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Abstract

In this paper, we introduce the stationary harmonic measure in the upper half plane. By
bounding this measure, we are able to define both the discrete and continuous time diffusion
limited aggregation (DLA) in the upper half plane with absorbing boundary conditions. We
prove that for the continuous model the growth rate is bounded from above by o(r>+€).
Moreover we prove that all the moments are finite for the size of the aggregation. When time
is discrete, we also prove a better upper bound of o(n?/3+€), on the maximum height of the
aggregate at time n. An important tool developed in this paper, is an interface growth process,
bounding any process growing according to the stationary harmonic measure. Together with
[12] one obtains non zero growth rate for any such process.

1 Introduction

In this paper, we consider the stationary harmonic measure in the upper half plane and
the corresponding diffusion limited aggregation (DLA). The diffusion limited aggregation
(DLA) in Z? was introduced in 1983 by Witten and Sander [16] as a simple model to study
the geometry and dynamics of physical systems governed by diffusive laws. The DLA is
defined recursively as a process on subsets A, € 72 Starting from Ag = {(0, 0)}, at each
time a new point a,+1 sampled from the harmonic probability measure on the outer vertex
boundary of A, (denoted °*' A,,) is added to A,,. Intuitively, a, | is the first place that a
random walk starting from infinity visits 9°“’ A,,.
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Although DLA is straightforwardly defined and easily simulated on a computer, very
little about it is known rigorously. One of the notable exceptions is shown by Kesten where
a polynomial upper bound, which equal to n2/3 when d = 2 and n?/¢ when d > 3, of the
growth rate on DLA arms is given, see Corollary in Reference [7] or Theorem in Reference
[8]. In a later work [9] Kesten improved the upper bound for DLA when d = 3 to \/n log(n),
and when d > 3 to n*/@*1_ No non-trivial lower bounds have been proved till present
day. It is in fact still open to rule out that the DLLA converges to a ball, although numerical
simulations clearly exclude this.

Recently, this topic is re-visited by Benjamini and Yadin [2] where they “‘clean up’
Kesten’s argument, and make it more robust”. They proved upper bounds on the growth
rates of DLA’s on “transitive graphs of polynomial growth, graphs of exponential growth,
non-amenable graphs, super-critical percolation on Z¢ and high dimensional pre-Sierpinski
carpets”.

In this paper, we further extend the reach of Kesten’s idea to non-transitive graphs. We
define the (horizontally) translation invariant stationary harmonic measure on the upper half
plane with absorbing boundary condition and show the growth of such stationary harmonic
measure in a connected subset intersecting x-axis is sub-linear with respect to the height.
With the bounds found for our stationary harmonic measure, we will be able to define a
continuous time DLA on the upper half plane and give upper bound on its growth rates.

One of the goals of this paper is to construct the theoretical theory for defining an infi-
nite stationary version of DLA in the upper half plane. The motivation for defining the
stationary DLA (SDLA) is twofold. First DLA growing from an absorbing boundary models
many natural phenomenon which are not modeled well by the classical DLA (e.g. [11], [15,
Chapter 1: Fractals in nature ]). Indeed in an experimental setting it is actually very hard to
avoid boundary effects. Second SDLA exhibits new physical and mathematical phenomenon.
SDLA enjoys a translation invariance symmetry. This effects the geometry of the DLA arms
as they tend to be thinner and “upward” growing. Mathematically one gains the power of
ergodic theory for geometric control, making the SDLA more amenable to analyze than the
classical DLA. As an example one can use mass transport principle to control the expected
width of SDLA arms. Moreover it is conjectured that at time infinity and arms of the SDLA
are finite, which again is an effect of the infinite boundary. Another motivation is that locally,
SDLA behaves like DLA growing from a long line [14], thus geometric results on the more
symmetric SDLA can be transferred to the classical DLA.

We first define several sets and stopping times for our problem. Let H = {(x,y) €
72, y > 0} be the upper half plane (including x-axis), and S,,n > 0 be a 2-dimensional
simple random walk. For any x € Z?, we will write

113

x = (x1, x2)

with x; denote the ith coordinate of x, and ||x|| = ||x|[1 = |x1|+ |x2|. Thenlet L,,, D, C Z?
be defined as follows: for each nonnegative integer n, define

L, ={(x,n), x € Z},
Vo ={(0,k), 0 <k <n},
and
U,=LoUV,.
Le., L, is the horizontal line of height n while U, is x-axis plus the vertical line segment

between (0, 0) and (0, n). And we leti - n = (0, n) be the “end point” of V,,. Moreover, we
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948 E.B. Procaccia, Y. Zhang

use P, C H for an arbitrary finite path in the upper half plane connecting i - n and the x-axis.
One can immediately see that V), is one such path.
And for each subset A C Z? we define stopping times

T4 = min{n >0, S, € A}
and
T4 =min{n > 1, §, € A}.
For any subsets A; C A and B and any y € Z2, by definition one can easily check that
Py (1:A1 < rB) <P (rA2 < ‘L’B), "
Py (Ta, < T8) < Py (Ta, < 7B),
and that
Py (t8 <7ta,) < Py (18 < 14,),
Py (T < Ta,) < Py (Tp < Ta,),

(@)

where Py(-) = P(-|Sp = y). Now we define the stationary harmonic measure on H which
will serve as the Poisson intensity in our continuous time DLA model. For any connected
B C H,any edgee = x — y withx € B,y € H\ B and any N, we define

Han@ = Y Po(Sepsy =% Stpony1 =) 3)
zeLy\B

By definition, a necessary condition for Hg y(¢) > 0 (although at this point we have not
yet ruled out the possibility it equals to infinity) is y € 8°%' B and |x — y| = 1. And for all
x € B, we can also define

Han@ = Y Hen@= 3PSy, =7). “
y: e=(x,y) zeLnN\B
And for each point y € 3°“ B, we can also define

HgnO) = Y.  Hpn(@)
é=(x,y), xeéB

= ) P (fB = TLos Stpury -1 = y) : (&)
zeLy\B
By coupling and strong Markov property, we show that N — Hj n(e) is bounded and
monotone in N. Thus
Proposition 1 For any B and ¢ as above, there is a finite Hg(€) such that
lim Hp y(€) = Hp(e). (6)
N—oo

And we call Hg(€) the stationary harmonic measure of ¢ with respect to B. Thus we imme-
diately have the limits Hp(x) = limy_ o Hp y(x) and Hg(y) = limy_, oo Hp y(y) also
exists and we call them the stationary harmonic measure of x and y with respect to B.
Although now we have the limit Hp(x) exists, it can be zero everywhere for certain B. We
do not need to worry about this when B is finite. For each finite B, we let

Hg =Y Hp(x)= Y  Hp(y)

XEB y€edo“ B
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Stationary Harmonic Measure and DLA in the Upper Half Plane 949

be the harmonic measure of B. Then we have Hp is non-decreasing as B gets larger:

Proposition 2 For any finite subsets B C By C 'H,

Hp, = Hp,.
Remark 1 However, for infinite subset of H, it is possible to have the harmonic measure equal
to 0 everywhere. In fact, we prove that as long as B has a linear spatial growth horizontally,
Hp(-) is uniformly 0. On the other hand, we have also proved that for any B with certain

sub-linear spatial growth, it can have non-zero stationary harmonic measure. These results
are presented in a separate paper [12].

After presenting the basic properties of our stationary harmonic measure and similar to
the regular harmonic measure, the following upper bounds holds for Hg v (x):

Theorem 1 There is some constant C < oo such that for each connected B C H with
Lo C B and each x = (x1, x2) € B\ Lo, and any N sufficiently larger than x;

Hp n(x) < Cx)/?. @

Remark 2 1In this paper, we use C and c as constants in (0, co) independent of the change of
variables like N or n. But their exact values can be different from place to place.

At the same time, we can also have the following result showing that for a point of height
n, say i - n without loss of generality, the harmonic measure is maximized (up to multiplying
a constant) by U,. Le.

