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Abstract
In this paper, we introduce the stationary harmonic measure in the upper half plane. By
bounding this measure, we are able to define both the discrete and continuous time diffusion
limited aggregation (DLA) in the upper half plane with absorbing boundary conditions. We
prove that for the continuous model the growth rate is bounded from above by o(t2+ε).
Moreover we prove that all the moments are finite for the size of the aggregation. When time
is discrete, we also prove a better upper bound of o(n2/3+ε), on the maximum height of the
aggregate at time n. An important tool developed in this paper, is an interface growth process,
bounding any process growing according to the stationary harmonic measure. Together with
[12] one obtains non zero growth rate for any such process.

1 Introduction

In this paper, we consider the stationary harmonic measure in the upper half plane and
the corresponding diffusion limited aggregation (DLA). The diffusion limited aggregation
(DLA) in Z

2 was introduced in 1983 by Witten and Sander [16] as a simple model to study
the geometry and dynamics of physical systems governed by diffusive laws. The DLA is
defined recursively as a process on subsets An ∈ Z

2. Starting from A0 = {(0, 0)}, at each
time a new point an+1 sampled from the harmonic probability measure on the outer vertex
boundary of An (denoted ∂out An) is added to An . Intuitively, an+1 is the first place that a
random walk starting from infinity visits ∂out An .
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Although DLA is straightforwardly defined and easily simulated on a computer, very
little about it is known rigorously. One of the notable exceptions is shown by Kesten where
a polynomial upper bound, which equal to n2/3 when d = 2 and n2/d when d ≥ 3, of the
growth rate on DLA arms is given, see Corollary in Reference [7] or Theorem in Reference
[8]. In a later work [9] Kesten improved the upper bound for DLA when d = 3 to

√
n log(n),

and when d > 3 to n2/(d+1). No non-trivial lower bounds have been proved till present
day. It is in fact still open to rule out that the DLA converges to a ball, although numerical
simulations clearly exclude this.

Recently, this topic is re-visited by Benjamini and Yadin [2] where they “‘clean up’
Kesten’s argument, and make it more robust”. They proved upper bounds on the growth
rates of DLA’s on “transitive graphs of polynomial growth, graphs of exponential growth,
non-amenable graphs, super-critical percolation on Zd and high dimensional pre-Sierpinski
carpets”.

In this paper, we further extend the reach of Kesten’s idea to non-transitive graphs. We
define the (horizontally) translation invariant stationary harmonic measure on the upper half
plane with absorbing boundary condition and show the growth of such stationary harmonic
measure in a connected subset intersecting x-axis is sub-linear with respect to the height.
With the bounds found for our stationary harmonic measure, we will be able to define a
continuous time DLA on the upper half plane and give upper bound on its growth rates.

One of the goals of this paper is to construct the theoretical theory for defining an infi-
nite stationary version of DLA in the upper half plane. The motivation for defining the
stationary DLA (SDLA) is twofold. First DLA growing from an absorbing boundary models
many natural phenomenon which are not modeled well by the classical DLA (e.g. [11], [15,
Chapter 1: Fractals in nature ]). Indeed in an experimental setting it is actually very hard to
avoid boundary effects. Second SDLA exhibits new physical andmathematical phenomenon.
SDLA enjoys a translation invariance symmetry. This effects the geometry of the DLA arms
as they tend to be thinner and “upward” growing. Mathematically one gains the power of
ergodic theory for geometric control, making the SDLA more amenable to analyze than the
classical DLA. As an example one can use mass transport principle to control the expected
width of SDLA arms. Moreover it is conjectured that at time infinity and arms of the SDLA
are finite, which again is an effect of the infinite boundary. Another motivation is that locally,
SDLA behaves like DLA growing from a long line [14], thus geometric results on the more
symmetric SDLA can be transferred to the classical DLA.

We first define several sets and stopping times for our problem. Let H = {(x, y) ∈
Z
2, y ≥ 0} be the upper half plane (including x-axis), and Sn, n ≥ 0 be a 2-dimensional

simple random walk. For any x ∈ Z
2, we will write

x = (x1, x2)

with xi denote the i th coordinate of x , and ‖x‖ = ‖x‖1 = |x1|+ |x2|. Then let Ln, Dn ⊂ Z
2

be defined as follows: for each nonnegative integer n, define

Ln = {(x, n), x ∈ Z},
Vn = {(0, k), 0 ≤ k ≤ n},

and

Un = L0 ∪ Vn .

I.e., Ln is the horizontal line of height n while Un is x-axis plus the vertical line segment
between (0, 0) and (0, n). And we let i · n = (0, n) be the “end point” of Vn . Moreover, we
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948 E. B. Procaccia , Y. Zhang

use Pn ⊂ H for an arbitrary finite path in the upper half plane connecting i ·n and the x-axis.
One can immediately see that Vn is one such path.

And for each subset A ⊂ Z
2 we define stopping times

τ̄A = min{n ≥ 0, Sn ∈ A}
and

τA = min{n ≥ 1, Sn ∈ A}.
For any subsets A1 ⊂ A2 and B and any y ∈ Z

2, by definition one can easily check that

Py
(
τA1 < τB

) ≤ Py
(
τA2 < τB

)
,

Py
(
τ̄A1 < τ̄B

) ≤ Py
(
τ̄A2 < τ̄B

)
,

(1)

and that

Py
(
τB < τA2

) ≤ Py
(
τB < τA1

)
,

Py
(
τ̄B < τ̄A2

) ≤ Py
(
τ̄B < τ̄A1

)
,

(2)

where Py(·) = P(·|S0 = y). Now we define the stationary harmonic measure on H which
will serve as the Poisson intensity in our continuous time DLA model. For any connected
B ⊂ H, any edge �e = x → y with x ∈ B, y ∈ H \ B and any N , we define

HB,N (�e) =
∑

z∈LN \B
Pz
(
Sτ̄B∪L0

= x, Sτ̄B∪L0−1 = y
)

(3)

By definition, a necessary condition for HB,N (�e) > 0 (although at this point we have not
yet ruled out the possibility it equals to infinity) is y ∈ ∂out B and |x − y| = 1. And for all
x ∈ B, we can also define

HB,N (x) =
∑

y: �e=(x,y)

HB,N (�e) =
∑

z∈LN \B
Pz
(
Sτ̄B∪L0

= x
)

. (4)

And for each point y ∈ ∂out B, we can also define

ĤB,N (y) =
∑

�e=(x,y), x∈B
HB,N (�e)

=
∑

z∈LN \B
Pz
(
τB ≤ τL0 , Sτ̄B∪L0−1 = y

)
. (5)

By coupling and strong Markov property, we show that N → HA,N (e) is bounded and
monotone in N . Thus

Proposition 1 For any B and �e as above, there is a finite HB(�e) such that
lim

N→∞ HB,N (�e) = HB(�e). (6)

And we call HB(�e) the stationary harmonic measure of �e with respect to B. Thus we imme-
diately have the limits HB(x) = limN→∞ HB,N (x) and ĤB(y) = limN→∞ ĤB,N (y) also
exists and we call them the stationary harmonic measure of x and y with respect to B.
Although now we have the limit HB(x) exists, it can be zero everywhere for certain B. We
do not need to worry about this when B is finite. For each finite B, we let

HB =
∑

x∈B
HB(x) =

∑

y∈∂out B

ĤB(y)
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Stationary Harmonic Measure and DLA in the Upper Half Plane 949

be the harmonic measure of B. Then we have HB is non-decreasing as B gets larger:

Proposition 2 For any finite subsets B1 ⊂ B2 ⊂ H,

HB2 ≥ HB1 .

Remark 1 However, for infinite subset ofH, it is possible to have the harmonicmeasure equal
to 0 everywhere. In fact, we prove that as long as B has a linear spatial growth horizontally,
HB(·) is uniformly 0. On the other hand, we have also proved that for any B with certain
sub-linear spatial growth, it can have non-zero stationary harmonic measure. These results
are presented in a separate paper [12].

After presenting the basic properties of our stationary harmonic measure and similar to
the regular harmonic measure, the following upper bounds holds for HB,N (x):

Theorem 1 There is some constant C < ∞ such that for each connected B ⊂ H with
L0 ⊂ B and each x = (x1, x2) ∈ B \ L0, and any N sufficiently larger than x2

HB,N (x) ≤ Cx1/22 . (7)

Remark 2 In this paper, we use C and c as constants in (0,∞) independent of the change of
variables like N or n. But their exact values can be different from place to place.

At the same time, we can also have the following result showing that for a point of height
n, say i · n without loss of generality, the harmonic measure is maximized (up to multiplying
a constant) by Un . I.e.

Theorem 2 There is some constant c > 0 such that for all N > n,

HUn ,N (i · n) ≥ cn1/2. (8)

With Proposition 2, Theorems 1 and 2 and the bounds estimates in their proofs, we can
further show that

Theorem 3 There are constants 0 < c,C < ∞ such that for any finite and connected B in
H,

HB ≤ C

(
min
x∈B{x2} + |B|

)
, (9)

while

HB ≥ cmax
x∈B {x2} log−1

(
max
x∈B {x2}

)
, (10)

HB ≥ 1 (11)

when maxx∈B{x2} = 0.

And again, we also have the total harmonic measure is maximized (up to multiplying
a constant) by the vertical line segment Vn over all connected finite subsets with the same
cardinality and intersecting L0.

Theorem 4 There is a constant c > 0 such that for any n,

HVn ≥ cn. (12)
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950 E. B. Procaccia , Y. Zhang

With the stationary harmonic measure bounded in Theorem 1, we are now able to define
our DLA in the upper half plane as a continuous time stochastic process At , t ≥ 0 taking
values on finite subsets ofH. First we have A0 = {0}. For each t ≥ 0. At grows at a Poisson
rate of HAt and add a new point on ∂out At according to the probability distribution

p̃(At , y) = ĤAt (y)

HAt

, y ∈ H.

Similarly, we can also define the discrete DLA model {An}∞n=0 in H which is the embedded
Markov chain of At . I.e., at each n, An+1 = An ∪ {y} where y is sampled according to
p̃(An, y).

