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Abstract—This work takes a novel approach to classifying
the behavior of devices by exploiting the single-purpose nature
of IoT devices and analyzing the complexity and variance of
their network traffic. We develop a formalized measurement
of complexity for IoT devices, and use this measurement to
precisely tune an anomaly detection algorithm for each device.
We postulate that IoT devices with low complexity lead to a high
confidence in their behavioral model and have a correspondingly
more precise decision boundary on their predicted behavior. Con-
versely, complex general purpose devices have lower confidence
and a more generalized decision boundary. We show that there is
a positive correlation to our complexity measure and the number
of outliers found by an anomaly detection algorithm.

By tuning this decision boundary based on device complexity
we are able to build a behavioral framework for each device that
reduces false positive outliers. Finally, we propose an architecture
that can use this tuned behavioral model to rank each flow on
the network and calculate a trust score ranking of all traffic to
and from a device which allows the network to autonomously
make access control decisions on a per-flow basis.

Index Terms—Internet-of-Things, Machine Learning, Anomaly
Detection, Software Defined Networking, Access Control

I. INTRODUCTION

Unlike networks of the past, made up of a small number of
general purpose machines, IoT networks will increasingly be
made up of a large number of specialized devices designed to
do a single task. The single purpose and often constrained
nature of these devices make them harder to intrinsically
secure, but easier to extrinsically analyze. A single temperature
sensor, for example, will not be able to run an anti-malware
application, but does have a simple and predictable network
traffic footprint.

This work exploits the single purpose nature and predictable
network fingerprint of IoT devices to autonomously derive
several measures of complexity based entirely on their network
traffic. This allows not only for the evaluation of IoT devices
based on their complexity, but also enables each IoT device to
be accurately modeled based on its behavior on the network.

This behavioral model is then used to calculate a trust
ranking for each and every network flow. Flows that have been
deemed of low trust can be logged, rate-limited or blocked

automatically by the network, conversely flows of high trust
can be prioritized.

A behavior based flow routing model can be used as the first
line of defence; to slow or prevent botnets and DDoS attacks at
their source by detecting anomalous traffic at the granularity of
individual flows from specific devices. Proper implementation
would allow the network to selectively isolate and block
malicious flows, leaving devices continuing to perform their
primary function.

A reference network architecture for behavioral based flow
routing is included in section VI.

Research Contributions

• We formalize the complexity of the behavior of devices
based on their network traffic.

• We also propose metrics for measuring such complexity.
• We hypothesize that devices with smaller complexity

values will show less of an aberration in its behavior
compared with those of higher complexity values. Our
results justify this. Thus, we tune the outlier threshold
for the anomaly detection algorithms in accordance with
device complexity.

To the best of our knowledge, this is the first work that at-
tempts to tune anomaly detection algorithms using complexity
of IoT devices.

This work is organized as follows, in section II we review
why IoT security is a problem and current research on how
to analyze and secure devices. In section III we describe the
lab setup and what data was collected. In section IV we
develop methods for measuring complexity and how devices
are classified into discrete groups. In section V we develop
a method for modeling learned behavior of IoT devices and
propose a confidence model for each device. Finally in section
VIII we conclude with a proposed access control architecture
to selectively route flows based on the derived confidence for
each device.



II. BACKGROUND

A. Complexity and Predictability

The correlation between complexity and predictability is an
intuitive and foundational principle of probability theory that
has roots dating back to at least Aristotle [1]. The challenge
is to determine a statistically significant way of measuring the
complexity of a system to form meaningful confidence in a
predictive model of that system.

Formalized measurement of complexity as applied in a
computer science context is probably most often associated
with the works of Andrey Nikolaevich Kolmogorov, who
defined the complexity of an object as the shortest computer
program to produce the object as an output [2]. This simple
notion arises again in the work of Jorma Rissanen whose work
on the minimum description length principal that establishes
that the best model for a set of data is one that leads to the
best compression of the data [3].

In the paper Predictability, Complexity, and Learning au-
thors Bialek et al. establish a formal result that predictive
information provides a general measure of complexity [4]. In
this work we propose that the relationship between predictive
information and complexity is commutative, i.e. not only
does predictive information lead to a measure of complexity,
but that complexity provides a general measure of predictive
information.