Theorem 2 There is some constant ¢ > O such that for all N > n,
Hy, n(G -n) > cn'/?, ®)

With Proposition 2, Theorems 1 and 2 and the bounds estimates in their proofs, we can
further show that

Theorem 3 There are constants 0 < ¢, C < oo such that for any finite and connected B in
H,

Hp < C (min{xg} + |B|> , )
xeB
while
Hp > c¢max{xy}log™! <max{x2}> , (10)
xXeB xeB
Hp > 1 (11

when max,ep{x2} = 0.

And again, we also have the total harmonic measure is maximized (up to multiplying
a constant) by the vertical line segment V,, over all connected finite subsets with the same
cardinality and intersecting L.

Theorem 4 There is a constant ¢ > 0 such that for any n,

Hy, > cn. (12)
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950 E. B. Procaccia, Y. Zhang

With the stationary harmonic measure bounded in Theorem 1, we are now able to define
our DLA in the upper half plane as a continuous time stochastic process A;, t > 0 taking
values on finite subsets of . First we have Ay = {0}. Foreacht > 0. A; grows at a Poisson
rate of Hy, and add a new point on 9°*' A, according to the probability distribution

i Ha, (v)
P(At’y): I_It 7yEH'

t

Similarly, we can also define the discrete DLA model {A,};°, in  which is the embedded
Markov chain of A;. Le., at each n, A,41 = A, U {y} where y is sampled according to
F(An, ).

First, by introducing a pure growth interacting particle system that dominates the con-
tinuous time process, we show that A; is well defined and estimate an upper bound on the
growth rate of its arms. For any finite A define

Al = max{|lx[l, x € A}.

Theorem 5 A; is well defined on t € [0, 00). And for any € > 0, we have with probability
one
limsup 27| A;|| = 0. (13)
t—>00
Furthermore, we show that for any time ¢, ||A;|| has a finite mth order moment for all
m>1.

Theorem 6 For any integer m > 1 and anyt > 0
E[IIA/I"] < oo. (14)

Remark 3 1In our construction we are able to define the dominating interacting particle system
starting from any initial configuration in {0, 1}7%, whose growth rate is given by the upper
bound of the stationary harmonic measure found in Theorem 1 . This, together with Reference
[12], may allows us to define a horizontally translation invariant infinite DLA on H and
estimate its (non-zero) growth rate. We call this the stationary DLA model, and it will be
presented in Reference [13]. We refer the reader to look at recent results on other stationary
aggregation processes [1,3].

For the discrete time process let h, = max,ca,{x2}. By Theorem 1 and (10), we see
that the probability that a new point y is added to the aggregation A, is no larger than
log(hy,)/~/hy. Then the Borel-Cantelli argument in Step (ii) of Reference [8] easily gives us
a stronger upper bound on /,,:

Theorem 7 For any € > 0, we have with probability one

limsupn—<"2/3h, = 0.
n—0oo

The structure of this paper is as follows: In Sect. 2 we prove the more basic properties of
the stationary harmonic measure, i.e., Propositions 1 and 2. Theorem 2 is proved in Sect. 3
and Theorem 2 in Sect. 4. In Sect. 5 we use the bounds found the the previous two sections
and show Theorems 3 and 4 inductively. In Sect. 6, we use an interacting particle system
argument to define the dominating process and prove Theorems 5 and 6. After that, Theorem
7 follows immediately. Our main contribution in this paper is the proof of Theorems 5 and
6, where a interface particle system with unbounded transition rate is introduced and studied
to stochastically bound the growth of the continuous time DLA model.
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Stationary Harmonic Measure and DLA in the Upper Half Plane 951

2 Properties of Stationary Harmonic Measure
2.1 Proof of Proposition 1

To show Proposition 1, we first need to verify that the infinite summation defined in (4)
converges. Note that for x > Oand any N > xp andany z € Ly \ B,

00
PZ (S‘EB = x) = Z PZ (‘EBULO = k, Sk = x) .

And by time reversal, see Reference [7] for example, and symmetry of simple random walk,
we have

P (tp =k, Sk =x) =P, (Sk =x,51,8,-,8-1 ¢ BULy)
=P (Sk=2,8,%,",8%1¢BULy
= P (Sk=Z»TBUL0 >k).

Thus

P, (Sz =x) = Z P (S =z, TauLy > k)
k

o
=1
E, [number of visits to zin time interval [0, Tpy Lo)]'
Then taking the summation over all z € Ly \ B, we have
Hp.n(x) = Eq [number of visits to Lyin time interval [0, t501, )]. (15)
Then noting that 77, > Tpur,, we have
Hp n(x) < Ey [number of visits to L yin time interval [0, 'L'LU]].

Moreover, for N > x2, note that if we trace the jumps on the second coordinate of S, it gives
an (embedded) 1-dimensional simple random walk. We can use the strong Markov property
of random walk on stopping time T, A Ty,

E, [number of visits to Lyin time interval [0, ‘L’LO]]

= Z Pe(try < 114, S,LN =w)E, [number of visits to L yin time interval[0, ‘L'LO]].

weLy

Note that for each w € Ly,

E, [number of visits to L yin time interval[0, 'L’LU]] = 4 =4N
Py, (Lo < TLy)
(16)
is actually independent of the choice of w, and that for all N > x;
X2
PX(TLN < TLO) = N'

We have

E, [number of visits to L yin time interval [0, rLO]] =4N - P (tpy < TLy) = 4x2.
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952 E. B. Procaccia, Y. Zhang

Thus we have shown that
Hp n(x — y) < Hp n(x) < 4xy < 00. (17)
Similarly, we can also show that for x; = 0,
Hp n(x — y) < Hg n(x) <1 < 00. (18)

With Hp y(x — ) uniformly bounded for all N, we next show that Hg y(x — ) is
monotonically decreasing with respect to N i.e., forany N > M > x2 4+ 1 we want to show
that

Hp n(x — y) < Hp m(x — ). (19)

Recalling that

Hp n(x — y) = Z P, (SfBULO =X, Sty -1 = y),
zeLy\B

for each N we can define S,(,O'N) be a simple random walk in some probability space P(-)
starting at (0, N), and S,(,k'N) = S,(,O’N) + (k, 0) for all k € Z. Noting that S,(,k’N) is a simple
random walk starting at (k, N), we have

Han = 3 PSS =x s&W =), (20)

TBUL TBUL
k: (k,N)eLy\B

Recalling that N > M > x;, a random walk starting at Ly must first visit L s before it can
ever reach x. Thus for stopping time

7., = inf {n : SON) ¢ LM}
note that by definition we also have
7., = inf {n L Sk ¢ LM}
and
St = (k. 0) + 55"
forall k € Z. Thus by strong Markov property, we have for each k such that (k, N) € Ly \ B

P(SEN =y, s&M | = y)

TBUL TBULy —
0.N : = -
=> P (S%M) =0, M), 7Ly < TB—(k,0>>
JEZ

Pljtk.) (SfBULO =X, Stpuy-1 = y)

0N .
< E P (SéLM =, M)) Pk, m) (Sf,mo =X, Styp,-1 = )’) :
jez

Taking summation over all &,
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Stationary Harmonic Measure and DLA in the Upper Half Plane 953

(O,N) s
Hpn@) = 3 P (S9N = (. m)
JEL

> Pyskwn (Sfmo =X, Stpury-1 = y)- 2D
k: (k,N)eLy\B

Note that for any (i, M) € B, Pii,m) (SfBuLo = x) = 0. Thus
Z P(j+k,M) (SfBULO =X, SfBULO*I = y)
k: (k,N)eLy\B

< > Plic,my (SfBULO =X, Stppy-1= y) = Hpm(x — ).
k: (k, M)ELy\B

(22)

Combining (21) and (22) we have (19). The fact that any monotonically decreasing nonneg-
ative sequence is convergent finishes the proof of Proposition 1. O

2.2 Proof of Proposition 2

To show Proposition 2 for finite subsets, recalling the definition and the fact that both B} and
B are finite, for any sufficiently large N such that Ly N By = &, we have

Hp, = Z Z Pz(SfB,uLO = X)
xeBy zeLy
and
Hoy = D D PlSipuy =)
x€By zeLy
Changing the order of both summations we have