First, by introducing a pure growth interacting particle system that dominates the con-
tinuous time process, we show that At is well defined and estimate an upper bound on the
growth rate of its arms. For any finite A define

‖A‖ = max{‖x‖, x ∈ A}.
Theorem 5 At is well defined on t ∈ [0,∞). And for any ε > 0, we have with probability
one

lim sup
t→∞

t−2−ε‖At‖ = 0. (13)

Furthermore, we show that for any time t , ‖At‖ has a finite mth order moment for all
m ≥ 1.

Theorem 6 For any integer m ≥ 1 and any t ≥ 0

E
[‖At‖m

]
< ∞. (14)

Remark 3 In our construction we are able to define the dominating interacting particle system
starting from any initial configuration in {0, 1}H, whose growth rate is given by the upper
bound of the stationary harmonicmeasure found in Theorem 1 . This, together with Reference
[12], may allows us to define a horizontally translation invariant infinite DLA on H and
estimate its (non-zero) growth rate. We call this the stationary DLA model, and it will be
presented in Reference [13]. We refer the reader to look at recent results on other stationary
aggregation processes [1,3].

For the discrete time process let hn = maxx∈An {x2}. By Theorem 1 and (10), we see
that the probability that a new point y is added to the aggregation An is no larger than
log(hn)/

√
hn . Then the Borel-Cantelli argument in Step (ii) of Reference [8] easily gives us

a stronger upper bound on hn :

Theorem 7 For any ε > 0, we have with probability one

lim sup
n→∞

n−ε−2/3hn = 0.

The structure of this paper is as follows: In Sect. 2 we prove the more basic properties of
the stationary harmonic measure, i.e., Propositions 1 and 2. Theorem 2 is proved in Sect. 3
and Theorem 2 in Sect. 4. In Sect. 5 we use the bounds found the the previous two sections
and show Theorems 3 and 4 inductively. In Sect. 6, we use an interacting particle system
argument to define the dominating process and prove Theorems 5 and 6. After that, Theorem
7 follows immediately. Our main contribution in this paper is the proof of Theorems 5 and
6, where a interface particle system with unbounded transition rate is introduced and studied
to stochastically bound the growth of the continuous time DLA model.
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Stationary Harmonic Measure and DLA in the Upper Half Plane 951

2 Properties of Stationary Harmonic Measure

2.1 Proof of Proposition 1

To show Proposition 1, we first need to verify that the infinite summation defined in (4)
converges. Note that for x2 > 0 and any N > x2 and any z ∈ LN \ B,

Pz
(
Sτ̄B = x

) =
∞∑

k=1

Pz
(
τ̄B∪L0 = k, Sk = x

)
.

And by time reversal, see Reference [7] for example, and symmetry of simple random walk,
we have

Pz (τ̄B = k, Sk = x) = Pz (Sk = x, S1, S2, · · · , Sk−1 /∈ B ∪ L0)

= Px (Sk = z, S1, S2, · · · , Sk−1 /∈ B ∪ L0)

= Px
(
Sk = z, τB∪L0 > k

)
.

Thus

Pz
(
Sτ̄B = x

) =
∞∑

k=1

Px
(
Sk = z, τB∪L0 > k

)

= Ex

[
number of visits to zin time interval [0, τB∪L0)

]
.

Then taking the summation over all z ∈ LN \ B, we have

HB,N (x) = Ex

[
number of visits to LN in time interval [0, τB∪L0)

]
. (15)

Then noting that τL0 ≥ τB∪L0 , we have

HB,N (x) ≤ Ex

[
number of visits to LN in time interval [0, τL0 ]

]
.

Moreover, for N > x2, note that if we trace the jumps on the second coordinate of Sn , it gives
an (embedded) 1-dimensional simple random walk. We can use the strong Markov property
of random walk on stopping time τ̄LN ∧ τL0

Ex

[
number of visits to LN in time interval [0, τL0 ]

]

=
∑

w∈LN

Px (τLN < τL0 , SτLN
= w)Ew

[
number of visits to LN in time interval[0, τL0 ]

]
.

Note that for each w ∈ LN ,

Ew

[
number of visits to LN in time interval[0, τL0 ]

]
= 4

Pw−(0,1)
(
τL0 < τLN

) = 4N

(16)

is actually independent of the choice of w, and that for all N > x2

Px (τLN < τL0) = x2
N

.

We have

Ex

[
number of visits to LN in time interval [0, τL0 ]

]
= 4N · Px (τLN < τL0) = 4x2.
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952 E. B. Procaccia , Y. Zhang

Thus we have shown that

HB,N (x → y) ≤ HB,N (x) ≤ 4x2 < ∞. (17)

Similarly, we can also show that for x2 = 0,

HB,N (x → y) ≤ HB,N (x) ≤ 1 < ∞. (18)

With HB,N (x → y) uniformly bounded for all N , we next show that HB,N (x → y) is
monotonically decreasing with respect to N i.e., for any N > M > x2 + 1 we want to show
that

HB,N (x → y) ≤ HB,M (x → y). (19)

Recalling that

HB,N (x → y) =
∑

z∈LN \B
Pz
(
Sτ̄B∪L0

= x, Sτ̄B∪L0−1 = y
)

,

for each N we can define S(0,N )
n be a simple random walk in some probability space P(·)

starting at (0, N ), and S(k,N )
n = S(0,N )

n + (k, 0) for all k ∈ Z. Noting that S(k,N )
n is a simple

random walk starting at (k, N ), we have

HB,N (x) =
∑

k: (k,N )∈LN \B
P
(
S(k,N )
τ̄B∪L0

= x, S(k,N )
τ̄B∪L0−1 = y

)
. (20)

Recalling that N > M > x2, a random walk starting at LN must first visit LM before it can
ever reach x . Thus for stopping time

τ̄LM = inf
{
n : S(0,N )

n ∈ LM

}

note that by definition we also have

τ̄LM = inf
{
n : S(k,N )

n ∈ LM

}

and

S(k,N )
τ̄LM

= (k, 0) + S(0,N )
τ̄LM

for all k ∈ Z. Thus by strongMarkov property, we have for each k such that (k, N ) ∈ LN \B

P
(
S(k,N )
τ̄B∪L0

= x, S(k,N )
τ̄B∪L0−1 = y

)

=
∑

j∈Z
P
(
S(0,N )
τ̄LM

= ( j, M), τ̄LM ≤ τ̄B−(k,0)

)

P( j+k,M)

(
Sτ̄B∪L0

= x, Sτ̄B∪L0−1 = y
)

≤
∑

j∈Z
P
(
S(0,N )
τ̄LM

= ( j, M)
)
P( j+k,M)

(
Sτ̄B∪L0

= x, Sτ̄B∪L0−1 = y
)

.

Taking summation over all k,
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Stationary Harmonic Measure and DLA in the Upper Half Plane 953

HB,N (x) ≤
∑

j∈Z
P
(
S(0,N )
τ̄LM

= ( j, M)
)

∑

k: (k,N )∈LN \B
P( j+k,M)

(
Sτ̄B∪L0

= x, Sτ̄B∪L0−1 = y
)

. (21)

Note that for any (i, M) ∈ B, P(i,M)

(
Sτ̄B∪L0

= x
)

= 0. Thus

∑

k: (k,N )∈LN \B
P( j+k,M)

(
Sτ̄B∪L0

= x, Sτ̄B∪L0−1 = y
)

≤
∑

k: (k,M)∈LM\B
P(k,M)

(
Sτ̄B∪L0

= x, Sτ̄B∪L0−1 = y
)

= HB,M (x → y).
(22)

Combining (21) and (22) we have (19). The fact that any monotonically decreasing nonneg-
ative sequence is convergent finishes the proof of Proposition 1. 
�

2.2 Proof of Proposition 2

To show Proposition 2 for finite subsets, recalling the definition and the fact that both B1 and
B2 are finite, for any sufficiently large N such that LN ∩ B2 = ∅, we have

HB1 =
∑

x∈B1

∑

z∈LN

Pz(Sτ̄B1∪L0
= x)

and

HB2 =
∑

x∈B2

∑

z∈LN

Pz(Sτ̄B2∪L0
= x).

Changing the order of both summations we have

HB1 =
∑

z∈LN

∑

x∈B1
Pz(Sτ̄B1∪L0

= x) =
∑

z∈LN

Pz(Sτ̄B1∪L0
∈ B1)

=
∑

z∈LN

Pz(τB1 ≤ τL0)

which is smaller than or equal to

HB2 =
∑

z∈LN

∑

x∈B2
Pz(Sτ̄B2∪L0

= x) =
∑

z∈LN

Pz(Sτ̄B2∪L0
∈ B2)

=
∑

z∈LN

Pz(τB2 ≤ τL0)

by (1). 
�

3 Uniform Upper Bounds on Harmonic Measure

In this section, we improve the linear bound in (17) to Theorem 1. Without loss of generality
we can assume x2 = n. According to the definition of HB,N (x) and (2), we first note that for
any B ′ ⊂ B, with x ∈ B ′ and L0 ⊂ B ′,

HB,N (x) ≤ HB′,N (x).
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954 E. B. Procaccia , Y. Zhang

Since B is connected and L0 ⊂ B, there must be a finite nearest neighbor path

Pn = {x = P0, P1, P2, · · · , Pkn ∈ L0}
connecting x and L0, where |Pi − Pi+1| = 1. And since d(x, L0) = n, |x − Pkn | ≥ n, define

mn = inf{i : |Pi − x | ≥ n} − 1

and

Qn = {P0, P1, P2, · · · , Pmn }.
One can immediately see that

Qn ⊂ B(x, 2n) := {y :∈ Z
2 : ‖y − x‖2 ≤ 2n}.