In machine learning this relationship leads to the logical
notion that the less complex the model the more accurately
it can be modeled. Specifically, this work builds an anomaly
based behavioral model, where the device’s complexity di-
rectly affects the decision boundary that differentiates between
inliers and outliers.

B. IoT and Security

The Internet of Things term was first coined by Kevin
Ashton [5] in 1999 when describing RFID use in supply
chain management. This definition has ballooned to become
a catch-all phrase for any device that connects to or interacts
with the Internet. Examples of these devices include medical
sensors that monitor health metrics, home automation devices,
traffic monitoring, and scientific research sensors. Some of
these devices will be designed to last for a few weeks and be
disposed of, like a sensor on food packaging. Others will be
embedded into infrastructure that will be around for decades
such as sensors embedded into roads. Some devices will need
to run on batteries for years; have limited processing and
storage capabilities and spend the majority of the time in sleep
mode. Others will have powerful processors, a constant power
source and high bandwidth connection to the network. This
diversity in function, capability, and life-span is at the core of
what makes securing these devices so challenging.

Security baselines [6], [7] and strong endpoint security in
international standards [8] are steps in the right direction, but
there will always be insecure devices; either because they were
manufactured that way or did not receive software patches.
This is highlighted in the large corpus of research [9]–[13]

that highlights how and why vulnerable IoT devices are prone
to security attacks.

C. IoT and the Identity Crises
The fundamental challenge in securing IoT devices and

enabling networks to apply network-based access control is
identifying devices and their corresponding behavior on the
network. At a highly abstract level, NIST, the National Institute
of Standards and Technology, has defined 5 IoT primitives [14]

1) Sensor - a physical device that outputs data relevant to
its environment.

2) Aggregator - a physical or virtual device that collects
and/or transforms data.

3) Communication Channel - a link or medium that
transfers data between nodes or devices.

4) External Utility - an abstraction for a data processor.
An example of this is a cloud based AI system.

5) Decision Trigger - virtual device that outputs the final
results or computations.

The NIST primitives define devices based on broad classifi-
cations of behavior, however these primitives are more geared
toward policy decisions and are too abstract for it to be useful
in an access control model.

A recent IETF proposal standard call Manufacturer Usage
Description (MUD) specifies how manufacturers codify ex-
pected behavior of devices in terms of access lists and policies
[15]. If this is fully adopted by manufacturers and secured by
a strong Public Key Infrastructure (PKI) based device identity,
then this approach represents a reasonable baseline of trust to
bootstrap automatic network-based access control, however,
the network will still need to verify the device’s behavior on
an ongoing basis due to the fact that a fully compromised
device will still be able to falsely submit a MUD URL to the
network.

D. Probabilistic Identity and Fingerprinting
Beyond IoT primitives and relatively static access control

lists, several works aim to derive device identity-based on
network traffic. Loepz-Martin et al. [16] build a network traffic
classifier (NTC) using a recurrent neural network (RNN) and
apply it to labeled IoT traffic. The goal of this is to identify
the types of traffic and services exhibited by an IoT device as
a step toward identifying the device.

Miettinen et al. [17] have developed a method, called IoT
Sentinel, that uses machine learning to designate a device
type on the network, referred to by the authors as a device
fingerprint. Using the random forest algorithm and 23 network
features they were able to identify device types on the network
based on the device’s traffic. The 23 features are based on layer
two, three and four of the OSI networking stack. Expecting
that the body of the packet will be encrypted, all the features
the authors employed are based on unencrypted parts of the
traffic like IP headers information.

The authors claim that using the random forest algorithm,
they were able to identify the 27 device types in the study
with an overall accuracy of 81.5%. They noted that for 17
of the devices they were able to identify the device with a
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95% accuracy. For the other ten devices they achieved only a
50% accuracy of identification. These ten devices are largely
different devices from the same manufacturer. The authors
explain that their classifier is good at discriminating between
devices that have different hardware or firmware, but if the
device is made by the same manufacturer and has the same
firmware their classifier does not accurately fingerprint the
device. They claim that this is not important in that the two
very similar devices are likely to have the same vulnerabilities
and is inconsequential.