Hp = Y 3PSty =%) = Y PulSt; ., € B1)

zeLy xe€B) zeLy

> Pt < 11)

ZELN

which is smaller than or equal to

Hp, = Z Z Py(Sipyu, =X) = Z Po(Sty,0, € B2)

zeLy x€By z€Ly

= Z PZ(TBZ < TL())

zeLy

by (1). O
3 Uniform Upper Bounds on Harmonic Measure
In this section, we improve the linear bound in (17) to Theorem 1. Without loss of generality

we can assume x2 = n. According to the definition of Hp y(x) and (2), we first note that for
any B’ C B, withx € B"and Ly C B/,

Hp n(x) < Hp y(x).
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954 E.B. Procaccia, Y. Zhang

Since B is connected and Lo C B, there must be a finite nearest neighbor path
Pn={x =Py, P1, P, , P, € Lo}
connecting x and Lo, where | P; — P; ;1| = 1. And since d(x, Lo) = n, |x — Py, | > n, define
my =inf{i : |P; — x| >n} —1
and
Qn ={Po, P1, P, , Py, }
One can immediately see that
Qu C B(x,2n) :={y:€ Z*: |y — x|» < 2n}.
Then for B, = Lo U Q,, to prove Theorem 1, it suffices to show that
Hp, n(x) < Cn'/2. (23)

And since simple random walk is translation invariant, we can without loss of generality
assume that x; = 0. To show (23), by (15), strong Markov property, and (16)

Hp, n(i-n)

=E;i, [number of visits to L yin time interval [0, ‘L'Bn]]

- Z P[.n(TLN < tan STLN = w)

weLy
E. [number of visits to L yin time interval [0, p, ]] (24)
=< Z Pi‘n(rLN < tan STLN = w)
wely

E, [number of visits to L yin time interval [0, ‘L’LO]]
=4N - Piy(tLy < TB,)-

So in order to show (23) and thus Theorem 1, it is sufficient to prove that

cnl/?
N
To show (25), define S, = 9°* B(i - n,2n) N {(x, y) € Z2,y > 1}. Note that if a simple

random walk starting at i - n wants to reach Ly before returning to B,,, it has to visit some
point in S, first. Thus once again by strong Markov property,

Pi-n(TLN < rB,,) = (25)

Pin(tLy <78,) = Y Pin(ts, < tp,. Stg, = 2)P.(TLy < 75,). (26)

z€Sy

Note that for each z € S;;, by (2) and the fact that Ly C By,
P (TLy < 1TB,) < P (TLy < Tpy) < '

Plugging this uniform upper bound into (26), we now have

Pip(tLy <718, < Pin(ts, <718,  —.
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Thus for Theorem 1 it is sufficient to show that
Pin(ts, < tp,) < Cn~ Y2, (27)
Noting that S, C 9°*/ B(i - n, 2n), and that Q,, C B,, then by (1) and (2),

Pi'”(rsn < TBn) 5 Pi'"(TB(’"tB(i-VL,Zn) < an)'

Since simple random walk is translation invariant,
Pi . (Tgou gi.n,2ny < T0,) = Po(t2n < Tp,),

where D, = Q, — i - n, which is a connected subset of B(0, n) containing 0. Then

Po(tan < tp,) < Cn~'/?
is guaranteed by Theorem 1 of Reference [10] with k = x = 1, which concludes the proof
of Theorem 1. O

4 Subset Maximizing the Stationary Harmonic Measure

In this section we prove Theorem 2. Then together with the uniform upper bound we had in
Theorem 1, one can see that U,, = V,, U L is the subset maximizing harmonic measure up
to multiplying a constant.

Before we start with the details, an outline of the proof of Theorem 2 is presented. See also
Fig. 1. The detailed proof will piece together everything we need in the list below, although
the order that each lemma is proved may not be precisely consistent with the outline.

(i) We have found that Hy, y (i - n) equals to the expected number of visits to Ly before
a simple random walk S starting from i - n returns to U, . If the random walk reaches
L y first before returning to U,,, the expected number of (re-)visits is 4N + o(N).
(ii) For S to reach Ly first before returning to U,,, it has to reach L, first. Once it reaches
L»,, the probability of success from there is at least of order n/N.
(iii) If S reached the upper outer boundary of the L ball By (i-n, n/3) = {|x|+|y—n| < n/3}
before returning to Vj,, by the invariance principle there is a positive probability for it
to continue to L, before returning to U,,.
(iv) The probability that S, exits B;(i - n, n/3) before returning to V,, is at least on17?).
(v) Given S, exits B (i - n, n/3) before returning to V,,, it is more likely to exit from the
upper half than the lower half.

Without loss of generality, we only need to prove this theorem for n sufficiently large and
N sufficiently larger than n.

4.1 Lower Bound on Escaping Probability

We first show that S, exits By (i - n,n/3) before returning to V, with probability at least
O(n~'/%), define V,, = {(0,y), n — [n/3] < y < n} and

Si,n = 0B1( - n, [n/3]).
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956 E. B. Procaccia, Y. Zhang

Ly

L2n

Lo

Fig. 1 Outline for the lower bound

Here note that for L ball By (i - n, [n/3]) we do not need to specify if the boundary is in
or out. Then for C), = 3°*' B(i - n, n/2), note that for a 2-dimensional simple random walk
starting at i - n = (0, n) we always have

TSI.,, < ‘L’Cr/l

for all sufficiently large n. Thus for the escaping probability we want to bound from below,
we have

Py (tsy, < tw,) = Pin (ts,, < 1v)) = Pin (tc; < Tv7)-
By the translation invariance of S,
Pin (tc;, < tv;) = Po(tcj—in < Tvj—in)
—1/2
=P (TB‘”"B(O,n/Z) < 'L'Vn/,,'.n) > cn / (28)

where the last inequality is guaranteed by Proposition 12 of Reference [10], and the reflection
invariance of simple random walk.

4.2 Spatial Distribution at the Escaping Time

Now (28) shows that a 2-dimensional simple random walk starting at i - n will escape B (i -
n,[n/3]) = {x € Z* : ||lx —i - n|l; < [n/3]} before returning to V, and thus U, with
probability at least some constant times n /2. We next show that, given the random walk
successfully escapes, it is more likely to escape from the upper half of Sj ,, than the lower

half of it. To make it precise, define

51[{,1 =S N{(x,y),y >n},
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Stationary Harmonic Measure and DLA in the Upper Half Plane 957

and
SlL,n =S1a N{(x,y),y <n}.

Then for stopping time o = 75, ,, A Ty;, we want to show

P (51, < 7y S0 € 8U,) = P (751, < 70 S0 € 8L, (29)

To show this we can again use translation invariance to move everything centered at 0. For
integer m > 1, let

Al ={(x,y) €Z* x+y=m, x €[0,m]}U{(x,y) € Z%
—x+y=m, x € [—m,0]}

and

Ay =, y) €Z? x+y=—m, x €[-m,0,]}U{(x,y) € Z?,
—x+y=-m, x €[0,m]}

be the upper and lower half of 9B (0, m). Then define C,, = {(0, —i),i =0, 1,--- ,m},
and C,J,j ={(0,i),i =0,1,---,m}. To show (29), it suffices to prove the following lemma:

Lemma 4.1 For all integer m, define set
- _ + — —
E,=A,UA, UC,
and stopping time
O"; = TE,; = rA,J; /\TA,; /\TC,;'

We have
PQ(TA,J;:G;)ZPQ(TA,; :O',;). (30)

Remark 4 Before presenting the detailed argument, we first briefly discuss the idea in the
proof of Lemma 4.1: using symmetry together with a decomposition on the last time that a
simple random walk hits C,jg , one only need to show that starting from C,,Jg \ {(0, 0), (0, m)},
a simple random walk is more likely to first hit A} than A, before returning to C, U C,,,
see (39) for precise formula. To prove (39) one can again use symmetry/ reflection principle
to form one-to-one mappings between nearest neighbor trajectories.