Then for Bn = L0 ∪ Qn , to prove Theorem 1, it suffices to show that

HBn ,N (x) ≤ Cn1/2. (23)

And since simple random walk is translation invariant, we can without loss of generality
assume that x1 = 0. To show (23), by (15), strong Markov property, and (16)

HBn ,N (i · n)

= Ei ·n
[
number of visits to LN in time interval [0, τBn ]

]

=
∑

w∈LN

Pi ·n(τLN < τBn , SτLN
= w)

Ew

[
number of visits to LN in time interval [0, τBn ]

]

≤
∑

w∈LN

Pi ·n(τLN < τBn , SτLN
= w)

Ew

[
number of visits to LN in time interval [0, τL0 ]

]

= 4N · Pi ·n(τLN < τBn ).

(24)

So in order to show (23) and thus Theorem 1, it is sufficient to prove that

Pi ·n(τLN < τBn ) ≤ Cn1/2

N
. (25)

To show (25), define Sn = ∂out B(i · n, 2n) ∩ {(x, y) ∈ Z
2, y ≥ 1}. Note that if a simple

random walk starting at i · n wants to reach LN before returning to Bn , it has to visit some
point in Sn first. Thus once again by strong Markov property,

Pi ·n(τLN < τBn ) =
∑

z∈Sn

Pi ·n(τSn < τBn , SτSn
= z)Pz(τ̄LN < τ̄Bn ). (26)

Note that for each z ∈ Sn , by (2) and the fact that L0 ⊂ Bn ,

Pz(τ̄LN < τ̄Bn ) ≤ Pz(τ̄LN < τ̄L0) ≤ 3n

N
.

Plugging this uniform upper bound into (26), we now have

Pi ·n(τLN < τBn ) ≤ Pi ·n(τSn < τBn ) · 3n
N

.
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Thus for Theorem 1 it is sufficient to show that

Pi ·n(τSn < τBn ) ≤ Cn−1/2. (27)

Noting that Sn ⊂ ∂out B(i · n, 2n), and that Qn ⊂ Bn , then by (1) and (2),

Pi ·n(τSn < τBn ) ≤ Pi ·n(τ∂out B(i ·n,2n) < τQn ).

Since simple random walk is translation invariant,

Pi ·n(τ∂out B(i ·n,2n) < τQn ) = P0(τ2n < τDn ),

where Dn = Qn − i · n, which is a connected subset of B(0, n) containing 0. Then

P0(τ2n < τDn ) ≤ Cn−1/2

is guaranteed by Theorem 1 of Reference [10] with k = κ = 1, which concludes the proof
of Theorem 1. 
�

4 Subset Maximizing the Stationary Harmonic Measure

In this section we prove Theorem 2. Then together with the uniform upper bound we had in
Theorem 1, one can see that Un = Vn ∪ L0 is the subset maximizing harmonic measure up
to multiplying a constant.

Before we start with the details, an outline of the proof of Theorem 2 is presented. See also
Fig. 1. The detailed proof will piece together everything we need in the list below, although
the order that each lemma is proved may not be precisely consistent with the outline.

(i) We have found that HUn ,N (i · n) equals to the expected number of visits to LN before
a simple random walk S starting from i · n returns to Un . If the random walk reaches
LN first before returning to Un , the expected number of (re-)visits is 4N + o(N ).

(ii) For S to reach LN first before returning to Un , it has to reach L2n first. Once it reaches
L2n , the probability of success from there is at least of order n/N .

(iii) If S reached the upper outer boundary of the L1 ball B1(i ·n, n/3) = {|x |+|y−n| ≤ n/3}
before returning to Vn , by the invariance principle there is a positive probability for it
to continue to L2n before returning to Un .

(iv) The probability that Sn exits B1(i · n, n/3) before returning to Vn is at least O(n−1/2).
(v) Given Sn exits B1(i · n, n/3) before returning to Vn , it is more likely to exit from the

upper half than the lower half.

Without loss of generality, we only need to prove this theorem for n sufficiently large and
N sufficiently larger than n.

4.1 Lower Bound on Escaping Probability

We first show that Sn exits B1(i · n, n/3) before returning to Vn with probability at least
O(n−1/2), define V ′

n = {(0, y), n − [n/3] ≤ y ≤ n} and
S1,n = ∂B1(i · n, [n/3]).
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956 E. B. Procaccia , Y. Zhang

Fig. 1 Outline for the lower bound

Here note that for L1 ball B1(i · n, [n/3]) we do not need to specify if the boundary is in
or out. Then for C ′

n = ∂out B(i · n, n/2), note that for a 2-dimensional simple random walk
starting at i · n = (0, n) we always have

τS1,n < τC ′
n

for all sufficiently large n. Thus for the escaping probability we want to bound from below,
we have

Pi ·n
(
τS1,n < τUn

) = Pi ·n
(
τS1,n < τV ′

n

) ≥ Pi ·n
(
τC ′

n
< τV ′

n

)
.

By the translation invariance of S,

Pi ·n
(
τC ′

n
< τV ′

n

) = P0
(
τC ′

n−i ·n < τV ′
n−i ·n

)

= P0
(
τ∂out B(0,n/2) < τV ′

n−i ·n
) ≥ cn−1/2 (28)

where the last inequality is guaranteed by Proposition 12 of Reference [10], and the reflection
invariance of simple random walk.

4.2 Spatial Distribution at the Escaping Time

Now (28) shows that a 2-dimensional simple random walk starting at i · n will escape B1(i ·
n, [n/3]) := {x ∈ Z

2 : ‖x − i · n‖1 ≤ [n/3]} before returning to V ′
n and thus Un with

probability at least some constant times n−1/2. We next show that, given the random walk
successfully escapes, it is more likely to escape from the upper half of S1,n than the lower
half of it. To make it precise, define

SU
1,n = S1,n ∩ {(x, y), y ≥ n},
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and

SL
1,n = S1,n ∩ {(x, y), y ≤ n}.

Then for stopping time σ = τS1,n ∧ τV ′
n
, we want to show

Pi ·n
(
τS1,n < τV ′

n
, Sσ ∈ SU

1,n

)
≥ Pi ·n

(
τS1,n < τV ′

n
, Sσ ∈ SL

1,n

)
. (29)

To show this we can again use translation invariance to move everything centered at 0. For
integer m ≥ 1, let

A+
m = {(x, y) ∈ Z

2, x + y = m, x ∈ [0,m]} ∪ {(x, y) ∈ Z
2,

−x + y = m, x ∈ [−m, 0]}
and

A−
m = {(x, y) ∈ Z

2, x + y = −m, x ∈ [−m, 0, ]} ∪ {(x, y) ∈ Z
2,

−x + y = −m, x ∈ [0,m]}
be the upper and lower half of ∂B1(0,m). Then define C−

m = {(0,−i), i = 0, 1, · · · ,m},
and C+

m = {(0, i), i = 0, 1, · · · ,m}. To show (29), it suffices to prove the following lemma:

Lemma 4.1 For all integer m, define set

E−
m = A+

m ∪ A−
m ∪ C−

m

and stopping time

σ−
m = τE−

m
= τA+

m
∧ τA−

m
∧ τC−

m
.

We have

P0
(
τA+

m
= σ−

m

)
≥ P0

(
τA−

m
= σ−

m

)
. (30)

Remark 4 Before presenting the detailed argument, we first briefly discuss the idea in the
proof of Lemma 4.1: using symmetry together with a decomposition on the last time that a
simple random walk hits C+

m , one only need to show that starting from C+
m \ {(0, 0), (0,m)},

a simple random walk is more likely to first hit A+
m than A−

m before returning to C+
m ∪ C−

m ,
see (39) for precise formula. To prove (39) one can again use symmetry/ reflection principle
to form one-to-one mappings between nearest neighbor trajectories.

Proof For

Em = A+
m ∪ A−

m ∪ C−
m ∪ C+

m ,

and stopping time

σm = τEm = τA+
m

∧ τA−
m

∧ τC−
m

∧ τC+
m
,

by symmetry we have

P0
(
τA+

m
= σm

)
= P0

(
τA−

m
= σm

)
.
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At the same time,

P0
(
τA+

m
= σ−

m

)
= P0

(
τA+

m
≤ τC+

m
, τA+

m
= σ−

m

)

+ P0
(
τA+

m
> τC+

m
, τA+

m
= σ−

m

)

= P0
(
τA+

m
= σm

)
+ P0

(
τC+

m
< σ−

m , τA+
m

= σ−
m

)
,

(31)

and

P0
(
τA−

m
= σ−

m

)
= P0

(
τA−

m
≤ τC+

m
, τA−

m
= σ−

m

)

+ P0
(
τA−

m
> τC+

m
, τA−

m
= σ−

m

)

= P0
(
τA−

m
= σm

)
+ P0

(
τC+

m
< σ−

m , τA−
m

= σ−
m

)
.

(32)

Thus it is sufficient to show

P0
(
τC+

m
< σ−

m , τA+
m

= σ−
m

)
≥ P0

(
τC+

m
< σ−

m , τA−
m

= σ−
m

)
.

(33)

Under event {τC+
m

< σ−
m }, let random variable N+

m be the last time S visitsC+
m in [0, σ−

m −1].
Note that N+

m is not a stopping time so we cannot use strong Markov property. But we can
nonetheless have the decomposition:

P0
(
τC+

m
< σ−

m , τA+
m

= σ−
m

)

=
∞∑

k=1

∑

x1, x2, · · · , xk−1 /∈ E−
m

xk ∈ xk ∈ C+
m \ {0, (0,m)}

P0
(
S1 = x1, · · · , Sk = xk, N

+
m = k, τC+

m
< σ−

m , τA+
m

= σ−
m

)
.

(34)

and

P0
(
τC+

m
< σ−

m , τA−
m

= σ−
m

)

=
∞∑

k=1

∑

x1, x2, · · · , xk−1 /∈ E−
m

xk ∈ xk ∈ C+
m \ {0, (0,m)}

P0
(
S1 = x1, · · · , Sk = xk, N

+
m = k, τC+

m
< σ−

m , τA−
m

= σ−
m

)
.