While IoT Sentinel presents some interesting solutions,
it has a couple of major drawbacks. First and foremost is
that they use a supervised learning algorithm that must be
individually trained on each device type. Not only that but it
must be re-trained if the device firmware changes. This re-
training makes the solution difficult to scale to the myriad
of heterogeneous devices and requires an extensive on-line
database of trained classifiers. This makes their solution reliant
on the accuracy of, not just one but, two public databases, the
CVE database and a database of trained classifiers. Second,
by only analyzing the device during setup, they are missing
the vast majority of the device behavior on the network. If the
device is compromised after being installed, this solution is
unlikely to recognize it. Third, since the author’s classifier is
unable to distinguish very similar devices, this solution has a
high probability of false positives, which makes it unsuitable
for critical high-availability medical devices.

Bezawada et al. [18] build on the work done in [17] by
using a machine learning approach to broadly identify the
device and place it in a predefined category, such as a light
bulb. According to the authors, even devices from different
manufacturers can be placed into general categories such as
two separate light bulbs can be identified and placed into a
lighting category.

This solution of fingerprinting devices suffers from a similar
problem as IoT Sentinel in that it uses a supervised approach to
fingerprinting and categorization. This is challenging in that it
requires labeled data for each device. Additionally, the authors
assume that they will be able to detect a distinct command and
response structure in the data from any particular device. This
coupled with the relatively low sample size of the devices they
tested makes this approach potentially ineffectual for more
complex devices where aspects like encryption may interfere
with the ability to detect the command and response structure.

Moving beyond the supervised limitations authors Marchal
et al. [19] developed a technique to generically identify devices
based on the periodicity of their network communication.
The authors employ signal processing techniques to ana-
lyze devices’ background periodic traffic with the goal of
placing devices into derived identity groups. Using discrete
Fast Fourier Transform the authors then generate 33 features
that they then train a k-nearest neighbors (kNN) model. The
authors then use the model to place devices into one of 23
groups based on the clusters found by the kNN.

This work creates 23 generic device identities by analyzing
33 commercial IoT devices. This model generates a unique

derived identity for nearly 70% of the devices, i.e. only slightly
better than a derived identity per device. For example, the
largest derived identity group contains only five devices, all
of which are from D-Link. Extrapolating this to a wider set of
devices across a wider set of manufacturers, this work would
produce a very large number of derived identities. This large
quantity of derived identities would not do much to simplify
network and security policies attempting to use them as input
for decisions.

E. IoT Behavior
The following works use various means of autonomous and

unsupervised machine learning approaches to identifying de-
vices and device behavior. This has advantages over statically
defined access control lists and firewall rules.

HoMonit [20] develops a anomaly detection engine for
analyzing the behavior of smart devices using a model based
on software applications (SmartApps) made by third-party
developers on the SmartThings platform. The authors use side
channel information sniffed from encrypted wireless traffic to
compare the inferred behavior of a device and the expected
state machine model based on the SmartApp.

IoT-Keeper [21] is an edge based IoT anomaly based access
control system that uses correlation-based feature selection to
determine which features do not contribute to the anomaly
detection. AuDI [22] implemented an autonomous device-type
identification that uses the periodicity of device communi-
cations resulting in abstract device categories that could be
used to enforce access control policies. DioT [23] extends the
AuDI classification model to create a federated approach by
aggregating device anomaly detection profiles.

Ren et al. use a privacy focused approach to enumerating
and analyzing IoT behavior [24]. The authors set up two labs,
one in the US and one in the UK. The labs consisted of a
total of 81 devices with 26 device being common between the
two labs. The authors then proceeded to analyze the traffic for
each lab looking at behavior of an IoT device during boot and
when it was actively being controlled and/or interacted with.

Ortiz et al. set up a probabilistic framework to monitor
device behavior using an LSTM (Long Term Short Term
Memory) neural network, to learn from inherent sequencing of
TCP flows to automatically learn features from device traffic
with the intent of categorizing devices and distinguishing
between IoT devices and Non-IoT devices [25]. The authors
are able to identify previously known devices after only 18
TCP-flow samples and categorize devices into two classes IoT
and Non-IoT.

