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Abstract 

Despite the lack of invariance problem (the many-to-many 
mapping between acoustics and percepts), we experience 
phonetic constancy and typically perceive what a speaker 
intends. Models of human speech recognition have side-
stepped this problem, working with abstract, idealized inputs 

and deferring the challenge of working with real speech. In 
contrast, automatic speech recognition powered by deep 
learning networks have allowed robust, real-world speech 
recognition. However, the complexities of deep learning 
architectures and training regimens make it difficult to use 
them to provide direct insights into mechanisms that may 
support human speech recognition. We developed a simple 
network that borrows one element from automatic speech 

recognition (long short-term memory nodes, which provide 
dynamic memory for short and long spans). This allows the 
network to learn to map real speech from multiple talkers to 
semantic targets with high accuracy. Internal representations 
emerge that resemble phonetically-organized responses in 
human superior temporal gyrus, suggesting that the model 
develops a distributed phonological code despite no explicit 
training on phonetic or phonemic targets. The ability to work 

with real speech is a major advance for cognitive models of 
human speech recognition. 
Keywords: spoken word recognition; computational models; 
neural networks; deep learning 

Introduction 

Human speech recognition (HSR) poses some of the greatest 
unsolved scientific challenges in the cognitive and neural 

sciences. Despite a many-to-many mapping between acoustic 

patterns and percepts (for now, let us assume percepts are 

phonemes, i.e., consonants and vowels), listeners experience 

phonetic constancy: we hear what the speaker intends even 

though the same acoustic pattern can cue different phonemes 

depending on context, and different patterns can cue the same 
phoneme. This challenge is the lack of invariance problem.  

Many factors complicate the acoustic-perceptual mapping: 

(a) coarticulation (temporal and articulatory overlap of 

phonemes in series; Liberman et al., 1967), (b) lack of robust 

boundaries between phonemes or words (Cole & Jakimik, 

1980), and (c) shifts in the mapping due to variation in 

speaking rate (Miller & Baer, 1983), talker characteristics 

(Joos, 1948; Peterson & Barney, 1952), phonetic context 

(Liberman et al., 1967), coarticulation (Liberman et al., 

1952), and novelty of message content (Fowler & Hosum, 

1987). Similar problems are found in other perceptual 
domains (e.g., visual objects must be recognized despite 

variation in size, rotation, and illumination; DiCarlo & Cox, 

2007). However, the temporal and transient nature of speech 

compounds the challenge. 

 

Deep vs. minimal networks for speech recognition  

One might suppose that the lack of invariance problem has 

been solved in contemporary automatic speech recognition 

(ASR) systems, such as those used daily by billions of 

smartphone users. The deep-learning neural network models 

underlying the best ASR (Hinton et al., 2012) provide robust 



real-world application but little guidance for theories of HSR. 

Deep nets for ASR require many complex and richly 

connected layers, as well as complex, carefully engineered 

training regimens.  

That said, researchers interested in HSR have developed 
less complex deep networks with the aim of illuminating 

possible mechanisms supporting audition and HSR. 

Nagamine et al. (2015), for example, examined hidden units 

of a 5-layer network trained explicitly on phoneme 

recognition and observed responses strikingly similar to 

phonetically-structured responses in human superior 

temporal gyrus (Mesgarani et al., 2014). Kell et al. (2018) 

used a deep network to achieve human-like accuracy on two 

unusual tasks: (1) recognizing the word at the center of a two 

second sample of speech and (2) musical genre identification. 

Their network had many layers and required complex 

training. The first 7 layers were shared for speech and music, 
but then it branched into specialized speech and music 

pathways (with 5 additional layers). The model surpassed 

standard spectrotemporal filter models of auditory cortex in 

predicting human cortical responses to natural sounds 

(measured with fMRI. Kell et al. suggested that deep 

networks might provide the only computational approach 

able to achieve human-like performance for natural stimuli.  

We optimistically disagree. Our aim is to develop 

maximally simple (minimal) models of HSR. Theoretical 

progress will be difficult if our models approach the 

complexity of their biological target (the neural basis for 
HSR). At the same time, we aim to grapple with details that 

have been left out of deep learning models of auditory 

perception. First, several models have achieved high 

accuracy by side-stepping the temporal nature of speech (e.g., 

by treating an utterance or sound as a static image, with time 

as one axis) rather than as a time series. Furthermore, such 

models have not addressed the kinds of human data of 

greatest interest to psycholinguists who study human spoken 

word recognition, such as the time course of lexical activation 

and competition (Allopenna et al., 1998).  

