotheses for human cortical
responses.

In conclusion, EARSHOT may provide a first step towards
a comprehensive solution to the overarching challenge for
theories and models of HSR — the lack-of-invariance
problem. Simulations on previously out-of-reach topics
(talker and rate variability, etc.) can be conducted with the
same materials presented to human listeners. Our aim in this
brief report is to provide a snapshot of the basic properties of
EARSHOT. In a longer subsequent report, we will describe
our ongoing work to more fully assess the capabilities of the
model.
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