Proceedings of the ASME 2019

International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference
IDETC/CIE2019

August 18-21, 2019,Anaheim, CA, USA

DETC2019-97670

AN AGENT-BASED MODELING APPROACH FOR CLEAN TECHNOLOGIES
ADOPTION USING THEORY OF PLANNED BEHAVIOR BASED DECISION-MAKING

Mohammad H. Pakravan
Oregon State University
Corvallis, Oregon, United States

ABSTRACT

Technology adoption in low-income regions is among the key
challenges facing international development projects. Nearly
40% of the world’s population relies on open fires and
rudimentary cooking devices exacerbating health outcomes,
deforestation, and climatic impacts of inefficient biomass
burning. Clean technology alternatives such as clean cookstoves
are among the most challenging technologies to approach their
target goals through sustainable adoption due to lack of
systematic market-driven design for adoption. Thus, a method is
needed to provide insight regarding how target customers
evaluate and perceive causes for adopting a clean technology.
The holistic approach of this study captures the three main
aspects of technology adoption through lenses of social
networks, individual and society scale beliefs, and rational
decision-making behavior. Based on data collected in the Apac
region in Northern Uganda, an Agent-Based Model is developed
to simulate emerging adoption behavior in a community. Then,
four different scenarios investigate how adoption patterns
change due to potential changes in technology or intervention
strategy. These scenarios include influence of stove
malfunctions, price elasticity, information campaigns, and
strength of social network. Results suggest that higher adoption
rates are achievable if designed technologies are more durable,
information campaigns provide realistic expectations for users,
policy makers and education programs work toward women’s
empowerment, and communal social ties are recognized for
influence maximization. Application of this study provides
insight for technology designers, project implementers, and
policy makers to update their practices for achieving sustainable
and to the scale clean technology adoption rates.
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1. INTRODUCTION

Technologies created to address needs in low-income regions
play a crucial role in community development and
empowerment. Ten out of the seventeen Sustainable
Development Goals can be met through successful adoption of
appropriate technologies like clean cookstoves, water filtration
systems, renewable energy technologies, and waste management
processes [1]. Technology adoption is particularly important for
clean technologies because ultimate goals will be achieved only
if inefficient, conventional practices are successfully displaced
by new technologies. Therefore, it is important to study the
determinants of adoption of such technologies in the early phases
of design. The information provided by investigating the
adoption behavior of clean technology users can enable
technology designers and project implementers to effectively
reshape their approaches to achieve higher market penetration
and technology usability.

The decision to adopt is a complex process that involves
individual attitudes toward specific behavior, beliefs about
personal ability to control that behavior, and perceptions of
social pressures for or against certain behaviors. Systematic
integration of these three categories of beliefs with utility
maximization theory could lead to better understanding of user
decision-making behavior in terms of clean technology adoption.
Therefore, in this work, individual scale utility functions based
on personal beliefs, evaluations, and perceptions are formulated
according to the Theory of Planned Behavior (TPB). Then, the
developed utility functions are applied to an Agent-Based
Modeling (ABM) system to simulate community-scale emerging
adoption patterns within social networks. This model is then used
to simulate the impacts of various technology design and policy
decisions for a clean cookstove project in a rural community
based on data from Apac, Uganda.
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2. BACKGROUND

Community scale technology adoption is a phenomenon that
emerges from individual households’ decision-making behavior.
There are two main attributes that distinguish technology
adoption in groups of people and hence should be taken into
account in the models. First, households independently make a
volitional decision whether to adopt an available technology or
not. Therefore, each household is an autonomous decision-
making agent. Second, households communicate their decisions
within their networks and throughout their communities. One
main reason for such communication is that humans’ choices are
social, meaning that social contexts are likely to influence choice
behavior of individuals [2]. To recognize both these conditions,
ABM can be used. Agent-based simulations provide a unique
opportunity to draw community-scale conclusions based on
individual decisions. Such simulations are dynamic, hence long
term behavior of agents could be traced through time as their
behaviors may update or technologies change [3]. In addition,
ABM provides the structure for agents to communicate through
their social networks and update their decisions based on their
peers’ decisions. Throughout the literature, ABM is among
frequently applied simulations for analyzing coupled human and
natural systems [4].