Simpler shallow computational models have been applied 

to grappled with over-time inputs and time course of lexical 
competition, but with two different limitations: (1) they do 

not use real speech as input  (instead using, for example, 

|abstract distributed phonetic features over time (TRACE: 

McClelland & Elman, 1986) or human diphone confusion 

probabilities (Shortlist B: Norris & McQueen, 2008); (2) they 

tend not to address learning. Models developed since the mid 

1980s have either adopted these simplifications in order to 

address the time course of spoken word recognition with 

large vocabularies, or have strived for greater realism but in 

small-inventory models (e.g., Grossberg et al., 1997), or have 

attempted to incorporate ASR approaches into cognitive 
models of spoken word recognition (e.g., Scharenborg, 2010; 

Scharenborg et al., 2005). Such approaches have led to 

genuine insights, but the models tend to have low accuracy, 

limited empirical coverage, or both.  
 

Minimal models from long short-term memory nodes  

Our aim is to develop a minimal cognitive model of HSR that 

could learn to map over-time speech to semantics, without 

explicit phonetic training, that remains simple enough to 

generate hypotheses for mechanisms that could support HSR. 

However, current network-based cognitive models of HSR 

do not appear adequate for processing real speech. 
Thus, we examined a variety of network architectures and 

elements used in network models used for ASR. We found 

that a two-layer recurrent network provides the needed power 

for our goal domain if its hidden units are long short-term 

memory (LSTM) nodes (Hochreiter & Schmidhuber, 1997). 

LSTM nodes add 3 internal gates and a memory cell that 

allow nodes to develop sensitivity to information over long 

time scales, mitigating the vanishing gradient problem 

(Hochreiter et al., 2001). In the following sections, we 

describe a new neural network model of HSR, EARSHOT 

(Emulation of Auditory Recognition of Speech by Humans 

Over Time), that we believe approaches the minimal 
complexity required to map real speech to semantics. 

Methods 

Network structure and parameters 

The EARSHOT network is schematized in Fig. 1. Its 256 

input units are fully connected to 512 LSTM hidden units. 

The hidden layer is fully recurrent (i.e., every unit has a 

connection to every other unit). A tanh activation function is 

applied to hidden outputs. The hidden units are fully 

connected to 300 output units. High accuracy on our task 

(described below) required ~500 hidden units (performance 

is not improved by increasing to 750 or 1000 hidden nodes).  

Materials 

We pseudo-randomly selected 1000 words from a list of 
uninflected English words, with the constraints that (a) word 

length varied from 1-8 phonemes (mean = 5.5) and (b) every 

phoneme had to occur in at least 10 words. We created speech 

files for each of the 1000 words pronounced by 10 talkers in 

the Apple text-to-speech application, say (5 females [Agnes, 

Kathy, Princess, Vicki, Victoria] and 5 males [Alex, Bruce, 

Fred, Junior, Ralph]). Mean duration was 659 ms (range: 

289-1121 ms). We also created 360 consonant-vowel (CV) 

and VC syllables for testing purposes (using 15 vowels and 

24 consonants). Sound files were converted to spectrographic 

representations with 256 channels in 10 ms steps with 
sampling rate of 8000 hz.  

We created random sparse vectors for each word as a proxy 

for semantic representations. Vectors had 300 elements, with 

10 “on” (set to 1, others set to 0). This common simplification 

is considered acceptable given the largely arbitrary mapping 

from form to menaing (e.g., Lazlo & Plaut, 2012).   

Training method 

We trained 10 instantiations of EARSHOT. For each model, 

a different one of the 10 talkers was excluded from training 

(reserved to test generalization to a novel talker). We 

excluded 100 different randomly selected words from each 
trained-on talker (reserved to test generalization to unseen 









EARSHOT could provide hypotheses for human cortical 

responses. 

In conclusion, EARSHOT may provide a first step towards 

a comprehensive solution to the overarching challenge for 

theories and models of HSR – the lack-of-invariance 
problem. Simulations on previously out-of-reach topics 

(talker and rate variability, etc.) can be conducted with the 

same materials presented to human listeners. Our aim in this 

brief report is to provide a snapshot of the basic properties of 

EARSHOT. In a longer subsequent report, we will describe 

our ongoing work to more fully assess the capabilities of the 

model. 
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