Authors O’Connor et al. [26] use supervised machine
learning to map high level semantic device behavior to 148
behavior types, such as heart beat, firmware downloading,
configuration change, sending video, etc [26]. The authors
build an abstraction model of client-server interactions using
TCP/IP header information and a multi-class classifier to
map these interactions into the known behavioral types. This
research then provides an access control model based on the
classified behavior, the device and context, where the context
is to be provided by owner.
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Our model does not try to place devices into artificially
or arbitrarily devised classes, nor try to categorize devices or
their behavior based on their function. It does not rely on any
contrived labels of behavior, user interaction, or device type.
Instead everything is learned autonomously from flow data
features shown in Table I, with the aim to measure devices
based on their network complexity and use that to refine our
model of their behavior.

Our model can be used to determine a representative set
of flows that define the behavior of a device and these flows
can be directly loaded into flow tables of Openflow enabled
switches. We believe that this will scale to the broad spectrum
of devices and adapt to any new configurations of devices in
the future.

Take, for example, a refrigerator that is also an Android
tablet, the methodologies in the related works above would
struggle to characterize such a device. Our method does not
try to recognize this device as either a refrigerator or a tablet,
it does not try to guess at the service or characterize the
device’s application layer data. Our model does not rely on
learning specific human interactions with the refrigerator, nor
determining if those interactions are anomalous. Our model
only relies on how complex the refrigerator appears on the
network and how much it stays within our learned boundary
of behavior.

III. DATA FORMAT AND COLLECTION

Data was collected from a real residential network with
approximately 25 devices over the course of 37 days. These
devices range from general computing devices like laptops and
smartphones, IoT hubs with several IoT Devices using Zigbee
or Zwave behind them, to single-purpose devices such as light
bulbs and temperature sensors. Data was collected by a central
MicroTik router shown in (Figure 1) that sends Netflow/IPX
data to nprobe running on a Raspberry Pi. Flows were stored
in a MariaDB relational database. Table I shows the features
of the data collected.

Flows were aggregated with a maximum of 30 minutes per
flow. Inactive flow timeout is 15 seconds. If the devices have
not exchanged traffic in 15 seconds the flow is completed and
recorded. For training and test data sets the data is filtered by
an individual IP address. The test environment is configured
such that the devices always receive the same IPv4 address.
Flows are sorted by time-stamp eliminating time as a variance
factor.

Definition 1. Network Flow: A sequence of packets where all
the packets in the flow have the same tuple: source address,
destination address, source port, destination port and protocol.

Table I
DATA FEATURES

Feature Description
IPV4 SRC ADDR IPv4 Source Address
IPV4 DST ADDR IPv4 Destination Address
IN PKTS Incoming flow packets

(Device->Destination)
IN BYTES Incoming flow bytes

(Device->Remote)
OUT PKTS Outgoing flow packets

(Remote->Device)
OUT BYTES Outgoing flow bytes

(Remote->Device)
L4 SRC PORT IPv4 Source Port
L4-DST PORT IPv4 Destination Port
PROTOCOL IP Protocol Identifier

Figure 1. Data Collection Architecture

IV. DEVICE COMPLEXITY CLASSIFICATION

Device complexity is an aggregate measurement of a de-
vice’s IP connections, dip, and how much its traffic varies
over time dv .

A. Device IP Complexity

This research examines how devices form connections. One
aspect of this analysis is to study IP spread and IP depth.
IP spread is the number of unique source and destination IP
addresses that interact with the device. IP depth is the number
of IP addresses that belong to the same higher level octets.

Definition 2. IP Tree: An IP tree is a unique first order octet.
This comprises the root of the tree.

Definition 3. IP Branch: A second, or third order octet that
has one or more fourth order octets (Leaf) under it.

Definition 4. IP Leaf: An IP leaf is a unique fourth order
octet.