Models for the behavior of agents to reflect the process of
technology adoption within ABMs can be described in a variety
of ways. The Diffusion of Innovation (Dol) theory developed by
Everett Rogers is among the well-known theories that captures
multiple aspects of adoption from technology itself to methods
of communication, adoption timing and attributes of the
adopters. In terms of technological innovation, key factors that
influence adoption according to Dol include comparative
advantage, compatibility, complexity, trialability, and
observability [5]. Rogers further expands drivers of adoption to
people through a five stage decision making process described
by knowledge, persuasion, decision, implementation and
confirmation. As a result, every decision maker ends up being a
member of one of four general groups that forms the society
based on when they may adopt a technology, including early
adopters, early majority, late majority, and laggards [5]. Dol is
among the widely used models across several branches of
science since its introduction in 1962 [6]. Although Dol is among
robust theories for technology adoption, its focus is more toward
technology (innovation) rather than decision-maker’s intentions
[7].

Focusing on the role of users in technology adoption, the
Technology Acceptance Model (TAM) developed by Davis
relies only on two factors to describe adoption behavior
including perceived usefulness and perceived ease of use [8].
Perceived usefulness refers to the level at which individuals
perceive a technology would enhance their performances.
Perceived ease of use is defined as an individual’s perception
regarding how easy it is to use a technology. A meta-analysis of
TAM suggests that the theory provides valid and robust models
of adoption and has the potential to be expanded for a wider
domain of applications in different branches of science [9]. One
of the main limitations of TAM is capturing social effects on

decision-making for technology adoption [10]. Further works on
robustness of TAM model led to an extended version of TAM
called TAM2. In this version two general categories are added to
the original TAM model to capture social influence process such
as social norms and cognitive instrumental processes like results
demonstrability [11]. A comparison between TAM2 and TPB
suggest that TAM2’s attributes are captured by TPB which is
more parsimonious than TAM2 [12].

Inspired by categories of attributes that are utilized in Dol,
and TAM as well as other models of technology adoption, the
Unified Theory of Acceptance and Use of Technology (UTAUT)
is developed as a holistic approach [13]. The attributes that
determine adoption in UTAUT include performance expectancy,
effort expectancy, social influences and facilitating conditions. A
literature review on 450 applications of UTAUT suggests that
although the model is robust to predict adoption behavior, the
complexity of the model components are a barrier for many case
studies[14]. Computational efficiency of the model is
particularly important for investigating adoption in data scarce
settings, so a more resource-efficient model is needed.

One of the most parsimonious models of behavior modeling
is the Theory of Planned Behavior (TPB). Developed by Ajzen
[15], TPB explores the belief-based factors that formulate
intentions of individuals to make a choice. According to TPB,
three categories of attributes, referred to as TPB constructs,
determine intention, which is main factor that leads to behavior.
These three constructs are a user’s Attitude Toward the Behavior
(ATB) based on behavioral beliefs, Social Norms (SN)
surrounding perceptions of a behavior based on normative
beliefs, and Perceived Behavioral Control (PBC) to conduct an
action based on control beliefs [16]. TPB is one of the well-
established models in the literature for investigating the human
side of adoption for technologies that are already in the market
and social influences that could contribute to their adoption [17].

TPB has been integrated with ABM for studying technology
adoption in domains such as organic farming practices [18],
environmental innovations [19], natural gas vehicles [20], and
smart residential electricity meters [21]. A review of the
literature suggests that TPB is among the most robust models for
analyzing adoption behavior from the wuser acceptance
perspective [10]. In addition, previous works of authors present
successful application of TPB to explain user behavior with
respect to ICS adoption in low-income contexts [22], [23].

It is conventional wisdom that society plays an important
role in shaping individuals’ behaviors. Many technology
adoption theories reflect the role of society in their models such
as Dol, TPB, and UTAUT. Rogers presents the role of social
networks in Dol through influences of opinion leaders and
critical mass. He further explains why the adoption curve,
oftentimes represented by an S-shape results from the
assumption that if opinion leaders adopt a technology, the
adoption reaches a critical mass after which other society
members adopt the technology in an exponential rate [5]. In
addition to role of opinion leaders, Rogers presents close spatial
proximity to technology adoption leads to “neighborhood effect”
which increases the likelihood of adoption. According to TPB,
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social norms are one of the main determinants of behavioral
intentions. Formed by normative beliefs social norms highlight
individual’s evaluation regarding society’s norms and the
importance of complying with them [15].

Researchers have emphasized using social networks to
describe the role of society in technology adoption [24]. A review
of literature related to characteristics of social networks for
investigating technology adoption using ABM suggests that
adoption networks follow small-world network characteristics
[25]. Small-world networks, as opposed to completely regular
and completely random networks, capture how the randomness
of connecting nodes could be clustered by network parameters
like characteristic path length [26]. The path length and dynamic
properties of small-world networks presented by Watts and
Strogatz could convey two important aspects of technology
adoption. First, path lengths could represent proximity of
households and neighborhood effects. Second, the network is
dynamic based on a network update probability attribute that
could represent households’ changes in peers, preferences and
intra-communal ~ communications. = These two  main
characteristics have led multiple technology adoption studies
using ABM to implement small-world network [20], [21].