(35)

Note that for each k, x1, x2, · · · , xk−1 /∈ E−
m , and xk ∈ xk ∈ C+

m \ {0, (0,m)}, we have
{S1 = x1, · · · , Sk = xk, N

+
m = k, τC+

m
< σ−

m , τA+
m

= σ−
m }

={S1 = x1, · · · , Sk = xk, Sk+1+· visit A+
mno later than it first visits A−

m ∪ C+
m ∪ C−

m }.
So by Markov property, we have

P0
(
S1 = x1, · · · , Sk = xk, N

+
m = k, τC+

m
< σ−

m , τA+
m

= σ−
m

)

= P0 (S1 = x1, · · · , Sk = xk) Pxk

(
τA+

m
= σm

)
.

(36)
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Plugging back in (34) we have

P0
(
τC+

m
< σ−

m , τA+
m

= σ−
m

)

=
∞∑

k=1

∑

x1, x2, · · · , xk−1 /∈ E−
m

xk ∈ xk ∈ C+
m \ {0, (0,m)}

P0 (S1 = x1, · · · , Sk = xk) Pxk

(
τA+

m
= σm

)
, (37)

while the same argument for A−
m gives us

P0
(
τC+

m
< σ−

m , τA−
m

= σ−
m

)

=
∞∑

k=1

∑

x1, x2, · · · , xk−1 /∈ E−
m

xk ∈ xk ∈ C+
m \ {0, (0,m)}

P0 (S1 = x1, · · · , Sk = xk) Pxk

(
τA−

m
= σm

)
. (38)

Comparing (37) and (38) term by term, one can see it suffices to show that for all z = (0, j) ∈
xk ∈ C+

m \ {0, (0,m)},
Pz
(
τA+

m
= σm

)
≥ Pz

(
τA−

m
= σm

)
. (39)

To show (39), one first sees that on {τA+
m

= σm} or {τA−
m

= σm}, a random walk starting at
z has to move horizontally at the first step then remain in the right or left half triangle of
B1(0,m) until it exits from A+

m or A−
m . Then for all integer i ∈ [0,m] we define

Cm,i = {(0, y), 2i − m ≤ y ≤ m},
A+,r
m,i = {(x, y) ∈ Z

2, x + y = m, x ∈ [0,m − i]}
and

A−,r
m,i = ∪{(x, y) ∈ Z

2, −x + y = 2i − m, x ∈ [0,m − i]}.
Now we have by symmetry

Pz
(
τA+

m
= σm

)
= 1

2
P(1, j)

(
τ̄A+,r

m,0
≤ τ̄A−,r

m,0
, τ̄A+,r

m,0
≤ τ̄Cm,0

)
. (40)

and

Pz
(
τA−

m
= σm

)
= 1

2
P(1, j)

(
τ̄A−,r

m,0
≤ τ̄A+,r

m,0
, τ̄A−,r

m,0
≤ τ̄Cm,0

)
. (41)

The right hand side of the Eq. (41) equals to 0 when j = m − 1. Otherwise, note that if a
random walk starting from (1, j) want to visit A−,r

m,0 before visiting A+,r
m,0 or Cm,0, it has to

first get through A−,r
m, j before visiting A+,r

m,0 or Cm,0. Thus

P(1, j)

(
τ̄A−,r

m,0
≤ τ̄A+,r

m,0
, τ̄A−,r

m,0
≤ τ̄Cm,0

)
≤ P(1, j)

(
τ̄A−,r

m, j
≤ τ̄A+,r

m,0
, τ̄A−,r

m, j
≤ τ̄Cm,0

)
.

Then note that in order to have a random walk starting from (1, j) get to A−,r
m, j before visiting

A+,r
m,0 or Cm,0, it only need to avoid A+,r

m, j and Cm, j . So we have

P(1, j)

(
τ̄A−,r

m, j
≤ τ̄A+,r

m,0
, τ̄A−,r

m, j
≤ τ̄Cm,0

)
= P(1, j)

(
τ̄A−,r

m, j
≤ τ̄A+,r

m, j
, τ̄A−,r

m, j
≤ τ̄Cm, j

)
.
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By symmetry one can see

P(1, j)

(
τ̄A−,r

m, j
≤ τ̄A+,r

m, j
, τ̄A−,r

m, j
≤ τ̄Cm, j

)
= P(1, j)

(
τ̄A+,r

m, j
≤ τ̄A−,r

m, j
, τ̄A+,r

m, j
≤ τ̄Cm, j

)
.

Moreover, note that a randomwalk starting from (1, j)must exist the smaller triangle bounded
by A+,r

m, j , A
−,r
m, j , and Cm, j before exiting the larger on bounded by A+,r

m,0, A
−,r
m,0, and Cm,0 i.e.,

σ r
j = τ̄A+,r

m, j
∧ τ̄A−,r

m, j
∧ τCm, j ≤ σ r = τ̄A+,r

m,0
∧ τ̄A−,r

m,0
∧ τCm,0 .

Thus

P(1, j)

(
τ̄A+,r

m, j
≤ τ̄A−,r

m, j
, τ̄A+,r

m, j
≤ τ̄Cm, j

)

= P(1, j)

(
τ̄A+,r

m, j
≤ σ r

j

)

≤ P(1, j)

(
τ̄A+,r

m, j
≤ σ r

)

≤ P(1, j)

(
τ̄A+,r

m, j
≤ τ̄A−,r

m,0
∧ τCm,0

)

= P(1, j)

(
τ̄A+,r

m, j
≤ τ̄A−,r

m,0
, τ̄A+,r

m, j
≤ τ̄Cm,0

)

≤ P(1, j)

(
τ̄A+,r

m,0
≤ τ̄A−,r

m,0
, τ̄A+,r

m, j
≤ τ̄Cm,0

)
.

(42)

Finally note that the right hand side of the last inequality in (42) is exactly the right hand side
of (40). 
�

With Lemma 4.1, we immediately get (29) from translation invariance.

4.3 Proof of Theorem 2

Now we have all the tools we need to finish the proof of Theorem 2. Recall (24) and apply
it to Un and i · n,
HUn ,N (i · n)

= Ei ·n
[
number of visits to LN in time interval [0, τUn ]

]

=
∑

w∈LN

Pi ·n(τLN < τUn , SτLN
= w)Ew

[
number of visits to LN in time interval [0, τUn ]

]
.

Note that for all w ∈ LN ,

Pw(τLn ≤ τUn ) = 1.

We have

HUn ,N (i · n)

≥
∑

w∈LN

Pi ·n(τLN < τUn , SτLN
= w)Ew

[
number of visits to LN in time interval [0, τLn ]

]

= 4Pi ·n(τLN < τUn )(N − n).
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Then according again to strong Markov property and the fact that a random walk starting
from i · n has to visit L2n before LN ,

Pi ·n(τLN < τUn ) =
∑

w∈L2n

Pi ·n(τL2n < τUn , SτL2n
= w)Pw(τLN < τUn ).

Again, note that for all w ∈ L2n

Pw(τLN < τUn ) ≥ Pw(τLN < τLn ) = n

N − n
.

Thus to prove Theorem 2 it is sufficient to show that for N sufficiently larger than n,

Pi ·n(τL2n < τUn ) ≥ cn−1/2 (43)

To show (43), we have

Pi ·n(τL2n < τUn ) ≥
∑

w∈SU
1,n

Pi ·n
(
τS1,n < τVn , SτS1,n

= w ∈ SU
1,n

)
Pw(τL2n < τUn )

=
∑

w∈SU
1,n

Pi ·n
(
τS1,n < τV ′

n
, Sσ = w ∈ SU

1,n

)
Pw(τL2n < τUn ).

Note that by invariance principle there is a constant c such that for any sufficiently large n
and w ∈ SU

1,n ,

Pw(τL2n < τUn ) ≥ c.

Thus

Pi ·n(τL2n < τUn ) ≥ cPi ·n
(
τS1,n < τV ′

n
, Sσ = w ∈ SU

1,n

)
. (44)

Then by (28) and (29), we have

Pi ·n
(
τS1,n < τV ′

n
, Sσ ∈ SU

1,n

)
≥ 1

2
Pi ·n

(
τS1,n < τV ′

n

) ≥ cn−1/2. (45)

Thus, the proof of Theorem 2 is complete. 
�

5 Total Harmonic Measure on Finite Sets

5.1 Upper Bound in Theorem 3

To show the upper bound in (9), without loss of generality we can assume B ∩ L0 �= ∅,
which implies that minx∈B{x2} = 0. Otherwise, for x0 = (x1,0, x2,0) that has the smallest
height in B, define

B ′ = B ∪ {(x1,0, j), j = 0, 1, · · · , x2,0 − 1}.
By Proposition 2, we have HB′ ≥ HB and |B ′| = |B| + minx∈B{x2}. Thus it suffices for us
to prove that for any connected and finite B with B ∩ L0 �= ∅,

HB ≤ C |B|. (46)

And we prove (46) inductively. When |B| = 1, we have proved the desired upper bound in
(17). Suppose we have proved (46) for all connected B with |B| ≤ n, B ∩ L0 �= ∅. Then for
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a B such that |B| = n + 1, B ∩ L0 �= ∅, we first show that one can remove one vertex in B
and still have a connected subset intersecting L0. In fact we prove something even stronger:

Lemma 5.1 For any finite and connected B ⊂ Z
2 with |B| ≥ 2, there are always two points

x1, x2 ∈ B such that B \ {x1} and B \ {x2} are both connected.

Remark 5 With Lemma 5.1, we can make sure that starting from |B| = n + 1, B ∩ L0 �= ∅,
we can remove one point and it will not be in L0 if |B ∩ L0| = 1. Thus the new connected
subset still intersects L0.

Proof Again, we prove this lemma by induction. For |B| = 2 or |B| = 3, it is easy to
check the lemma holds. Now suppose it also holds for all connected |B| ≤ n. Then from the
assumption we also have that
Observation 1: for any connected B such that |B| ≤ n and any x0 ∈ Bc such that d(x0, B) =
1, where

d(x, B) = inf
y∈B{|x − y|},

there must exists an x ∈ B such that B \ {x} is connected while d(x0, B \ {x}) = 1.
To see this, note that if

∣∣{y ∈ B : |x0 − y| = 1}∣∣ ≥ 2

then removing one point will not change the distance between x and the smaller subset. So
either x1 or x2 in the inductive assumption is good. Otherwise, let y0 be the only point in B
neighboring x0. By the inductive assumption we have two points x1 and x2 which we can
remove, and one of them must not be y0. Thus we still have an x ∈ B such that B \ {x} is
connected while d(x0, B \ {x}) = 1.