Proof For
E,n=AfUA UC, UC],
and stopping time
Om = TE, = ‘CA$ A\ tA,; VAN TC,; A\ tC,;P
by symmetry we have

Py (rA,t = Um) =P (TA’; = Um).
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958 E.B. Procaccia, Y. Zhang

At the same time,
Py ('L’A’J; :o‘r;> =P (tA;g S Toks Tak :Gn;)
+P()<TA; >‘L'C$,TA;=U,;> (31)
=P (tA$ :O’m> + Py (‘L’CIJ; <0,, Tyt :g;) ,
and
Py (‘L’A’; :o,;) =Py (tAr—" < Tehs Tax :O'n:)
+ Py (TA'; > Tet, Ty = om) (32)
=P (rA; =am) + Py (IC;? < U,;,TA; =<7m).
Thus it is sufficient to show

PO(TC;; < Oy s Tpi :am> > Py (fCJ < Oy Ty :O'm).

(33)

Under event {rc$ < 0, }, letrandom variable N,jl' be the last time S visits C;n" in[0, 0, —1].
Note that N, is not a stopping time so we cannot use strong Markov property. But we can
nonetheless have the decomposition:

Py (‘CC$ < Oy Tpt :o,;)

o0
_ _ + _ - _ -
Z Z P0<51—X1,"',Sk—xk,Nm—k,TC;;<Um,TA;’rI—Gm)-

k=1 -
x| X X1 ¢ Eyy

Xg € x € G \ {0, (0,m))

(34
and
Py (‘CCJ <Oy, Ty = o,;)
o0
=Z Z P0<Sl=x1,~~~,Sk=xk,N,:=k,rC$<0,;,1:A;l=a,;).
k=1 X1, X0, X1 ¢ Epy
Xk € X € G\ {0, (0, m))
(35)
Note that for each k, x1, x2, -+ , x¢k—1 ¢ E,,, and x; € x € C;n" \ {0, (0, m)}, we have
{S1=x1,---,8 =xk,N,jl' =kvfc;g <a,;,rA; =0,)
={S1 =x1,- -, Sk = Xk, Sk414. Visit A;no later than it first visits A,, U Cn't uc,}.
So by Markov property, we have
P()(S]ZX],---,Skzxk,N;lr:k,Tcrt<C7n;,TAIJ;:U,,;> 36
(36)

= Po(Si =1+ Sk = x0) Py (T4 =0m).
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Plugging back in (34) we have
Py <‘L’C;; <o0,, Tph = a;)

o0
=y 3 Po(Si =1 Sc=x0) Py (45 =0m).  G7)
k=1 X5 X X & By
Xg € X € G \ {0, (0, m)}

while the same argument for A, gives us
Py <7:C+ <Oy Ty = an;)

= Z 3 Po(Si =1, Sk =20 Py (T4 =om).  (38)

k=1 XX, Xg—1 & Em

X € xp € G \ {0, (0, m))

Comparing (37) and (38) term by term, one can see it suffices to show that forall z = (0, j) €
xe € Cp \ {0, (0, m)},

P, (‘L’A;’; = om) > P, (rAf = am). (39)

To show (39), one first sees that on {rA; = oy} or {'L’A’; = oy}, a random walk starting at
z has to move horizontally at the first step then remain in the right or left half triangle of
B1(0, m) until it exits from A,*n‘ or A,,. Then for all integer i € [0, m] we define

Cm,i = {(Os y)7 2l —m Ey Em}7
+, 2 ;
Ayi =10y €2 x+y=m, x€l0,m—i]}

and
-, 2 . .
Am; =U{x,y)eZ, —x+y=2i—m, x €[0,m—1i]}.

Now we have by symmetry

1 _ _ _ _
P (vaz = om) = 5P (Tazg = Tamgy Tz < ) “0)
and
1 _ _ _
PZ (‘L’A; :Gm> :EP(IJ) (TA;:S STA;:(’) TAmO S‘L'Cm‘()). (4])

The right hand side of the Eq. (41) equals to O when j = m — 1. Otherwise note that if a
random walk starting from (1, j) want to visit Am o before visiting AT 0 or Cp, 0, it has to

first get through Am j before visiting A:;;,o or Cp, 0. Thus

P (Facy = By By = Fewn) = P (B = B B = o)

Then note that in order to have a random walk starting from (1, j) get to A;; before visiting

A+ ‘o or Cyn.0, it only need to avoid A;;; and Cy,, ;. So we have

P(lj) (‘L’A o <‘L'A+r T,'A N <‘L'Cm0) P(l]) (‘L’A o <‘L'A+r ‘L'A me,j)'

m,0 m,j m,j
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By symmetry one can see

Pa,jy (‘L’A—r S Tyt ‘EA - <‘L’cmj) Pa,jy (TA+r S Ty, Tytr <‘L'ij).

m,j m,j m,j

Moreover note that arandom walk starting from (1, j) mustexist the smaller triangle bounded

by A+ LA and C,, j before exiting the larger on bounded by Am 0’ Am o-and Cy o ie.,
Uj—TA+r /\TA”—l;/\Tij<O‘ _rA;:(’)/\TA_' /\TCmO
Thus
Pugy (Faer < Byor By < Tc,,)
(1'1) A;; - Am.; Am’/ - Cm,/
= Puj) (F42r = 07)
W) \Tapr = 9j
=< Pa.j) (‘EAJ“’. = ff’)
" (42)

= Paj (TA;; =T
= P(l,j) (TA,J;’; < AT < Tcmyo)
<Py (f+. < Ty T <7 )
= Pap \Tarn = Tagoo Tatr = Tono

Finally note that the right hand side of the last inequality in (42) is exactly the right hand side
of (40). O

With Lemma 4.1, we immediately get (29) from translation invariance.

4.3 Proof of Theorem 2

Now we have all the tools we need to finish the proof of Theorem 2. Recall (24) and apply
ittoU, andi -n

Hy, n(i -n)

=Ei, [number of visits to L yin time interval [0, Ty, ]]

Z Pin(tLy < U, STLN =w)E, [number of visits to L yin time interval [0, TU,J]-
wely

Note that for all w € Ly,
Py(tr, <t,) =1
We have

Hy, n@ -n)

= Z Piy(tLy < tu,, SrLN =w)Ey [number of visits to L yin time interval [0, an]]
weLy

= 4Pi-n(TLN < ‘L'Un)(N —n).
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Then according again to strong Markov property and the fact that a random walk starting
from i - n has to visit Ly, before Ly,

Piu(tLy <10, = Z Pin(tLy, < t0,: Sy, = w)Pu(tLy < 1v,)-
weLyy,

Again, note that for all w € Ly,
n
N-—-n

Thus to prove Theorem 2 it is sufficient to show that for N sufficiently larger than n,

Pw(TLN < TUn) > Pw(TLN < TLn) =

Pip(tr,, < tp,) > cn /2 (43)

To show (43), we have

U
Pin(tL,, < TU,) = Z Py (Tsl_n < T, Sig,, =WE 31,,,) Py (tL,, < tU0,)

U
weSl)n

U
Z Pi, (rgl_n <Ty,S8 =wE Sl,n) Py (11, < 1U,).

U
weSlyn

Note that by invariance principle there is a constant ¢ such that for any sufficiently large n

and w € Sll{n,
Py (11, <1U,) >cC.
Thus
Pin(tL, <7t0,) > Py (rg,.,, <ty Se=we sf{n) . (44)
Then by (28) and (29), we have
Py (Tsl,n <71y, Ss € Sf{n) > %Pl-.n (TSLM < TV,;) > cn~ /2, (45)
Thus, the proof of Theorem 2 is complete. O

5 Total Harmonic Measure on Finite Sets
5.1 Upper Bound in Theorem 3

To show the upper bound in (9), without loss of generality we can assume B N Lo # &,
which implies that min,cpg{x2} = 0. Otherwise, for xo = (x1,0, X2,0) that has the smallest
height in B, define

B'=BU{(x1,0,/), j=0,1,---,x20— 1}.