Definition 5. IP Spread: Sum of total unique IP addresses
that interact with a device

Definition 6. IP Depth: The number of addresses that interact
with a device and belong to the same higher order octets i.e
they have common first, second or third order octets.

a) Device IP Spread:

IPSpread =
∑

IPtrees (1)
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b) Device IP Depth:

IPDepth =

∑
IPleaf∑
IPbranch

(2)

c) Device IP Complexity:

dip =
IPSpread

IPDepth
(3)

To calculate IP spread and depth we build unordered trees
of each IP address where the first order octet is the root and
lower octets are children. Then we can calculate how many
trees, branches and leaf nodes each IoT device contacts. A
large number of IP trees with few branches indicates a large
IP spread. A small number of IP trees that have many branches
and leaves indicates a large IP depth. IP depth/spread is used
as one measure of a device’s complexity. Devices belonging to
a single ecosystem such as Google Home have a small number
of broad trees as they connect to mostly Google’s networks
dedicated to these types of devices. Other devices such as
laptops and smart phones have a larger IP spread with each
IP having fewer branches and leaves. Figure 2 shows the total
IP complexity of each device.

Figure 2. IP Device Complexity

B. Device Variance

The variance metric comes from the simple notion that
devices on a network present different variances based on
what they do on the network. Here we employ the explained
variance score (standard deviation squared) computed over the
flow history of the device. The explained variance score gives
us a normalized measure of the dispersion of the data between
a training subset and a test subset. Explained variance requires
an even split of samples for training and test. Figure 3 shows
the spectrum of variance expected per device type.

Figure 3. Spectrum of Network Variance

1) Explained Variance of Network Flows: This is the
explained variance score dv of the device averaged over a
past historic window. Initially this research used a time-based
window of the past thirty days. Future work will examine if
windows should be based on a minimum number of flows, time
or both. Figure 4 shows the measured variance of devices on
the network.

dv =
n=Current∑

n=0

dvn
n

(4)

dvn(f, f̂) = 1− V ar(f − f̂)

V ar(f)
(5)

Variance σ2 is the standard deviation squared

V ar(f) = σ2 =

∑n
i=1(xi − x̄)2

n− 1
(6)

where: f̂ = winn−1 flows
f = winn flows

Figure 4. Average Device Network Variance

C. Aggregate Complexity

Overall device complexity is the sum of the average device
variance and the average device IP complexity shown in Figure
5.

a) Aggregate Device Complexity:

ADC = wipdip + wvdv (7)
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where: dip = device IP complexity
dv = device variance
wip = weight of IP complexity
wv = weight of variance
initial weights wv, wip = 1

Figure 5. Aggregate Device Complexity

V. BEHAVIOR

The word behavior is an abstract word especially as applied
to a network device. However, given the complex interactions
that IoT devices have with the physical world, behavior ade-
quately represents the dynamic and changing network footprint
exhibited by these devices. The sensing and actuating response
of IoT devices that bridges the network and physical world
requires new methods of defining what is normal and what is
abnormal. IoT devices, even the same make and model from
the same manufacturer will exhibit slightly different behavior
based on how they interact with the human inhabitants, each
other and the environment. Two very similar devices, that have
different apps installed act very differently. This variance in
behavior requires that the model is tailored to these specific
and individual devices.

We begin by defining IoT device behavior based on the past
history of network interactions of the device, bounded by the
most extreme of these interactions. To model the degree of
normality and extremity of behavior we turn to classic outlier
detection algorithms, adding what we believe to be a key
contribution of this research, we tune the hyper-parameter of
the outlier detection algorithm to the specific device based on
the measure of complexity as defined in the previous section.

This method has the direct affect of making the decision
boundary of the trained model a more precise fit for simple
devices and more generalized for complex devices. This allows
the detection algorithm to be more strict in identifying outliers
for simple devices and more lax for complex devices. This
enhances the model, enabling it to adaptively prioritize new
extreme behavior for simple devices and reduce false positives
for complex devices.

A. Anomaly Detection
To derive a behavior for the device we take the isolation

forest anomaly algorithm as defined by Liu et al [27]. Isolation
forest is a tree ensemble method that builds decision trees
based on a random partition of the feature space. The tree’s
path length is inversely proportional to the abnormality of the
observation, ie. the shorter the path to divide the observation
space from other observations the more anomalous the obser-
vation is.