With the observation above, now for any connected B such that |B| = n + 1, we first
choose one point y arbitrarily from B. If B \ {y} is connected, note that |B \ {y}| = n and
that d(y, B \ {y}) = 1. Our observation above shows that there must be a y′ ∈ B \ {y} such
that B \ {y, y′} is also connected and

d(y, B \ {y, y′}) = 1.

This implies that B \ {y′} = B \ {y, y′} ∪ {y} is connected. And we have found our two
“removable” points. Otherwise, if B\{y} is not connected, it must have at least two connected
components, say B1 and B2. 
�
Remark 6 If B \ {y} has more than two connected components, just choose two of them
arbitrarily.

Let

d(A, B) = inf
x∈A, y∈B{|x − y|}

for all finite A and B. Noting that B is connected, we must have d(B1, B \ B1) = 1. But
since B1 is not connected to B \ (B1 ∪ {y}), we also have

d
(
B1, B \ (B1 ∪ {y})) ≥ 2.

Thus one can now see d(y, B1) = 1 and d(y, B2) = 1. Then note that |B1| and |B2| are
both less than n. So by Observation 1 we again have there is a x1 ∈ B1 such that B1 \ {x1} is
connected and that

d(y, B1 \ {x1}) = 1,
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which implies that (B1 \ {x1}) ∪ {y} is connected,
d
(
(B1 \ {x1}) ∪ {y}, B2

) = 1,

and that B \ {x1} = (B1 \ {x1}) ∪ {y} ∪ B2 is connected. The same argument on B2 also
gives that there is a x2 ∈ B2 such that B \ {x2} is connected. Finally note that B1 and B2 are
different connected component, which implies that B1 ∩ B2 = ∅. So we have x1 �= x2 and
the proof of this lemma is complete. 
�

With Lemma 5.1, we continue with the inductive argument for the growth rate of HB .
For any finite and connected B such that |B| = n + 1, B ∩ L0 �= ∅, there has to be an
x = (x1, x2) ∈ B such that B̃ = B \ {x} is still connected and B̃ ∩ L0 �= ∅. By inductive
assumption we know that HB̃ ≤ Cn. So now we can concentrate on comparing HB̃ and HB .

Since B is finite, for any v ∈ B sufficiently large N we have

HB,N (v) =
∑

z∈LN

Pz(τv = τB∪L0).

And thus

HB,N =
∑

v∈B
HB,N (v) =

∑

z∈LN

Pz(τB ≤ τL0)

while

HB̃,N =
∑

z∈LN

Pz(τB̃ ≤ τL0).

Note that for each z ∈ LN ,

Pz(τB ≤ τL0) − Pz(τB̃ ≤ τL0) = Pz(τx ≤ τL0 < τB̃). (47)

Moreover, by strong Markov property,

Pz(τx ≤ τL0 < τB̃) = Pz(τx = τB∪L0)Px (τL0 < τB̃). (48)

Combining (47) and (48), we have

HB,N − HB̃,N = Px (τL0 < τB̃)
∑

z∈LN

Pz(τx = τB∪L0)

= Px (τL0 < τB̃)HB,N (x).

(49)

If x2 = 0, note that in (18) we have HB,N (x) ≤ 1, which implies that HB,N − HB̃,N ≤ 1.
And for x2 ≥ 1, we have by Theorem 1

HB,N − HB̃,N ≤ C
√
x2Px (τL0 < τB̃). (50)

And since B̃ is connected. There must be a finite nearest neighbor path

P̃x = {x = P̃0, P̃1, P̃2, · · · , P̃kn ∈ L0}
connecting x and L0, where |P̃i − P̃i+1| = 1. And since d(x, L0) = x2, |x − Pkn | ≥ x2.
Define

m̃x = inf{i : |P̃i − x | ≥ x2/2} − 1

and

Q̃x = {P̃1, P̃2, · · · , P̃m̃x }.
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One can immediately see that Q̃x ⊂ B̃ and that for all sufficiently large x2,

Q̃x ⊂ B(P̃1, 2x2/3).

Thus

1

4
Px (τL0 < τB̃) ≤ 1

4
Px (τL0 < τQ̃x

) ≤ PP̃1
(τL0 < τQ̃x

) ≤ P0(τ2x2/3 < τQ̃x−P̃1
).

And again by Theorem 1 of Reference [10],

P0(τ2x2/3 < τQ̃x−P̃1
) ≤ Cx−1/2

2 . (51)

Combining (50) and (51) we have that there is a constant C independent of n, N and x , such
that

HB,N − HB̃,N ≤ C .

Thus the proof of (9) is complete.

5.2 Lower Bound in Theorem 3

First, (11) is obvious. Nowwe show the lower bound in (10). Since B is finite, let x̄ = (x̄1, x̄2)
be a point in B such that

x̄2 = max
x∈B {x2}.

Note that by Proposition 2, HB ≥ Hx̄ . It suffices to prove (10) for the single element set {x̄}.
Recall that

H{x̄},N = Ex̄

[
number of visits to LN in [0, τ{x̄}∪L0 ]

]

≥ Px̄ (τLN < τ{x̄}∪L0) inf
z∈LN

Ez

[
number of visits to LN in [0, τ{x̄}∪L0 ]

]

and that for sufficiently large N and any z ∈ LN ,

Ez

[
number of visits to LN in [0, τ{x̄}∪L0 ]

]

≥ Ez

[
number of visits to LN in io [0, τLx2

]
]

= 4(N − x2) ≥ 2N .

To prove (10) it is sufficient to show that for sufficiently large x2

Px̄ (τLN < τ{x̄}∪L0) ≥ cx̄2
N log(x̄2)

. (52)

Now let nx̄ be the largest odd number less than x̄2. We define B1(x̄, nx̄ ) be the L1 ball
centered at x with radius nx . Moreover we define

W 1,+
x̄ = ∂B1(x̄, nx̄ ) ∩ {(y1, y2), y2 ≥ x̄2 + (nx̄ + 1)/2}

be the upper corner of ∂B1(x̄, nx̄ ). By symmetry we have

Px̄
(
τ∂B1(x̄,nx̄ ) < τx̄ , Sτ∂B1(x̄,nx̄ )

∈ W 1,+
x̄

)
= 1

4
Px̄ (τ∂B1(x̄,nx̄ ) < τx̄ ).
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Thus we have

Px̄ (τLN < τ{x̄}∪L0)

≥ Px̄
(
τ∂B1(x̄,nx̄ ) < τx̄ , Sτ∂B1(x̄,nx̄ )

∈ W 1,+
x̄

)
inf

y∈W 1,+
x̄

Py(τLN < τLx̄2
)

≥ 1

4
Px̄ (τ∂B1(x̄,nx̄ ) < τx̄ ) inf

y∈W 1,+
x̄

Py(τLN < τLx̄2
).

(53)

Then note that for any y ∈ W 1,+
x̄

Py(τLN < τLx̄2
) ≥ nx̄

2N
≥ x̄2

4N
.

Thus it is sufficient for us to prove that

Lemma 5.2 There is a constant c > 0 such that for all sufficiently large x̄2,

Px̄ (τ∂B1(x̄,nx̄ ) < τx̄ ) ≥ c

log(x̄2)
. (54)

Proof For Sn = (S1,n, S2,n) to be the simple random walk starting at x̄ , consider the martin-
gale

Mn = (S2,n − x̄2)
2 − n

2
.

Note that M0 = 0, so we have

Ex̄ [τ∂B1(x̄,nx̄ )] ≤ sup
y∈∂B1(x̄,nx̄ )

(y2 − x̄2)
2 ≤ x̄22 .

Thus

Px̄ (τ∂B1(x̄,nx̄ ) ≥ x32 ) ≤ 1

x2
. (55)

On the other hand, for simple random walk in Z
2 it was shown in References [5] and [6] that

for sufficiently large x2,

Px̄ (τx̄ > x̄32 ) = π

log(x̄32 )
+ O

(
1

log2(x̄32 )

)

≥ π

6 log(x̄2)
. (56)

Thus note that

Px̄ (τ∂B1(x̄,nx̄ ) < τx̄ ) ≥ Px̄ (τ∂B1(x̄,nx̄ ) < x̄32 , τx̄ > x̄32)

= Px̄ (τx̄ > x̄32 ) − Px̄ (τ∂B1(x̄,nx̄ ) ≥ x̄32 , τx̄ > x̄32 )

≥ Px̄ (τx̄ > x̄32 ) − Px̄ (τ∂B1(x̄,nx̄ ) ≥ x̄32).

Combining (55) and (56), we have for sufficiently large x2,

Px̄ (τ∂B1(x̄,nx̄ ) < τx̄ ) ≥ π

6 log(x̄2)
− 1

x2
≥ π

7 log(x̄2)

which finished the proof of this lemma. 
�
With Lemma 5.2, the proof of (10) and thus Theorem 3 is complete. 
�
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5.3 Proof of Theorem 4

Now we show that the total harmonic measure is maximized (up to multiplying a constant)
by the vertical line segment Vn over all connected finite subsets with the same cardinality
and connected to L0. And again we do this inductively. By (49), we have

HVn ,N − HVn−1,N = HVn ,N (yn)Pyn (τL0 < τVn−1). (57)

According to Theorem 2, we have

HVn ,N (yn) ≥ c
√
n.

Noting that

Pyn (τL0 < τVn−1) ≥ Pyn (τL0 < τVn ),

it suffices to prove that

Pyn (τL0 < τVn ) ≥ c√
n

. (58)

On the other hand, recall that

S1,n = ∂B1(i · n, [n/3])
and that

SU
1,n = S1,n ∩ {(x, y), y ≥ n}.