By Proposition 2, we have Hg' > Hp and |B’| = |B| + minyep{x2}. Thus it suffices for us
to prove that for any connected and finite B with BN Lo # &,

Hp < C|B|. (46)
And we prove (46) inductively. When |B| = 1, we have proved the desired upper bound in
(17). Suppose we have proved (46) for all connected B with |B| < n, BN Ly # <. Then for

@ Springer



962 E. B. Procaccia, Y. Zhang

a Bsuchthat |B| =n+ 1, BN Ly # @, we first show that one can remove one vertex in B
and still have a connected subset intersecting Lg. In fact we prove something even stronger:

Lemma 5.1 For any finite and connected B C 7* with |B| > 2, there are always two points
X1, X2 € B such that B \ {x1} and B \ {x2} are both connected.

Remark 5 With Lemma 5.1, we can make sure that starting from |B| =n+ 1, BN Ly # &,
we can remove one point and it will not be in Lo if |B N Lo| = 1. Thus the new connected
subset still intersects L.

Proof Again, we prove this lemma by induction. For |B| = 2 or |B| = 3, it is easy to
check the lemma holds. Now suppose it also holds for all connected | B| < n. Then from the
assumption we also have that

Observation 1: for any connected B such that | B| < n and any xo € B¢ such thatd(xg, B) =
1, where

d(x, B) = inf {|x — y[},
yeB

there must exists an x € B such that B \ {x} is connected while d(x¢, B \ {x}) = 1.
To see this, note that if

yeB:lx—yl=1)[=2

then removing one point will not change the distance between x and the smaller subset. So
either x or x» in the inductive assumption is good. Otherwise, let yp be the only point in B
neighboring x¢. By the inductive assumption we have two points x; and xo which we can
remove, and one of them must not be yo. Thus we still have an x € B such that B \ {x} is
connected while d(xg, B \ {x}) = 1.

With the observation above, now for any connected B such that |B| = n + 1, we first
choose one point y arbitrarily from B. If B \ {y} is connected, note that |B \ {y}| = n and
that d(y, B \ {y}) = 1. Our observation above shows that there must be a y’ € B \ {y} such
that B \ {y, y'} is also connected and

d(y,B\{y.y'h =1

This implies that B \ {y’} = B\ {y, y’} U {y} is connected. And we have found our two
“removable” points. Otherwise, if B\ {y} is not connected, it must have at least two connected
components, say By and B». O

Remark 6 1f B \ {y} has more than two connected components, just choose two of them
arbitrarily.

Let
d(A,B) = inf —
(A, B) xeiflyeB”x v}
for all finite A and B. Noting that B is connected, we must have d(B;, B \ B;) = 1. But
since Bj is not connected to B \ (B; U {y}), we also have
d(B1,B\ (BiU{y}) > 2.

Thus one can now see d(y, B;) = 1 and d(y, B2) = 1. Then note that |B{| and |B,| are
both less than n. So by Observation 1 we again have there is a x; € Bj such that By \ {x1} is
connected and that

d(y, B\ {x1}) =1,
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which implies that (B; \ {x1}) U {y} is connected,
d((Bi\ {xi) U {y}, By) =1,

and that B \ {x1} = (B1 \ {x1}) U {y} U B, is connected. The same argument on B, also
gives that there is a xo € Bj such that B \ {x»} is connected. Finally note that B and B, are
different connected component, which implies that B; N B, = &. So we have x; # x> and
the proof of this lemma is complete. O
With Lemma 5.1, we continue with the inductive argument for the growth rate of Hp.
For any finite and connected B such that |B] = n + 1, BN Ly # I, there has to be an
x = (x1, x2) € B such that B=8B \ {x} is still connected and BN Lo # . By inductive
assumption we know that Hz < Cn. So now we can concentrate on comparing Hy and Hp.
Since B is finite, for any v € B sufficiently large N we have

Hp n(v) = Y P.(ty = TpuLy)-

z€LN
And thus
Hp n = ZHB,N(U) = Z P.(tp < 7114)
veB z€Ly
while
Hpn= D Pty <ty
z€Ly

Note that for each z € Ly,
P (tp < t1y) — P(t5 < 11y) = Pr(7x < 11y < Tf). 47)

Moreover, by strong Markov property,
P (tx <ty < T3) = P(tx = tBuLy) Px(TLy < 7). (48)

Combining (47) and (48), we have

Hgn — Hy y = P(try < 13) . Pu(te = TpuL,)
ZELN (49)

= Py(try < T3)Hp N(x).

If x = 0, note that in (18) we have Hp y(x) < 1, which implies that Hp y — HB,N < 1.
And for x, > 1, we have by Theorem 1

Hpn — Hp y =< CxaPe(try < Tp). (50)
And since B is connected. There must be a finite nearest neighbor path

Py ={x=Py, P, Py, P, €Lo)
connecting x and Lo, where |13,- — Isi+1| = 1. And since d(x, L) = x2, |x — Py, | > x3.
Define

iy =inf{i : |P; — x| > x2/2} — 1

and

Oy ={P1, Py, -+, Ps.}.
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One can immediately see that O, C B and that for all sufficiently large x5,
O: C B(P1,2x2/3).

Thus

1 1

Do <7p) = 7 Pe(tiy < 75) = Pp (g < 75,) = Po(rany3 < 75, _p,)-
And again by Theorem 1 of Reference [10],

—1/2
Po(taxy3 <75 _p) = Cx, 2 S

Combining (50) and (51) we have that there is a constant C independent of n, N and x, such
that

Hp N _HE,N <C.

Thus the proof of (9) is complete.

5.2 Lower Bound in Theorem 3

First, (11) is obvious. Now we show the lower bound in (10). Since B is finite, let x = (X1, X2)
be a point in B such that

x> = max{xp}.
xXeB

Note that by Proposition 2, Hp > Hjs. It suffices to prove (10) for the single element set {x}.
Recall that

Hizy v = Ex [number of visits to L yin [0, r{;}ULO]]
> Pr(tLy < T()ULg) zieanN E, [number of visits to Lyin [0, r{;}ULO]]
and that for sufficiently large N and any z € Ly,
E, [number of visits to L yin [0, t{;}ULO]]
> E, [number of visits to L yin io [0, Tsz]] =4(N —xp) > 2N.
To prove (10) it is sufficient to show that for sufficiently large x;

cxXp

}UL()) > m . (52)

P,; (‘ELN < ‘L’{i

Now let nz be the largest odd number less than x;. We define Bj(x, nz) be the L ball
centered at x with radius n,. Moreover we define

ST = 0B1(E. ne) N {1, 32). 32 = B2 + (nz + 1)/2)

be the upper corner of d By (x, n;z). By symmetry we have

1
1,
P; (TaBl()?,n;) < T%, Stypny € We +) =7 % (T By (F,n5) < Ti)-
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Thus we have

Pi(tLy < T(7)ULy)
1, .
> P (TaBl(i,n,;) < Tj, SraBl(;(_"i) e W +) mf1+ Py(tpy < TL;2)
yewy (53)

1 .
=~ Pe(TyB (e ns) < Tr) Inf  Py(tpy < 715).
4 yeWé’Jr

1+
Then note that for any y € W;
ng X2

Py(tpy < TL,;Z) = IN > m

Thus it is sufficient for us to prove that

Lemma 5.2 There is a constant ¢ > 0 such that for all sufficiently large x»,

Pz (TyB, () < Tx) = 54

c
log(X2)
Proof For S,, = (S1,n. S2,,) to be the simple random walk starting at x, consider the martin-
gale

_ n
My = (S — X2)* — .
2
Note that My = 0, so we have

Eiltop Gl < sup (2 — %)% < )?%
yeBBl(i,n;)

Thus

1
Pi(Tap(ing) = X3) < o (GR))

On the other hand, for simple random walk in 72 it was shown in References [5] and [6] that
for sufficiently large x7,

T

T
Pi(tz > ¥3) = —— + O > —.
¥ > 1) log(i3) <log2(23)> ~ 6log(x)

(56)

Thus note that
P (T8, Gonp) < Tr) = Pr(ToBy ) < iS, 5 > i%)
= Pi(ti > %3) — Pi(Top,ing) = X3, Tx > X3)
> Pi(te > 53) — Pe(Top, iuns) = 53)-
Combining (55) and (56), we have for sufficiently large x;,

Pi( ) > b4 1 - b4
t(ToB Gns) < Tk —_— >
DR = 5= Glog(Ra)  xa — Tlog(Ra)
which finished the proof of this lemma. O

With Lemma 5.2, the proof of (10) and thus Theorem 3 is complete. O
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5.3 Proof of Theorem 4

Now we show that the total harmonic measure is maximized (up to multiplying a constant)
by the vertical line segment V,, over all connected finite subsets with the same cardinality
and connected to Lo. And again we do this inductively. By (49), we have

Hy, n — Hy,_,,N = Hv, N(n) Py, (T, < Tv,_))- (57
According to Theorem 2, we have
Hy, n(yn) = c/n.
Noting that
Py, (try < tv,)) = Py, (T4 < T1,),

it suffices to prove that
c
Py, (t1, < Tv,) = —ﬁ (58)

On the other hand, recall that
Sin = 03B1( - n,[n/3])
and that
Sy =81aN{(x,y),y = n}.
We have

Py, (t1, < tv,) = Py, (Tsfj < rvn) inf Py(tz, < 1v,).
n yeS]Un

Again by invariant principle, there is a constant ¢ > 0 such that foranyn andy € S IU e
Py(try < 1v,) > C.