Isolation forest is somewhat unique among outlier detection
methods in that it explicitly measures the abnormality of the
observations rather than attempting to profile the normal data
points.

a) Isolation Forest:

s(x, n) = 2−
E(h(x))

c(n)
(8)

where: h(x) = path length of observation
c(n) = average path of unsuccessful search.

Isolation forest also lends itself to good performance on
low-end hardware. The total number of nodes of an isolation
tree is 2n − 1. Thus the tree and its required memory grows
linearly with n. Additionally, because the search is for the
shortest path, the algorithm does not need to spend processing
time or memory searching observations with the longer path
trees, as these are explicitly in-liers.

B. Behavior Tuning Using Device Complexity
The contamination parameter specifies the percentage of

observations that are believed to be outliers for training. To
properly tune the isolation forest we use the calculated com-
plexity value ADC for each device to set the contamination
parameter. For low complex devices this is set to nearly zero
and high complex devices will be closer to 0.5. This sets a
narrow bound on the decision function for devices with low
complexity and a broader bound on the decision function for
highly complex more general purpose devices.

C. Behavioral Boundary
Definition 7. Device Learning Period: A window of past
network traffic from the device is called the device learning
period DLP . The DLP should capture the device’s initial
joining to the network and a period of normal use.

The behavioral boundary for a device is calculated from the
device learning period DLP . The behavior boundary consists
of the cardinal set of all unique flows from a device with a path
length less than the average path length. Average path length
is the average path length for the dataset that is comprised
of all the flows from each device. We call this set of flows
significant flows.

Definition 8. Significant Flow: A flow that is marked as an
outlier by the isolation forest algorithm during the learning
period, meaning that it has a shorter than average path length.

Definition 9. Device Behavioral Boundary: The set of all
unique significant flows, their path length, and the average
path length for the device during the learning period.
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D. Device Confidence
Device confidence gives us a measure of trust that we can

have in a device that is based on its historical behavior. Device
confidence is calculated over a validation period DV P that
follows the learning period DLP . During the DV P any new
novel flows, i.e. flows that are new and considered outliers
are added to the behavior model. The rate of change in added
flows, from the end of the DLP to the end of the DV P is the
device confidence score.

Definition 10. Device Confidence: The rate of change in the
cardinal observations for a device over the validation period.

DC =
1∑VV P f ′

(9)

where: DC = device confidence
f ′ = new unique flows after initial training
DV P = device validation period

E. Flow Trust Score
The goal of this research is to arrive a flow trust score FT

for each flow on the residential home network.

Definition 11. Flow Trust Score: Score applied to each flow
of each device on the network. It is calculated on the current
anomaly fit and score of the current flow multiplied by the
device confidence score DC .

The flow trust score is calculated below:

FT =
A(fit)DC

facfaa
(10)

A(fit) =

{
1 Ac && Aa > 0

−1 Ac ‖ Aa < 0
(11)

where: Ac = isolation fit of connection function
Aa = isolation fit of aggregation function
fac = measured flow anomaly connection score
faa = measured flow anomaly aggregation score
DC = Normalized device confidence in equation 9

1) Flow Anomaly: There are two flow anomaly scores that
need to be considered, flow connection anomaly fac that is
the anomaly of the connection calculated across the tuple of IP
headers, and flow aggregation anomaly, the anomaly calculated
over the aggregate of the flow faa, ie total bytes, total packets.

Example of high trust flow score:

FT = 1∗0.85
0.1∗0.01 = 850

where: A(fit) = 1 (normal observation)
DC = 0.85 (high deice confidence
fac = 0.1 (normal observation)
faa = 0.01 (normal observation)

Example of a low trust flow score:

FT = −1∗0.195
0.95∗0.89 = −0.230

where: A(fit) = -1 (abnormal observation)
DC = 0.195 (low device confidence
fac = 0.95 (abnormal observation)
faa = 0.89 (abnormal observation)

VI. ARCHITECTURE

The ComplexIoT architecture is based on a centralized
model where there is a single device that acts as a router,
gateway and access point. This central device is an off the
shelf low power x86 computer that is running Kali Linux. It
has 4GB of RAM, an Intel processor, and a Broadcom wireless
chipset.