We have

Pyn (τL0 < τVn ) ≥ Pyn
(
τSU

1,n
< τVn

)
inf

y∈SU
1,n

Py(τL0 < τVn ).

Again by invariant principle, there is a constant c > 0 such that for any n and y ∈ SU
1,n ,

Py(τL0 < τVn ) ≥ c.

And then by (28) and (29),

Pyn
(
τSU

1,n
< τVn

)
≥ c√

n
.

Thus the proof of Theorem 4 is complete. 
�

6 Construction and Growth Estimate of DLA inH
6.1 Construction of a GrowthModel

With the upper bounds of the harmonic measure on the upper half plane, in this section we
construct pure growth models which can be used as a dominating process for both the DLA
model in H and the stationary DLA model that will be introduced in a follow up paper.
Consider an interacting particle system ξ̄t defined on {0, 1}H whereH is the upper half plane
with 1 standing for a site occupied while 0 for vacant, with transition rates as follows:

(i) For each occupied site x = (x1, x2) ∈ H, if x2 > 0 it will try to give birth to each of
its nearest neighbors at a Poisson rate of

√
x2. If x2 = 0, it will try to give birth to each

of its nearest neighbors at a Poisson rate of 1.
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(ii) When x attempts to give birth to its nearest neighbors y already occupied, the birth is
suppressed.

We prove that an interacting particle systemdetermined by the dynamic above iswell-defined.

Proposition 3 The interacting particle system ξ̄t ∈ {0, 1}H satisfying (i) and (ii) is well
defined.

Proof The proof of Proposition 3 uses a similar idea as in Theorem 2.1 of Reference [4].
Although here the transition rates are no longer translation invariant or uniformly bounded,
we will show that although with high probability the time increment of each step goes to zero,
the summation over the increments diverges. The next idea is very similar to Borel-Cantelli
lemma.However, rather than using the result directly, wewill have the proof of Borel-Cantelli
lemma embedded in our arguments. By doing so, we will be able to make sure the space-time
box in each step of our iteration is deterministic and can be explicitly calculated.

Our construction starts with introducing the following families of independent Poisson
processes: for all x = (x1, x2) and y = (y1, y2) that are nearest neighbors in H and ex→y

which is the oriented edge from x to y, let
{
Nx→y
t , x, y ∈ H, ‖x − y‖ = 1

}
t∈[0,∞)

be a family of independent Poisson processes, where Nx→y
t has intensity

√
x2 ∨ 1. Then let

{
Ñ x→y
t , x, y ∈ H, ‖x − y‖ = 1

}
t∈[0,∞)

be a family of independent Poisson process independent of Nt with the same intensities. Now
consider the space-time combination,H × (−∞,∞). From each x ∈ H, we draw a vertical
infinite line to represent the double infinite time line at this site. Then for each ex→y , at any
time t such that Nx→y

t = Nx→y
t− + 1, we draw an oriented arrow from (x, t) to (y, t). And

at t such that Ñ x→y
t = Ñ x→y

t− + 1, we draw an oriented arrow from (x,−t) to (y,−t). 
�
Remark 7 Although the construction of our particle system actually only depends on the
transitions on the positive time line, by defining the transition for negative t’s we are able to
have better symmetry on the time reversal and thus formally simplify the proof.

We have an oriented random graph in the space-time combination. Then for any two
points (x, t1) and (x ′, t2) with t1 < t2, we define that (x, t1) and (x ′, t2) are connected or
(x, t1) → (x ′, t2), if there is a (finite) path in the oriented random graph starting from (x, t1),
that goes up vertically and follows the oriented edges ending at (x ′, t2). Then

Definition 1 For any ξ̄0 ∈ {0, 1}H, we define ξ̄t such that for each t ≥ 0 and x ∈ H, ξ̄t (x) = 1
if and only if there is a x ′ such that ξ̄0(x ′) = 1 and (x ′, 0) → (x, t).

Once we prove that ξ̄t is well defined, one can check that the conditions (i), (ii) are
satisfied. And to show that ξ̄t is well defined, it suffices to prove that in our oriented random
graph, with probability one (x, t) can be connected to only finitely many points (x ′, 0) so
one can determine explicitly whether any of them is occupied in the initial configuration. To
be precise, for any x ∈ H and any t, T ≥ 0, define subset

Rt,T (x) = {y ∈ H, s.t. (y, T − t) → (x, T )} (59)

be the set of all possible ancestors of ξ̄T (x) at time T − t , and we will write RT (x) in short
of RT ,T (x). According to the definition, it is easy to see that

Rt1,T (x) ⊂ Rt2,T (x) (60)
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968 E. B. Procaccia , Y. Zhang

for all 0 ≤ t1 ≤ t2 and T ≥ 0, and that

RT1(x) ⊂ RT2(x) (61)

for any 0 ≤ T1 ≤ T2. Thus, to show that Definition 1 is self-consistent, we only need to
prove that

Lemma 6.1 With probability one we have RT (x) is finite for any T > 0 and x ∈ H.

Proof Let

Radt,T (x) = sup
y∈Rt,T (x)

|x − y|

be the radius of Rt,T (x) and RadT (x) = RadT ,T (x). By (61), it is sufficient to prove that for
each given T > 0 and x ∈ H we have

RadT (x) < ∞ (62)

almost surely. Then, we can take all rational numbers of T ’s and all x ∈ H which are both
countable to get the lemma. Moreover, note that to show P(RadT (x) < ∞) = 1, it suffices
to prove that for any ε > 0,

P(RadT (x) < ∞) > 1 − ε. (63)

For any given T and t ≥ 0 and x = (x (1), x (2)) ∈ H, note that Rt,T (x) is the collection
of all x ′ such that (x ′, T − t) is connected to (x, T ). And for (x ′, T − t) and (x, T ) to
be connected, there must be a path between them, i.e., there must be a sequence of times
T − t ≤ t1 < t2 < · · · < tn ≤ T and x ′ = x0, x1, x2, · · · , xn = x which is a nearest
neighbor sequence in H such that

Nxi−1→xi
ti = Nxi−1→xi

ti− + 1

if ti ≥ 0, or

Ñ xi−1→xi−ti = Ñ xi−1→xi−ti− + 1

if ti < 0, for all i = 1, 2, · · · , n. Thus it is easy to see that for any nearest neighbor path
x0, x1, x2, · · · , xn = x in H, it is open between T − t and T in our oriented random graph
only if there is at least one transition at each edge along the path during this time interval.
Thus we have

P(Radt,T (x) ≥ n)

≤ P(∃ an open path in [T − t, T ]ending at xwith length n)

≤
∑

x0,x1,x2,··· ,xn∈Px,n

n∏

i=1

P
(
Nxi−1→xi
T − Nxi−1→xi

T−t ≥ 1
)

=
∑

x0,x1,x2,··· ,xn∈Px,n

n∏

i=1

[
1 − e−t

√
x (2)
i−1

]

≤ tn
∑

x0,x1,x2,··· ,xn∈Px,n

√√√√
n∏

i=1

x (2)
i−1

(64)

where Px,n is the collection of all nearest neighbor paths in H of length n ending at x , and
x (2)
i−1 stands for the y−coordinate of xi−1. 
�

123



Stationary Harmonic Measure and DLA in the Upper Half Plane 969

Remark 8 Without loss of generality, the inequalities above is written for 0 ≤ t ≤ T . By
symmetry the same hold for t > 0 and T < 0. Note that even when T > 0 and T − t < 0,
the total number of transitions of Nxi−1→xi

s in s ∈ [0, T ] plus the total number of transitions

of Ñ xi−1→xi
s in s ∈ [0, t − T ] is again a Poisson random variable with intensity t

√
x (2)
i−1. So

(64) still holds.

Then note that |Px,n | ≤ 4n and that for each x0, x1, x2, · · · , xn = x ∈ Px,n , we have

x (2)
n−i ≤ x (2) + i, i = 0, 1, 2, · · · , n.

Thus, we have
√√√√

n∏

i=1

x (2)
i−1 ≤

√√√√
n∏

i=1

(x (2) + i)

which implies that

P(Radt,T (x) ≥ n) ≤ (4t)n

√√√√
n∏

i=1

(x (2) + i). (65)

Now for each γ ∈ (0, 1/2), define

Mγ =
∞∑

k=0

k2/(1−γ )2−kγ /(1−γ )

< ∞.

Now for any ε > 0 let

N1 =
⌊
4
(
x (2)

)γ

1 − γ

⌋

and

δ1 = t1 = ε

64Mγ

√
x (2) + N1

.

By (65), we have

P(Radt1,T (x) ≥ N1) ≤ ε

Mγ

2−N1 ≤ ε

Mγ

k2/(1−γ )
1 2−kγ /(1−γ )

1 (66)

where

k1 = �(x (2))1−γ �. (67)

The last inequality in (66) follows from

N1 =
⌊
4
(
x (2)

)γ

1 − γ

⌋

≥ (
x (2))γ ≥ kγ /(1−γ )

1 .

Then on the event

E1 = A1 = {Radt1,T (x) < N1},
we define
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x (2),2 = x (2) + N1,

N2 =
⌊
4
(
x (2),2

)γ

1 − γ

⌋

,

δ2 = ε

64Mγ

√
x (2),2 + N2

,

and

t2 = t1 + δ2.

Then define event

A2 =
⋂

y∈B(x,x (2),2−x (2)−1)

{Radδ2,T−t1(y) < N2}.

One can first see that by the same calculation as in (66)

P(A2) ≥ 1 −
∑

y∈B(x,x (2),2−x (2)−1)

P(Radδ2,T−t1(y) ≥ N2)

≥ 1 − (
x (2),2)2 ε

16Mγ

2−kγ /(1−γ )
2

(68)

where

k2 = �(x (2),2)1−γ �.
Moreover, we have

(
x (2),2)2 =

[
(x (2),2)1−γ

]2/(1−γ )

while

(x (2),2)1−γ ≤ 2k2.

Thus

P(A2) ≥ 1 − (
2k2

)2/(1−γ ) ε

16Mγ

2−kγ /(1−γ )
2

≥ 1 − ε

Mγ

k2/(1−γ )
2 2−kγ /(1−γ )

2 .