And then by (28) and (29),

C
Pyn (tsf{n < TV”) = ﬁ

Thus the proof of Theorem 4 is complete. O

6 Construction and Growth Estimate of DLA in H
6.1 Construction of a Growth Model

With the upper bounds of the harmonic measure on the upper half plane, in this section we
construct pure growth models which can be used as a dominating process for both the DLA
model in H and the stationary DLA model that will be introduced in a follow up paper.
Consider an interacting particle system £, defined on {0, 1}** where H is the upper half plane
with 1 standing for a site occupied while O for vacant, with transition rates as follows:

(i) For each occupied site x = (x, x2) € H, if xo > 0 it will try to give birth to each of
its nearest neighbors at a Poisson rate of \/x,. If xo = 0, it will try to give birth to each
of its nearest neighbors at a Poisson rate of 1.
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(i) When x attempts to give birth to its nearest neighbors y already occupied, the birth is
suppressed.

We prove that an interacting particle system determined by the dynamic above is well-defined.

Proposition 3 The interacting particle system & € {0, 1 satisfying (i) and (ii) is well
defined.

Proof The proof of Proposition 3 uses a similar idea as in Theorem 2.1 of Reference [4].
Although here the transition rates are no longer translation invariant or uniformly bounded,
we will show that although with high probability the time increment of each step goes to zero,
the summation over the increments diverges. The next idea is very similar to Borel-Cantelli
lemma. However, rather than using the result directly, we will have the proof of Borel-Cantelli
lemma embedded in our arguments. By doing so, we will be able to make sure the space-time
box in each step of our iteration is deterministic and can be explicitly calculated.

Our construction starts with introducing the following families of independent Poisson
processes: for all x = (x1,x2) and y = (y1, y2) that are nearest neighbors in H and e,
which is the oriented edge from x to y, let

(N xyen x -yl =1}

t€[0,00)

be a family of independent Poisson processes, where N;' 7Y has intensity /X3 V 1. Then let
Xy
(N7 v ey I =yl = 1,400
be a family of independent Poisson process independent of N; with the same intensities. Now
consider the space-time combination, H x (—oo, 00). From each x € H, we draw a vertical
infinite line to represent the double infinite time line at this site. Then for each e,_, y, at any
xX—y

time ¢ such that N, = ijy + 1, we draw an oriented arrow from (x, ) to (y, t). And

at ¢ such that leﬁy = N,xjy + 1, we draw an oriented arrow from (x, —¢) to (y, —t). 0O

Remark 7 Although the construction of our particle system actually only depends on the
transitions on the positive time line, by defining the transition for negative ¢’s we are able to
have better symmetry on the time reversal and thus formally simplify the proof.

We have an oriented random graph in the space-time combination. Then for any two
points (x, 1) and (x’, t;) with #; < 1, we define that (x, 7;) and (x’, #2) are connected or
(x,t1) = (x', 1), if there is a (finite) path in the oriented random graph starting from (x, 1),
that goes up vertically and follows the oriented edges ending at (x’, #;). Then

Definition 1 Forany &, € {0, I}H,w_e define & such thatforeachs > Oandx € H,& (x) = 1
if and only if there is a x” such that £y(x’) = 1 and (x/, 0) — (x, 7).

Once we prove that & is well defined, one can check that the conditions (i), (ii) are
satisfied. And to show that ét is well defined, it suffices to prove that in our oriented random
graph, with probability one (x, f) can be connected to only finitely many points (x’, 0) so
one can determine explicitly whether any of them is occupied in the initial configuration. To
be precise, for any x € H and any 7, T > 0, define subset

Rirx)y={yeH, st. ., T —t) = (x,T)} 59)

be the set of all possible ancestors of &r(x) at time T — ¢, and we will write Ry (x) in short
of Rr,7(x). According to the definition, it is easy to see that

Ry . 7(x) C Ry 7 (x) (60)
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forall0 <t <t and T > 0, and that
Ry, (x) C Ry, (x) (61)

for any 0 < 77 < T,. Thus, to show that Definition 1 is self-consistent, we only need to
prove that

Lemma 6.1 With probability one we have Rt (x) is finite for any T > 0 and x € H.
Proof Let

Rad,7(x) = sup |x—y|
YER: T (x)
be the radius of R; r(x) and Radr (x) = Radr 7(x). By (61), it is sufficient to prove that for
each given T > 0 and x € H we have

Radr (x) < oo (62)

almost surely. Then, we can take all rational numbers of 7’s and all x € H which are both
countable to get the lemma. Moreover, note that to show P(Radr(x) < oco) = 1, it suffices
to prove that for any € > 0,

PRadr(x) <o0) > 1 —e. (63)

For any given 7 and r > 0 and x = (xV, x®) € H, note that R, 7(x) is the collection
of all x’ such that (x’, T — t) is connected to (x, T). And for (x’, T — ¢t) and (x, T) to
be connected, there must be a path between them, i.e., there must be a sequence of times
T—t<t <th<--<t, <Tandx' = xg,x1,x2, -+ ,%, = x which is a nearest
neighbor sequence in H such that

Xj—1—>X; Xj—1—>X;
Ntl-l i Ntl-l— i 41

ift; >0, or

-1 Xi -1 Xi

N_,I_ = N_,I__ +1
ift; <0,foralli = 1,2,---,n. Thus it is easy to see that for any nearest neighbor path
X0, X1, X2, -+ , X, = x in ‘H, it is open between 7 — ¢ and T in our oriented random graph

only if there is at least one transition at each edge along the path during this time interval.
Thus we have

P(Rad;,r(x) = n)
< P(J an open path in [T — ¢, T Jending at xwith length n)

Z ]l[P(N;"“”" - N7 > 1)

X0,X1,X2, , Xp €Pyx p i=1
> [ <64>

X0,X1,X2,% ,Xn €Px p i=1

<" >

X0,X1,%2,° . Xn €Px n

IA

where P , is the collection of all nearest neighbor paths in H of length n ending at x, and
(2)
X

;1 stands for the y—coordinate of x;_j. O
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Remark 8 Without loss of generality, the inequalities above is written for 0 < ¢+ < T. By
symmetry the same hold for # > O and 7 < 0. Note that even when 7’ > Oand T — ¢ < 0,

the total number of transitions of Ny* '~ ins € [0, T] plus the total number of transitions

of Ny*™' 7 ins € [0, 1 — T] is again a Poisson random variable with intensity t,/xi(i)l. So
(64) still holds.