Software defined networking (SDN) decouples the control
and the data plane in routers and switches. This opens the
network to new services, features, and a level of dynamism
that was previously not possible. This work leverages the
programmability of the network to dynamically allow, block,
rate-limit and route traffic based on the confidence score of
the flow.

Openflow is an open specification for software defined
networking led by the Open Networking Foundation (ONF)
[28]. In June, 2012 version 1.01 of the open flow specification
was released. There are many hardware and software switches
that support OpenFlow.

The prototype architecture developed for this work uses
the OpenFlow reference soft switch called OpenVSwitch [29].
OpenVSwitch supports OpenFlow versions 1.0-1.5.

RYU is a software defined network controller that imple-
ments OpenFlow. In this prototype we use RYU to setup and
control OpenVswitch [30]

The flow collector consists of a Raspberry Pi running a
netflow collection software called nprobe. Nprobe stores the
flows into a MariaDB database.

In figure 6 the flow trust engine analyzes past device
flows and calculates device complexity, behavioral boundary,
device confidence, and flow scores. It sends the flow score
information to RYU, the SDN controller. RYU uses the
received flow score to add,remove or modify flows rules based
on the confidence score. RYU then pushes flow rules the
openVswitch flow tables. Device confidence scores dictate to
RYU if new flows should be allowed, rate limited or dropped.

The architecture in Figure 6 allows the network to make
extremely granular flow decisions on every flow in the net-
work, including inbound/outbound traffic to the Internet and
intra-network device traffic. Based on the behavioral boundary
there is no need to isolate an entire device, just the flow that
is not trusted.
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Figure 6. Enforcement Architecture

A. Enforcement
Because training of the confidence model is based on

aggregate flow data there must be two stages for enforcement.
These two stages are the connection stage and the aggregation
stage.

1) Connection Stage: The connection stage examines fea-
tures of the confidence model that are known at connection
time. The connection stage is only run once at flow connection
setup. The connection features include IP header attributes
such as IP source, IP destination, port, and protocol. If the
model detects an outlier based on the connection features it
will use the current device confidence scores and the outlier
degree to the flow to calculate the flow trust score.

2) Aggregation Stage: The aggregation stage gathers flow
aggregate information that includes incoming flow bytes, in-
coming flow packets, outgoing flow bytes, and outgoing flow
packets. The aggregation stage is run continuously while the
flow is active. The aggregation stage compares the trained
model to the current flow. If the current flow is detected as
an aggregate outlier it will take the current device confidence
score and the outlier degree and calculate a flow trust score.

B. Continuous Model Update
For the behavioral model to be up to date, continuous

training over the device history data is needed. Because it
is expected that the device histories will become very large,
training and testing will be done across a a window of past
data for each device. The model needs only to update the
significant flows and the average path length for each device,
negating the requirement to store the entire device history.

Figure 7. Model Steps

C. Bootstrapping
When a device is added to the network it begins in the

learning period, and with a neutral device confidence DC =

1.0. Additionally, until a sufficient behavioral record can be
established all flows from the device are assumed to be neutral
flow trust FT . Other ways of establishing initial confidence,
such as a device presenting a valid certificate and a query of
a vulnerability database such as CVE is left to future work.

VII. RESULTS

The preliminary goal of this research is to develop a method
of measuring devices on a network based on their complexity
and using this complexity measure to refine the isolation forest
algorithm. Table II show the complexity, total flows and the
percentage of flows that are outliers.

Table II
DEVICE BEHAVIOR BOUNDARY

Device Total Flows Significant Flows Percent
TP-Link 8375 1 0.012%
Smart Things 10000 537 5.37%
Google Home 838784 1714 0.44%
Alexa 199489 1810 0.9%
MacBook Pro 1545311 2751 0.18%
Samsung Note 199767 1921 0.96%

As can be seen in table II only about 1% of flows need to be
stored to capture all unique significant flows. The behavioral
boundary is the set of unique significant flows, the path length
of each significant flow, and the average path length of the
forest for each device measured during the learning period.

