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Abstract—Process-based numerical simulation, includ-
ing for climate modeling applications, is compute- and
resource-intensive, requiring extensive customization and
hand-engineering for encoding governing equations and
other domain knowledge. On the other hand, modern
deep learning employs a much simplified and efficient
computational workflow, and has been showing impres-
sive results across myriad applications in computational
sciences. In this work, we investigate the potential of deep
generative learning models, specifically conditional Gen-
erative Adversarial Networks (cGANs), to simulate the
output of a physics-based model of the spatial distribution
of the water content of mountain snowpack, or snow
water equivalent (SWE). We show preliminary results
indicating that the cGANs model is able to learn map-
pings between meteorological forcing (e.g., minimum and
maximum temperature, wind speed, net radiation, and
precipitation) and SWE output. Moreover, informing the
model with simple domain-inspired physical constraints
results in higher model accuracy, and lower training time.
Thus Physics-Informed ¢cGANs provide a means for fast
and accurate SWE modeling that can have significant
impact in a variety of applications (e.g., hydropower
forecasting, agriculture, and water supply management).

I. MOTIVATION

In many climate modeling applications, direct obser-
vation on large scales of the environmental variables
of interest is challenging, requiring instead the use of
computationally-expensive numerical simulation mod-
els [1]. Such numerical weather and climate models
are based on a series of coupled partial differential
equations (PDEs) that aim to represent the dynam-
ics, thermodynamics, radiative, and mass-flux processes
within the major components of the Earth system in-
cluding the atmosphere, cryosphere, land-surface, and
ocean. These PDEs are often representative of the fore-
front of scientific understanding - utilizing fundamental
physics, hydrology, and climatology theory - but are
computationally-expensive to solve, requiring the use of
high-performance computing (HPC) environments and
highly-specialized expertise to set up and operate [2].
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In addition, such process-based models of realistic
systems often employ parametrizations to resolve sub-
grid processes that are generally poorly understood,
making it hard to decipher model sensitivity and bias,
especially when all components of the Earth system are
coupled [2]. One such variable is the aforementioned
SWE, requiring the use of a chain of expensive nu-
merical models for simulation. Empirical SWE data is
typically highly sparse or even completely unavailable
due to its difficulty in acquisition from mountainous
regions, as well as the high expense associated with
maintaining measurements at adequete temporal and
spatial resolutions [3]. Moreover, SWE has many im-
portant use cases across sectors of high societal impact,
e.g., water supply, hydropower, and agriculture [4].
Challenges in snowpack modeling. We focus on two
current shortcomings of process-based models. First,
the forcing uncertainty in key meteorological variables,
including precipitation amount and phase, air temper-
ature, and humidity, is shown to be comparable to or
larger than snowpack model structural uncertainty [5].
Second, snow models heavily rely on temperature de-
pendent thresholds to determine the phasing of incident
precipitation and the magnitude and duration of the
cold content of snow, or the interplay between snow
density, depth, and temperature prior to melt. Therefore,
a key outstanding need in the community would be to
test how biases in precipitation intensity, duration and
frequency and phase drive divergence in the snowpack
accumulation season and how biases in surface energy
and mass flux drive early spring melt [6].

II. METHODS, DATA, AND MODELS

Data. For all experiments presented here we have used
a reanalysis dataset developed by Livneh[8] (L.15) for
the California Sierra Nevada mountain range. The L15
data was originally obtained by combining hydrologic
simulation runs of the Variable Infiltration Capacity
(VIC) model bounded by spatially interpolated in-
situ meteorological station measurements. This dataset
contains meteorological data and simulated SWE, used
to train, assess, and constrain cGAN model. All data
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Fig. 1. Architecture and diagram of the conditional GAN used, a heavily modified variant of Pix2Pix [7]

channels are resized and normalized from 321x321
(4km grid size) to 64x64 (17km grid size).
Physics-informed conditional GANs. We formulate
our emulation problem as an image-to-image translation
task. The goal is to transform an image from domain X,
gridded meteorological variables, to domain Y, SWE
grids. The pipeline of training a GAN emulator of SWE
is illustrated in Figure 1. In our setting, training samples
from the two domains X and Y are assumed paired,
{(=%,y")}¥, as in [7]. Here we denote by x samples
from domain X and by y samples from domain Y.

We have incorporated certain domain knowledge
into our model via additional penalty terms into the
optimization loss function, as follows:

e Areas of higher elevation typically have larger
amounts of snow (and therefore SWE), and we add
penalties to large errors in such areas accordingly;

o As a significant portion of the data we study covers
water areas such as the Pacific Ocean, where no
snowpack can exist, we penalize the model harshly
for placing SWE values in these areas;

o We penalize the difference in total SWE between
cGAN solutions and physics model output, to ensure
that total stored water mass is properly estimated.

Training details. As in [9], we modified the standard
GAN training scheme by first training the generator
purely on L; loss term to estimate the conditional mean
(for the first 5 epochs), and later adding an adversarial
loss term to teach the generator finer details. We have
also observed that this slight modification enables faster

convergence to better solutions (with lower overall loss
values). All deep learning training and inference was
performed on a single consumer Graphical Processing
Unit (GPU), the NVIDIA GTX 1080ti.

III. EVALUATION

Having trained the cGAN model as described above
on a training set of 8 years of data (input/output pairs
as described above at daily resolution), we have first
tested its performance on a holdout sample of two
years of data. This is a standard regression setting,
for which we compute typical performance metrics.
Even in this much simplified setting where we don’t
explicitly model time, the model achieves a mean
absolute percentage error (MAPE) of 9.54%, indicating
that it has learned a reasonably accurate mapping from
meteorological and topographical data to simulated
SWE.