Then note that |Py ,| < 4" and that for each xo, x1, x2, - -+ , X, = x € Py, we have

@ <x@ 4 i=0,1,2,--,n.

n—i

Thus, we have

n n
[1x2 = |TT«®+0
i=1 i=1

which implies that

P(Rad; 7(x) = n) < (40)"

]_[(x@) +i). (65)
i=1

Now for each y € (0, 1/2), define

o0

My ="k kT g
k=0
Now for any € > 0 let
4(x@)”
v = | 262
-y
and
€
Sfi= = —m————.
64M,/x® + N;
By (65), we have
€ € 2/(1—y)y—i?/1=1)
P(Rad,, 7(x) = Nj) < —27M < — /077276 (66)
! M, M,
where
ko= [(x®)"77]. (67)

The last inequality in (66) follows from
@)Y
Ny = V(X)J > (2@ = g 1/0),
1—y - -
Then on the event
Ey = Ay = {Rad; r(x) < N1},

we define
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@2 2 @ 4 Ny

4(x @2
w622 |
-y
5 €
2 = ,
64M,/x@2 + N,
and
th =t + 6.
Then define event
Ay = N {Rads,, 77 (y) < N2}.

yeB(x,x@2—x@ 1)
One can first see that by the same calculation as in (66)
P(Ay) > 1 - > P(Rads, 71, (y) = N2)
yeB(x,x@2_x@ 1)

o1 (x @22y
16M,

where
k= |(x@2)' 77

Moreover, we have

(x(2),2)2 _ I:(X(Z),Z)l—y:lz/(]—lf)
while
=) < 2%,
Thus
P(Ay) = 1 - (2k2)2/('*1’)ﬁ2_k;/(1—y>
>1-— ikg/(l—y)z,kzy/(l—y).

y
Then note that for any x > 1, we have by calculus
_ 4
(xl_y —|—4)1/(l st lixy

while

(xlfy_i_l)l/(l—)/) <xt s 1 (x17y+1)y/(]—y)

<x+ %(le—y)l//(l—)/)
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We have that
(x@) = (@4 M) T e (D) 1, (¢ @) 4 4) (70)
and that
o= (x@2) 7 et + 1,k +4).

Using exactly the same argument on

x@3 =x@2 4 N,,
and

ks = L(x@?)"77),
we have

ks € ko + 1, ko +4).

Then we note that the event A depends only on the transitions within B(x, N1) x [T —11, T],
while the event A, depends only on the transitions within B(x, N1 + Np) X [T —t, T — t1].
By the independence of increment in a Poisson processes, we have that A; is independent of
A», and thus for E, = A1 N Ap,

— /(=y) _ /(=y)
P(Ez) — P(Al)P(Az) > <1 _ ikf/(l y)z—ki/ v ) . (1 _ Lkg/(l V)z—kg 14 > )
M, M,

Finally, recalling the definition of Rad,, 7, one can immediately have on E»

Rad;, 7(x) < 13— x® < .
Repeating such iteration, i.e., for all n > 2 let
x@n _ @n=1 N, 1.
4 x(2),n Y
Nn = L ( ) s
l—y
€
(Sn = B
64M, x@n 4 N,
h =th—1+ 8}17
An = ﬂ {Radans’r_tn—l(y) < Nn}z
yeB(x,x@:n—x2) 1)
and
E,=E,—1NA,.
Consider

Under Eo, we have for any n > 1,

Rad;, 7(x) < x®"1 _x@ < o0, (71)
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At the same time

n

n n € € 1
=) 8=) 64M, /5O + N, ~ 64M, ; [ @it

i=1 i=1

(72)

Moreover, by (70) we have for each i
(x(z),i)lfy _ (x(2),i—l + N,-,l)lfy c ((x(z),i—l)lfy +1. (x(2),i—1)1*1/ +4) 73
which together implies that
(@0 < (¥ 44 (74)
Combining (72)—(74) we have
= -1/2-2y)

> 643@ S [E®) 7 +4i] . (75)

i=

Recalling thaty € (0, 1/2),1/(2—2y) < 1, which implies that the series in (75) is divergent.
So for any T > O there is an(T, y,€) < oo such that foralln > n(T, y,€),t, > T,

Radr(x) C Rad,, 7(x).

Thus we have on the event Eo, Radr(x) < oco. On the other hand, Noting that by the
independence increment of Poisson processes, we have A, Az, --- gives a sequence of
independent events, and that according to our iteration for each i

_ /-y
P(A)>1-— ik?/“ M=k S e (76)
M,
with
ki €lki-1+1,ki—1 +4). 77

Thus for sufficiently small € such that for all x € (0, €), log(1 — x) > —2x and any n > 1,
we have

n n
P(E,) —1 = log (P(E,)) = log (1_[ P(Ai)> > ZZ[P(Ai) 1
i=l i=1
By (76),
P(E,))—1> 2e Xn:kZ/(l—y)z_k_}//(l—y)
' - MyT i '

Then noting that by (77) k; > k;—1 + 1 and the fact that all k;’s are integers by definition, we
have

n

_ /(=)
ZkiZ/(l P < my
i=1

and thus

P(E,) > 1 — 2e. (78)
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Note that the right hand side of (78) is independent of n. We have P(E~) > 1 — 2¢. And
since € is arbitrarily chosen, P(Radr(x) < oo) = 1 which completes the proof of Lemma
6.1. O
Thus the proof of Proposition 3 is complete. O
With the proof of Proposition 3, one can easily apply the technique of Poisson thinning
to define the following particle system where time is slowed down in-homogeneously and
define a dominating process for the future stationary DLA model i.e., we can consider the
slower interacting particle system £ defined on {0, 1} with transition rates as follows:

(i)’ For each occupied site x = (x1, x2) € H at time ¢ > 0, it will try to give birth to each of
V2

JVi+1T

(ii)> When x attempts to give birth to its nearest neighbors y already occupied, the birth is

suppressed.

its nearest neighbors at a Poisson rate of

For £ we have

Corollary 1 The interacting particle system & e {0, Y™ satisfying (i) and (i)’ is well
defined.

Proof We construct & with the same families of Poisson processes. Recall that in the proof
of Proposition 3, for all x = (x1,x2) and y = (y1, y2) in K with [x — y| = 1 and ey,
which is the the oriented edge from x to y,

{Ntx—w, x,y €H, |x—y|=1}

is a family of independent Poisson process with intensity of N;'~* equals to /x2. Moreover,
for each e, ., we define ;> }o° | be a i.i.d. sequence of random variables uniform on
[0, 1]. And we make the sequences for different edges independent of each other and also
independent of the Poisson processes previously defined.

Now consider the space-time combination, H x [0, c0). From each x € H, we draw
a vertical infinite half line to represent the time line at this site. Then for each e, ., at
any time ¢ such that Ntx Y =pn= N,xjy + 1, we draw an oriented arrow from (x, t) to
(y, 1) if Uy~ < 1/4/t + 1. Thus we have another oriented random graph in the space-time
combination which is a subset of the one we have for & . By Proposition 3 we can see the
following particle system is well defined. O

Definition 2 For any éo e {0, 1}*, we define §, such thatforeacht > Oand x € H, §, x)=1
if and only if there is a x’ such that £y(x") = 1 and (x/, 0) is connected to (x, 7) in the new
smaller oriented random graph.

6.2 Proof of Theorem 5

By Theorem 1 we have seen that forany B,x € B\ Lpandanyé = x — y with |[x—y| =1,
Hp(é) < Hp(x) = Cy/xz
for some C > 1. Moreover, by (18), if x = 0,

Hp(é) < Hp(x) < L.
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We construct our DLA model on H as follows: First, recall that
(N7 xoyeH, Ix—yl =1}

is a family of independent Poisson processes, such that the intensity of N, equals to /x>
and that {U; }o2 ; is anii.d. sequence of random variables uniform on [0, 1] independent

of the Poisson processes. Let Ao = {(0, 0)}, and for any t > 0,

e If thereisan ¢ = x -y su_ch that x € A,_ and y ¢ A,_, where Nf_)y = n and
N7V =n—1,weletA, = A,_ U {y}if

xX—=y < HA,, (2)
n = C\/E .
e Otherwise, A, = A,_.
To prove Theorem 5, we first need to show

Lemma 6.2 For each time t, A, above is with probability 1 well defined and finite.

Proof To prove Lemma 6.2, we construct an event with probability one such that A, is well
defined and finite on this event. For any x € H and any 0 <t < T, define subset

Lrx)={yeH, st. (x,t) = (y, 1)} (79)
and let

Zir(x)= sup [x—yl.

Y€l T(x)
Following exactly the same argument as in Lemma 6.1, we have with probability one
Zo.c:(0) < oo.