(69)

Then note that for any x ≥ 1, we have by calculus

(
x1−γ + 4

)1/(1−γ )
> x + 4

1 − γ
xγ

while
(
x1−γ + 1

)1/(1−γ ) ≤ x + 1

1 − γ

(
x1−γ + 1

)γ /(1−γ )

≤ x + 1

1 − γ

(
2x1−γ

)γ /(1−γ )

< x + 2

1 − γ
xγ

< x +
⌊

4xγ

1 − γ

⌋
.
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We have that
(
x (2),2)1−γ = (

x (2) + N1
)1−γ ∈

((
x (2))1−γ + 1,

(
x (2))1−γ + 4

)
(70)

and that

k2 = �(x (2),2)1−γ � ∈ [k1 + 1, k1 + 4).

Using exactly the same argument on

x (2),3 = x (2),2 + N2,

and

k3 = �(x (2),3)1−γ �,
we have

k3 ∈ [k2 + 1, k2 + 4).

Thenwe note that the event A1 depends only on the transitions within B(x, N1)×[T − t1, T ],
while the event A2 depends only on the transitions within B(x, N1 + N2)×[T − t2, T − t1].
By the independence of increment in a Poisson processes, we have that A1 is independent of
A2, and thus for E2 = A1 ∩ A2,

P(E2) = P(A1)P(A2) ≥
(
1 − ε

Mγ

k2/(1−γ )
1 2−kγ /(1−γ )

1

)
·
(
1 − ε

Mγ

k2/(1−γ )
2 2−kγ /(1−γ )

2

)
.

Finally, recalling the definition of Radt1,T , one can immediately have on E2

Radt2,T (x) < x (2),3 − x (2) < ∞.

Repeating such iteration, i.e., for all n ≥ 2 let

x (2),n = x (2),n−1 + Nn−1,

Nn =
⌊
4
(
x (2),n

)γ

1 − γ

⌋

,

δn = ε

64Mγ

√
x (2),n + Nn

,

tn = tn−1 + δn,

An =
⋂

y∈B(x,x (2),n−x (2)−1)

{Radδn ,T−tn−1(y) < Nn},

and

En = En−1 ∩ An .

Consider

E∞ =
∞⋂

n=1

An .

Under E∞ we have for any n ≥ 1,

Radtn ,T (x) < x (2),n+1 − x (2) < ∞. (71)
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At the same time

tn =
n∑

i=1

δi =
n∑

i=1

ε

64Mγ

√
x (2),i + Ni

= ε

64Mγ

n∑

i=1

1√
x (2),i+1

. (72)

Moreover, by (70) we have for each i

(
x (2),i )1−γ = (

x (2),i−1 + Ni−1
)1−γ ∈ ((

x (2),i−1)1−γ + 1,
(
x (2),i−1)1−γ + 4

)
(73)

which together implies that

(
x (2),i )1−γ ≤ (

x (2))1−γ + 4i . (74)

Combining (72)–(74) we have

tn ≥ ε

64Mγ

n∑

i=1

[(
x (2))1−γ + 4i

]−1/(2−2γ )

. (75)

Recalling that γ ∈ (0, 1/2), 1/(2−2γ ) < 1, which implies that the series in (75) is divergent.
So for any T ≥ 0 there is a n(T , γ, ε) < ∞ such that for all n ≥ n(T , γ, ε), tn ≥ T ,

RadT (x) ⊂ Radtn ,T (x).

Thus we have on the event E∞, RadT (x) < ∞. On the other hand, Noting that by the
independence increment of Poisson processes, we have A1, A2, · · · gives a sequence of
independent events, and that according to our iteration for each i

P(Ai ) ≥ 1 − ε

Mγ

k2/(1−γ )

i 2−kγ /(1−γ )
i > 1 − ε (76)

with

ki ∈ [ki−1 + 1, ki−1 + 4). (77)

Thus for sufficiently small ε such that for all x ∈ (0, ε), log(1 − x) ≥ −2x and any n ≥ 1,
we have

P(En) − 1 ≥ log
(
P(En)

) = log

(
n∏

i=1

P(Ai )

)

≥ 2
n∑

i=1

[P(Ai ) − 1].

By (76),

P(En) − 1 ≥ − 2ε

Mγ

n∑

i=1

k2/(1−γ )

i 2−kγ /(1−γ )
i .

Then noting that by (77) ki ≥ ki−1 + 1 and the fact that all ki ’s are integers by definition, we
have

n∑

i=1

k2/(1−γ )

i 2−kγ /(1−γ )
i ≤ Mγ

and thus

P(En) ≥ 1 − 2ε. (78)
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Note that the right hand side of (78) is independent of n. We have P(E∞) ≥ 1 − 2ε. And
since ε is arbitrarily chosen, P(RadT (x) < ∞) = 1 which completes the proof of Lemma
6.1. 
�

Thus the proof of Proposition 3 is complete. 
�
With the proof of Proposition 3, one can easily apply the technique of Poisson thinning

to define the following particle system where time is slowed down in-homogeneously and
define a dominating process for the future stationary DLA model i.e., we can consider the
slower interacting particle system ξ̃t defined on {0, 1}H with transition rates as follows:

(i)’ For each occupied site x = (x1, x2) ∈ H at time t ≥ 0, it will try to give birth to each of

its nearest neighbors at a Poisson rate of
√
x2√
t+1

.
(ii)’ When x attempts to give birth to its nearest neighbors y already occupied, the birth is

suppressed.

For ξ̃t we have

Corollary 1 The interacting particle system ξ̃t ∈ {0, 1}H satisfying (i)’ and (ii)’ is well
defined.

Proof We construct ξ̃t with the same families of Poisson processes. Recall that in the proof
of Proposition 3, for all x = (x1, x2) and y = (y1, y2) in H with |x − y| = 1 and ex→y

which is the the oriented edge from x to y,
{
Nx→y
t , x, y ∈ H, |x − y| = 1

}

is a family of independent Poisson process with intensity of Nx→y
t equals to

√
x2. Moreover,

for each ex→y , we define {Ux→y
n }∞n=1 be a i.i.d. sequence of random variables uniform on

[0, 1]. And we make the sequences for different edges independent of each other and also
independent of the Poisson processes previously defined.

Now consider the space-time combination, H × [0,∞). From each x ∈ H, we draw
a vertical infinite half line to represent the time line at this site. Then for each ex→y , at
any time t such that Nx→y

t = n = Nx→y
t− + 1, we draw an oriented arrow from (x, t) to

(y, t) ifUx→y
n < 1/

√
t + 1. Thus we have another oriented random graph in the space-time

combination which is a subset of the one we have for ξ̄t . By Proposition 3 we can see the
following particle system is well defined. 
�

Definition 2 For any ξ̃0 ∈ {0, 1}H, we define ξ̃t such that for each t ≥ 0 and x ∈ H, ξ̃t (x) = 1
if and only if there is a x ′ such that ξ̄0(x ′) = 1 and (x ′, 0) is connected to (x, t) in the new
smaller oriented random graph.


�

6.2 Proof of Theorem 5

ByTheorem 1we have seen that for any B, x ∈ B\L0 and any �e = x → y with ‖x−y‖ = 1,

HB(�e) ≤ HB(x) ≤ C
√
x2

for some C > 1. Moreover, by (18), if x2 = 0,

HB(�e) ≤ HB(x) ≤ 1.
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We construct our DLA model on H as follows: First, recall that
{
Nx→y
t , x, y ∈ H, ‖x − y‖ = 1

}

is a family of independent Poisson processes, such that the intensity of Nx→y
t equals to

√
x2

and that {Ux→y
n }∞n=1 is an i.i.d. sequence of random variables uniform on [0, 1] independent

of the Poisson processes. Let Ā0 = {(0, 0)}, and for any t > 0,

• If there is an �e = x → y such that x ∈ Āt− and y /∈ Āt−, where Nx→y
t = n and

Nx→y
t− = n − 1, we let Āt = Āt− ∪ {y} if

Ux→y
n ≤ HĀt−(�e)

C
√
x2

.

• Otherwise, Āt = Āt−.

To prove Theorem 5, we first need to show

Lemma 6.2 For each time t, Āt above is with probability 1 well defined and finite.

Proof To prove Lemma 6.2, we construct an event with probability one such that Āt is well
defined and finite on this event. For any x ∈ H and any 0 ≤ t < T , define subset

It,T (x) = {y ∈ H, s.t. (x, t) → (y, T )} (79)

and let

It,T (x) = sup
y∈It,T (x)

‖x − y‖.

Following exactly the same argument as in Lemma 6.1, we have with probability one

I0,Ct (0) < ∞.

Under {I0,Ct (0) < ∞} one can easily put all of the finite Poisson transitions within the space
time box I0,t (0) × [0, t] in order and construct Āt explicitly over finite steps. Moreover, by
definition we can always have Āt ⊂ I0,t (0) thus Āt is finite. 
�

Let At = ĀCt , then it is easy to check At has the same dynamic as in Theorem 5 while
being almost surely well defined and finite at the same time. Now, to finish the proof of
Theorem 5, one may again follow the argument as in Lemma 6.1. 
�
Remark 9 The proof of Theorem 6 actually contains all that is needed in the proof of Theorem
5 (and more). Thus we will not present the details of basically the same thing for a third time.

6.3 Proof of Theorem 6

To prove (14), since we have At = ĀCt ⊂ I0,Ct (0), it is sufficient to show for any t ≥ 0 and
integer m ≥ 1

E
[I0,t (0)m

]
< ∞. (80)

The proof here is similar to the one for Lemma 6.1. However, since some more delicate
estimates on the upper bounds of probabilities are needed, we still provide a detailed proof
for the completeness of this paper.
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Recall (64), we have for any t and n,

P(I0,t (0) ≥ n)

≤ P(∃ an open path in [0, t]starting at 0with length n)

≤
∑

x0,x1,x2,··· ,xn∈Pn,0

n∏

i=1

P(Nxi−1→xi
T − Nxi−1→xi

T−t ≥ 1)

= (1 − e−t )
∑

x0,x1,x2,··· ,xn∈Pn,0

n−1∏

i=1

[
1 − e−t

√
x (2)
i

]

≤ tn
∑

x0,x1,x2,··· ,xn∈Pn,0

√√√√
n∏

i=1

x (2)
i .