Figure 8 shows the scatter plot of aggregate complexity
ADC vs outliers using the untuned isolation forest algorithm.
Linear regression run on this data produces coefficient of
determination (R2) = 0.037. The smart things hub did not
follow this trend having higher outlier flows than would be
expected based on its complexity, this is likely due to the
inherent nature of a hub with many devices and a single
IP address. Figure 9 shows the trend with smart things Hub
removed, this shows a much stronger positive correlation (R2)
= 0.626.

Figure 10 shows the same trend of complexity for un-tuned
and tuned models of the device. The tuning of the algorithm
reduces the correlation of complexity to outliers slightly (R2)
= 0.494, this is expected as the tuning actively dampens the
number of outliers found proportional to the complexity of
the device. The tuning also there is an overall reduction of
outliers per device and shows a reduced slope (0.67) in the
tuned trend-line. This reduced slope is the direct result of the
decision boundary being more lax in determining outliers in
devices that are more complex.
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Figure 8. Un-Tuned: Complexity vs Outliers

Figure 9. Un-Tuned: Smart Things Removed

Figure 10. Un-Tuned Vs Tuned Isolation Forest

Table III
SAMPLE OF DEVICE CONFIDENCES

Device Device Confidence
TP-Link 1.0
Philips Hue 0.952
Obi200 0.8548
Google Home 0.812
Roku 0.798
B Chromebook 0.765
Alexa 0.746
XBOXONE 1 0.698
EUFY Light 0.566
Smart Things 0.512
Note 8 0.311
MacBook Pro 0.182

Device confidence begins at 1.0, this represents a zero rate
of change during the validation period. In table III the device
with the highest confidence is the TP-Link switch, it exhibited
no change in its significant flows from the end of the learning
period to the end of the validation period. The Macbook Pro
has the lowest device confidence as it showed the largest
rate of change in significant flows over the validation period.
This follows logically with the nature of a general purpose
computer that is difficult to accurately model due to its high
complexity.

VIII. FURTHER DISCUSSION AND FUTURE WORK

The next steps in this research are to implement the enforce-
ment architecture and analyze how it scales in terms of band-
width and CPU resources. With multi-core arm-based CPU
architectures and hardware based openflow implementations
we will investigate the feasibility of building this architecture
on low-power off-the shelf router hardware.

A. Ground Truth
With any anomaly detection, there must some ground truth,

a method of measuring how well the algorithm is performing.
Ground truth can be established in one of two ways; a known
and established anomaly in the training data can be employed
to verify that the algorithm can identify that example as an
anomaly. The second way of establishing ground truth is to
introduce an artificial example into the data. In this research,
we will use the latter approach and inject artificial examples
into the training data and evaluate the efficacy of the detection
algorithms based on detecting those examples.

B. Home Vs Lab
This research will examine how two different use cases

affect the analysis of the devices. The first is a home environ-
ment where users are living and interacting with the network
and IoT Devices. The second is a lab environment where the
devices are mostly idle and do not have user interaction. This
research will compare the two environments and attempt to
draw conclusions for a baseline behavior of IoT devices and
how human interaction changes that baseline.

IX. CONCLUSIONS

In this work we propose a new method for classifying IoT
devices based on the complexity and variance of their network
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flows. We showed how this complexity can be used to tune
the decision function of the Isolation Forest anomaly detection
algorithm for each device.

Next, we showed how to model a device to establish a
behavior boundary of normal flows. Using the rate of change in
the number of unique significant flows we defined a confidence
metric for each device.

We take the learned behavioral boundary for each device
modified by the device confidence score develop a trust score
for every flow from each device.

Finally we suggest a reference architecture that can be used
to make per-flow access control decisions for each device.

X. ACKNOWLEDGEMENTS

This work was supported in part by grants from NSF
under Award Number CNS 1650573 and CNS 1822118 and
funding from CableLabs, AFRL, Furuno Electric Company,
and SecureNok.

REFERENCES

[1] Aristotle and J. Barnes, Aristotle’s Posterior Analytics. Oxford:
Clarendon Press, 1976.

[2] A. N. Kolmogorov, “On tables of random numbers,” Sankhyā: The
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