Under {Zy,c;(0) < oo} one can easily put all of th_e finite Poisson transitions within the space
time box Zp,,(0) x [0, ] in order and construct A, explicitly over finite steps. Moreover, by
definition we can always have A; C Iy, (0) thus A; is finite. O

Let A, = A¢y, then it is easy to check A; has the same dynamic as in Theorem 5 while
being almost surely well defined and finite at the same time. Now, to finish the proof of
Theorem 5, one may again follow the argument as in Lemma 6.1. O

Remark 9 The proof of Theorem 6 actually contains all that is needed in the proof of Theorem
5 (and more). Thus we will not present the details of basically the same thing for a third time.

6.3 Proof of Theorem 6

To prove (14), since we have A; = Aci C Io,c:(0), it is sufficient to show for any # > 0 and
integer m > 1

E [Z0./(0)"] < oo. (80)

The proof here is similar to the one for Lemma 6.1. However, since some more delicate
estimates on the upper bounds of probabilities are needed, we still provide a detailed proof
for the completeness of this paper.
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Recall (64), we have for any ¢ and n,

P(Zo,:(0) = n)
< P(3 an open path in [0, #]starting at Owith length n)

n
< > [Py = NG 7 = 1)

X0,X1,X2,7 X €Pp o i=1

n—1 3
R o [

X0,X1,X2,7+ X €Pn 0 i=1

<" >

X0,X1,X2,% ,Xn €Pn 0

1)

Here we use P, o to denote the collection of all nearest neighbor paths starting at 0 with
length n. Then note that [P, o| < 4" and that for each 0 = xo, x1,x2, -+, x, € Py 0, We
have

P <ii=01,2,-,n

Thus, we have

which implies that
P(Zo,(0) > n) < (41)"/n!. (82)

Now for each y € (0, 1/2), define

o0
My = YK/ R o

k=0
Now for any € > 0 let
4,
Ny = LLJ i
-y
and
) f = €
VYN v
By (82), we have
€ Ni
P(To.(0)>N)y <[ —° N
on == (16MNNT> v (83)
4m 4m )
=< E716_’\’1 < ka/(lfy)z_kly/(l »
M, M,

where k; = 1. Then on the event

Ey =Ay ={Zp,;,(0) < Ny},
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we define
@2 =14+ Ny,
4m(x@2)
Ny=| ———— | >4m,
l—y
5 €
2 = )
64M,/x@-2 + N,
and
th =1 + 6.
Then define event
Ay= () (Zun®) <N

yeB(0,x®:2—1)
One can first see that by the same calculation as in (66)

P(A)=1— Y PZyu() =N
yeB(0,x®-2-1)

. Ny | x@24 N2
> 1 —4(x@2)? ( ) j (84)
16M,\/x@-2 + N, jle;lzl
> 1 (x2)? et KK/
- 16M,
where
1—
ky = [(x®2)77 ]
The last inequality in (84) results from
A (x@-2)Y
Ny = m(x??) > (x@2) > K=
1—y !
Moreover, we have
(x(2)72)2 _ I:(x(2)’2)177/i|2/(17y)
while
@) <op,,
Thus
4m
2/(1—y) € _pr/=y)
P(Az) > 1— (2k —27"
(A2) = (2k2) 164,
(85)

4m B
>1-— G—kg/(lﬂ/)z—k;’/“ y).
M,
Then note that for any x > 1, we have by calculus

)1/<1—y> 4m

(xl_y+4m >x+
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while
_ 1 _
(xl—y + 1)1/(1 ) <x+ . (xl—)/ + 1)3//(1 7)
1 _
<x+ ] (2x17y)1’/(] V)
<x+4+ xV
-y
L4meJ
<x—+ .
l-y
‘We have that
- _ 4m - 17 N7
()6(2)’2)1 Y = (l +N1)] Y = (1 + L 1m J) € (2, 1 +4m) (86)
-V
and that

ko = L(x®2)' 7] € (ki + 1, ki + 4m)
since k1 = 1. Then using exactly the same argument on

x@3 = @2 4 N,

and
1—
ky = 1(x®) 77,
we have
1- 1- 4m (x@2)” l_y
(x(z),3) v _ (x(z)’2+N2) v [x@2 4
11—y 87)
€ (PH1Y 41, @@ 4 am)
and thus

k3 € (ko + 1, ko + 4m).

Then we note that the event A; depends only on the transitions within B(0, N1) x [0, #],
while event A, depends only on the transitions within B(0, Ny + Nz) x [t1, t2]. By the
independence of Poisson process increments, we have that A1 is independent of A;, and thus
for E, = A1 N Ay,

4m 4m
_ /(=y) _ /(=y)
P(E) = P(ADP(Ay) > (1 gl R ) : (1 A )
M, M,

Finally, recalling the definition of Zy ;, one can immediately have on E>
Zo,,(0) < x@3 < o0,
Repeat the iteration above, i.e., for all n > 3 let

X = @l N,

l—y
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€
 64M,\/x@D 1 +N,

th =th—1 + by,

Av= () @) < Nak
yeB(O,x(z)”fl)
and
E,=E, 1NA,.

Consider

o0

ES, =) An.

n=1

Under ES, we have for any n > 1,
To., (x) < xPF < 00, (88)

At the same time

n

ty = Z = Z € Z 1 .
64M, m 64M, = /x D+

i=1

(89)

Moreover, by (87) we have for each i
(x(z),i)lfy _ (x(Z),i—l + Ni,l)lfy c ((X(Z),i—l)lﬂf +1, (x(2),i—1)1*)f +4m) (90)
which together implies that
(x®)77 < 4im. 1)
Combining (89)—-(91) we have

4 1/2-2y)
I > 64M Z( im)~ (92)

Recalling that y € (0,1/2), 1/(2 — 2y) < 1, which implies that the series in (92) is
divergent. So for any + > 0 there is an ngp < oo such that for all n > nog, t, > t, and that
thg—1 < 1.

Zp:(0) < IO,z,,O 0).
And by (88) and (91), on ES,
To.4,y (0) < xPH < [dm(ng + 1]V

Thus we have on the event E_,

To.4(0) < [4m(no + 1]VI77) < @m)/1=1) ,n(l)/a—y) ©93)
On the other hand,
no—1
1/(2-2y) ce L, (=21)/2=27)
t=>thy—1 = 64M -i)” > 64M (4m)1/(2 ) ng . (94)
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Combining (93) and (94), we have on the event ES there is a constant C,, ,, depending on
m and y but independent of € such that

Zo,:(0) < Cm,yé—z/(l—y)tz/(l—zy)_ ©5)

Note that by the independence of Poisson processes increments, we have that Ay, A, - - -
gives a sequence of independent events. And according to (84) and the construction in our
iteration, we have for each i

4m
— /(=y)
P(A) = 1= S0 (96)
MV
with
ki= L@ ) € himt + 1 ki + 4m). 97)

Thus for sufficiently small € such that for all x € (0, €), log(1 —x) > —2x and any n > 1,
we have

P(Ey) — 1 > log (P(Ey)) = log (1"[ P(A») =23 [P(4) — 1.

i=1 i=1

By (96),
2% Ly /(e
P(Ey) =1z === ki
Y oi=1

Then noting that by (97) k; > k;—1 + 1 and the fact that all ;s are integers by definition, we
have

n
_ /(1=y)
SR <y,
i=1
and thus
P(E,) > 1— 2. (98)

Note that the right hand side of (98) is independent of n. We have P(ES ) > 1 — 2% Now

let
I-y
<1>W
€; = - .
R

Then we have for each j sufficiently large,

P Zo,: (0)™ S /=) _ p (I 0) > C 6—2/(]—)/)t2/(1—2y)>
(Cony)ym2m/0=20) = 7 o "t

(99)
< 1—P(E) <2¢}"

IO,I(O)m ) 1 2(1-y)
(G -1)=2(G) o
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Noting that y < 1/2 and thus 2(1 — y) > 1,

i P ( Zo.,O" > j) < 00
o (Cm’y)mIZm/(l—Zy)

which implies that E[Zy ,(0)"] < oo. m]
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