In Figure 3 we show a comparison between cGAN
and physics-based model output over 2-week periods
at the end (June/August), start (November), and peak
(April), respectively, of the SWE season (left, middle,
and right panels in the figure, respectively). These
are key periods of interest to mountain snowpack re-
searchers and water resource managers, as they are
check-in points in the lifecycle of mountain snowpack
dynamics. We show the histograms of normalized pixel
values of cGAN output (green line) and physics-based
model output (black line). Note that the cGAN model
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Fig. 2. Three samples (per row) of model inputs (meteorological forcings) on the first 6 columns, physics model output (column 7).
c¢GAN output (column 8) and difference between physics model and cGAN (column 9). Rotated to match Sierra Nevada range (left).
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Fig. 3. Histograms of normalized pixel values comparing cGAN (green) and physics-model (black) across key snowpack seasons.

is able to accurately recover the distributions of values
of the physics-based model.

Next, we calculate and plot the power spectral density
function (PSD) for both the cGAN and physics-based
model output. This metric incorporates information
across all spatial frequency scales, and is defined as:

PSD =10log,, | F(p(SWE,SWE)?, (1)

where F denotes the Fourier transform and p the
correlation coefficient, defined as usual. In Figure 4 we
show the PSD profile comparisons for the key SWE
seasons. Here too we observe strong performance -
the spectral properties of the outputs the cGAN and
the physics model are very similar, indicating that the
cGAN performs well not just at 'memorizing’ averages,
but is also capable of recreating high frequency details.

Lastly, we have validated our hypothesis that infer-
ence time with a trained cGAN is extremely fast, taking
less than 10 seconds to generate over 1000 simulated
SWE grids on a GTX 1080ti, a consumer GPU. This
suggests a speedup factor of around 1000x compared to
just the raw runtime of a VIC model used to generate
the SWE grids, which by our estimates takes ~ 100

core-hours to simulate 100 years of SWE output. This
speedup will allow for a much faster iteration to analyze
how changes in meteorological forcing lead to changes
in SWE, a topic of future research.

IV. INCORPORATING PHYSICS: ABLATION STUDY

To understand the effect of the physics-informed
constraints and other inputs to our model, we performed
an ablation study. We found that the inclusion of
one input channel in particular, Net Radiation (Ne-
tRad) - a measure of the difference between incoming
and outgoing atmospheric radiative energy - increased
performance over all measured metrics. This matches
up well intuitions from atmospheric science, where
satellite radiometer data is used for the estimation
of snowpack variables. We also find that our physics
informed penalties improve performance on all metrics
and convergence rates. This falls in line with physical
intuition - penalizing physically incoherent solutions
results in better performance.

We found that including ‘physics penalties’ improved
performance across metrics. The inclusion of a penalty
for the GAN assigning snow on known water areas
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Fig. 4. Power Spectral Density of cGAN and Physics Model over different hydrologic seasons: respectively the end (Summer: July/August),
start (Fall/Winter: November/December), and peak (Spring: April/May) of SWE season.
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Error metrics computed during ablation study. Each bar label represents the penalty or channel that was removed for the

corresponding experiment. We observe that the inclusion of the Net Radiation channel and Height penalty both improve model quality,
as the models excluding them resulted in significant increases in error.

greatly improved convergence during training. The in-
clusion of the height-based penalty of SWE errors at
high altitudes made the model far stronger at generating
sparse gridded SWE outputs and at recreating the tails
of distributions as seen in Figure 3. The penalty on total
SWE error did result in a slight increase in mean error,
but forced the model to generate solutions with stronger
physical coherence than as indicated by MAPE alone.

Figure 5 contains representative metrics logged for
each parameter combination in the ablation study. Met-
rics computed are Mean Squared Error (MSE), Mean
Absolute Error (MAE), Symmetric Mean Absolute Per-
cent Error (SMAPE), and Mean Arctangent Absolute
Percent Error (MAAPE). The traditional Mean Abso-
lute Percent Error (MAPE) was also computed, but we
found it not useful as a metric for model performance
in SWE due to the frequently sparse maps - ’actual’
data points are frequently zero, resulting in large error
amplification. We recommend SMAPE and MAAPE as
alternative metrics to correct this very problem.

V. FUTURE WORK.

The utility of deep learning for simulation of complex
spatio-temporal systems such as SWE lies not just in
the ability of models like the cGAN to quickly and
efficiently produce accurate SWE predictions, but also
in the ease of augmenting models and training schemes
to better incorporate domain specific intuition. Such
knowledge could be incorporated as “soft” constraints
on training as done here, or as “hard” constraints di-
rectly incorporated into the design of the deep learning
architectures - in both cases encouraging the model to
generate physically coherent solutions.

In addition, our work so far has modeled SWE as
an 7.7.d. process, focusing only on spatial correlations
without any explicit temporal modeling. Since SWE is
fundamentally a complex spatio-temporal process, new
architectures must be designed explicitly around coher-
ently modeling both its spatial and the temporal aspects.
Furthermore, the current cGAN based approach of
generating SWE maps is purely deterministic and does
a poor job of modeling the uncertainty and stochasticity
associated with hydrometeorological variables. Several
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GAN architectures created for the generation of diverse
and non-deterministic outputs are being considered.
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