(81)

Here we use Pn,0 to denote the collection of all nearest neighbor paths starting at 0 with
length n. Then note that |Pn,0| ≤ 4n and that for each 0 = x0, x1, x2, · · · , xn ∈ Pn,0, we
have

x (2)
i ≤ i, i = 0, 1, 2, · · · , n.

Thus, we have
√√√√

n∏

i=1

x (2)
i ≤ √

n!

which implies that

P(I0,t (0) ≥ n) ≤ (4t)n
√
n!. (82)

Now for each γ ∈ (0, 1/2), define

Mγ =
∞∑

k=0

k2/(1−γ )2−kγ /(1−γ )

< ∞.

Now for any ε > 0 let

N1 =
⌊

4m

1 − γ

⌋
≥ 4m

and

δ1 = t1 = ε

64Mγ

√
N1

.

By (82), we have

P(I0,t1(0) ≥ N1) ≤
(

ε

16Mγ

√
N1

)N1 √
N1!

≤ ε4m

Mγ

16−N1 ≤ ε4m

Mγ

k2/(1−γ )
1 2−kγ /(1−γ )

1

(83)

where k1 = 1. Then on the event

E1 = A1 = {I0,t1(0) < N1},

123



976 E. B. Procaccia , Y. Zhang

we define

x (2),2 = 1 + N1,

N2 =
⌊
4m

(
x (2),2

)γ

1 − γ

⌋

≥ 4m,

δ2 = ε

64Mγ

√
x (2),2 + N2

,

and

t2 = t1 + δ2.

Then define event

A2 =
⋂

y∈B(0,x (2),2−1)

{It1,t2(y) < N2}.

One can first see that by the same calculation as in (66)

P(A2) ≥ 1 −
∑

y∈B(0,x (2),2−1)

P(It1,t2(y) ≥ N2)

≥ 1 − 4
(
x (2),2)2

(
ε

16Mγ

√
x (2),2 + N2

)N2

√√√√√
x (2),2+N2−2∏

j=x (2),2−1

j

≥ 1 − (
x (2),2)2 ε4m

16Mγ

2−kγ /(1−γ )
2

(84)

where

k2 = �(x (2),2)1−γ �.
The last inequality in (84) results from

N2 =
⌊
4m

(
x (2),2

)γ

1 − γ

⌋

≥ (
x (2),2)γ ≥ kγ /(1−γ )

1 .

Moreover, we have

(
x (2),2)2 =

[
(x (2),2)1−γ

]2/(1−γ )

while

(x (2),2)1−γ ≤ 2k2.

Thus

P(A2) ≥ 1 − (
2k2

)2/(1−γ ) ε4m

16Mγ

2−kγ /(1−γ )
2

≥ 1 − ε4m

Mγ

k2/(1−γ )
2 2−kγ /(1−γ )

2 .

(85)

Then note that for any x ≥ 1, we have by calculus

(
x1−γ + 4m

)1/(1−γ )
> x + 4m

1 − γ
xγ
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while
(
x1−γ + 1

)1/(1−γ ) ≤ x + 1

1 − γ

(
x1−γ + 1

)γ /(1−γ )

≤ x + 1

1 − γ

(
2x1−γ

)γ /(1−γ )

< x + 2

1 − γ
xγ

< x +
⌊
4mxγ

1 − γ

⌋
.

We have that

(
x (2),2)1−γ = (

1 + N1
)1−γ =

(
1 +

⌊
4m · 1γ

1 − γ

⌋)1−γ

∈ (
2, 1 + 4m

)
(86)

and that

k2 = �(x (2),2)1−γ � ∈ (k1 + 1, k1 + 4m)

since k1 = 1. Then using exactly the same argument on

x (2),3 = x (2),2 + N2,

and

k3 = �(x (2),3)1−γ �,
we have

(
x (2),3)1−γ = (

x (2),2 + N2
)1−γ =

(

x (2),2 +
⌊
4m

(
x (2),2

)γ

1 − γ

⌋)1−γ

∈ (
(x (2),2)1−γ + 1, (x (2),2)1−γ + 4m

)
(87)

and thus

k3 ∈ (k2 + 1, k2 + 4m).

Then we note that the event A1 depends only on the transitions within B(0, N1) × [0, t1],
while event A2 depends only on the transitions within B(0, N1 + N2) × [t1, t2]. By the
independence of Poisson process increments, we have that A1 is independent of A2, and thus
for E2 = A1 ∩ A2,

P(E2) = P(A1)P(A2) ≥
(
1 − ε4m

Mγ

k2/(1−γ )
1 2−kγ /(1−γ )

1

)
·
(
1 − ε4m

Mγ

k2/(1−γ )
2 2−kγ /(1−γ )

2

)
.

Finally, recalling the definition of I0,t , one can immediately have on E2

I0,t2(0) < x (2),3 < ∞.

Repeat the iteration above, i.e., for all n ≥ 3 let

x (2),n = x (2),n−1 + Nn−1,

Nn =
⌊
4m

(
x (2),n

)γ

1 − γ

⌋

,
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δn = ε

64Mγ

√
x (2),n + Nn

,

tn = tn−1 + δn,

An =
⋂

y∈B(0,x (2),n−1)

{Itn−1,tn (y) < Nn},

and

En = En−1 ∩ An .

Consider

Eε∞ =
∞⋂

n=1

An .

Under Eε∞ we have for any n ≥ 1,

I0,tn (x) < x (2),n+1 < ∞. (88)

At the same time

tn =
n∑

i=1

δi =
n∑

i=1

ε

64Mγ

√
x (2),i + Ni

= ε

64Mγ

n∑

i=1

1√
x (2),i+1

. (89)

Moreover, by (87) we have for each i
(
x (2),i )1−γ = (

x (2),i−1 + Ni−1
)1−γ ∈ ((

x (2),i−1)1−γ + 1,
(
x (2),i−1)1−γ + 4m

)
(90)

which together implies that
(
x (2),i )1−γ ≤ 4im. (91)

Combining (89)–(91) we have

tn ≥ ε

64Mγ

n∑

i=1

(4im)−1/(2−2γ ) . (92)

Recalling that γ ∈ (0, 1/2), 1/(2 − 2γ ) < 1, which implies that the series in (92) is
divergent. So for any t ≥ 0 there is an n0 < ∞ such that for all n ≥ n0, tn ≥ t , and that
tn0−1 < t .

I0,t (0) ≤ I0,tn0 (0).
And by (88) and (91), on Eε∞,

I0,tn0 (0) < x (2),n+1 ≤ [4m(n0 + 1)]1/(1−γ ).

Thus we have on the event Eε∞,

I0,t (0) ≤ [4m(n0 + 1)]1/(1−γ ) ≤ (8m)1/(1−γ ) · n1/(1−γ )
0 (93)

On the other hand,

t ≥ tn0−1 ≥ ε

64Mγ

n0−1∑

i=1

(4m · i)−1/(2−2γ ) ≥ cε

64Mγ (4m)1/(2−2γ )
n(1−2γ )/(2−2γ )
0 . (94)
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Combining (93) and (94), we have on the event Eε∞ there is a constant Cm,γ depending on
m and γ but independent of ε such that

I0,t (0) ≤ Cm,γ ε−2/(1−γ )t2/(1−2γ ). (95)

Note that by the independence of Poisson processes increments, we have that A1, A2, · · ·
gives a sequence of independent events. And according to (84) and the construction in our
iteration, we have for each i

P(Ai ) ≥ 1 − ε4m

Mγ

k2/(1−γ )

i 2−kγ /(1−γ )
i > 1 − ε (96)

with

ki = �(x (2),i )1−γ � ∈ [ki−1 + 1, ki−1 + 4m). (97)

Thus for sufficiently small ε such that for all x ∈ (0, ε), log(1 − x) ≥ −2x and any n ≥ 1,
we have

P(En) − 1 ≥ log
(
P(En)

) = log

(
n∏

i=1

P(Ai )

)

≥ 2
n∑

i=1

[P(Ai ) − 1].

By (96),

P(En) − 1 ≥ −2ε4m

Mγ

n∑

i=1

k2/(1−γ )

i 2−kγ /(1−γ )
i .

Then noting that by (97) ki ≥ ki−1 + 1 and the fact that all ki ’s are integers by definition, we
have

n∑

i=1

k2/(1−γ )

i 2−kγ /(1−γ )
i ≤ Mγ

and thus

P(En) ≥ 1 − 2ε4m . (98)

Note that the right hand side of (98) is independent of n. We have P(Eε∞) ≥ 1− 2ε4m . Now
let

ε j =
(
1

j

) 1−γ
2m

.

Then we have for each j sufficiently large,

P

( I0,t (0)m
(Cm,γ )mt2m/(1−2γ )

> ε
−2m/(1−γ )

j

)
= P

(
I0,t (0) > Cm,γ ε

−2/(1−γ )

j t2/(1−2γ )
)

≤ 1 − P(E
ε j∞) ≤ 2ε4mj

(99)

and thus

P

( I0,t (0)m
(Cm,γ )mt2m/(1−2γ )

> j

)
≤ 2

(
1

j

)2(1−γ )

. (100)
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Noting that γ < 1/2 and thus 2(1 − γ ) > 1,

∞∑

j=1

P

( I0,t (0)m
(Cm,γ )mt2m/(1−2γ )

> j

)
< ∞

which implies that E[I0,t (0)m] < ∞. 
�
Acknowledgements Wewould like to thank Itai Benjamini, NoamBerger, Marek Biskup, Rick Durrett, Gady
Kozma, Greg Lawler, and Jiayan Ye for fruitful discussions related to this project. We would also like to thank
anonymous referee(s) for helpful comments. Researchwas partially supported byNational Science Foundation
(Grant Nos. DMS-1407558 and DMS-1812009).

References
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