In addition to making decisions based on the influence of
society, the idea that individuals choose alternatives that
maximizes their utility is widely regarded in neo-classical
economic theories. In this study, Discrete Choice Analysis
(DCA) is used to model choice behavior from a set of mutually
exclusive alternative technologies using the principle of utility
maximization [27]. The integration of DCA with ABM is a
common practice throughout literature to capture rational
decision making, e.g. [28]. The rational process of utility
maximization is analyzed based on different attributes
incorporated  from multiple disciplines. Psychological
approaches in calculating utility often fall short in terms of
providing quantitative insights in terms of technology related
attributes [29], while engineering approaches lack systematic
incorporation of users’ behavioral elements for robust choice
modeling [30].

Despite these tools and advances, there is not currently a
methodology that integrates rational decision making with
behavioral models to simulate the process of technology
adoption through a social network in low resource settings. At
the individual scale, this research seceks to incorporate both
rational and psychological aspects of decision-making to
describe households’ autonomous decisions. At the community
level, a social network based on small-world networks provides
the communication links among agents that leads to capture
emerging adoption behavior using an ABM.

3. METHODOLOGY

In this study, an ABM approach is developed for a rural
community based on the information collected during a two-
phase field study in Apac, Uganda. The model investigates the
proliferation of ICS adoption in households through a theoretical
community. Diffusion and the decision to adopt is based on a
combination of the social influences of peers and the individual

decision-making behavior based on utility maximization theory.
The DCA representing utility maximization theory is integrated
with TPB to improve predictability power of the utility function
by capturing attributes related to beliefs and psychological
process related to adopting a clean technology. The data
collection for TPB attributes of clean technology adoption in the
Ugandan community is presented in [22], [23]. The development
of utility functions based on these are presented in[31].

In the ABM, households in the community are represented
by agents that individually make decisions to maximize their
utility regarding their choices of cooking stove. The attributes
that inform the utility function based on TPB include ATB, SN,
PBC, and income for capturing user heterogeneity, while
available choices of cookstoves in the local market of the case
study are represented by technology price, and fuel type. Agents
communicate their decisions through their community based on
a small-world network. Learning from decisions of peers in the
community and stove performance, agents update their decision
about adopting improved cookstoves over time. As a result, the
community scale adoption behavior is elicited. The model is used
to simulate four different scenarios of technology adoption to
inform technology designers and project implementers to gain
insight into how product features and services can help achieve
higher adoption rates.

All research with human subjects was overseen by the
Oregon State University Institutional Review Board under study
number 7257.

The village-level progression of ICS adoption is represented
as a flowchart in Figure 1. This model is developed in Mesa, a
platform for ABM analysis using Python [32]. Based on this
framework, a theoretical community was created. Each
household is represented as an autonomous agent with
heterogeneous attributes of behavior and income based on the
sample data. Agents communicate with other agents in their
network (peers) regarding their choice of stoves and report if
their stoves do not work properly. In each time step of the model,
attributes that inform stove choice are updated based on agent
communications and a dynamic network of peer updates. At the
end of each time step, the overall number of ICS adopters relative
to the total number of households is calculated and referred to as
the adoption rate. Variables used in the analysis are presented in
the Table 1.

3.1 Model initialization

The developed model extends characteristics of households
that were surveyed in a representative rural community in Apac,
Uganda. The stated stove preferences of these 175 randomly
selected households informed the utility function of the model
[31]. Results of regressions on the collected data determined
weights of influences of attributes presented in the utility
function. Characteristics of the collected data are presented in
Table 1. Data collected from the sample were scaled up using
linear expansion to represent a reasonable estimate of population
of the community. For this purpose, the distribution of surveyed
household attributes informed attributes of every household in a
community of 1045 households (Table 2). In the community, it
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is assumed that 40% of households have a stove at time=0, which

comes from survey results.
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FIGURE 1. FLOWCHART OF THE MODEL

3.2 Social Influence

The model in this study assumes that households in the
community exhibit small-world network characteristics.
Therefore, the social network was developed following
recommendations of Watts and Strogatz [26]. In the model, each
agent is connected to its neighbor agents that represent
neighborhoods as well as some agents in the community that
exhibit social status proximity instead of physical proximity. The
network has a network update probability attribute to capture the
dynamic aspect of such social networks. The network update
probability changes 20% of agents’ links in each time step of the
model. Such link changes represents the fact that people change
their preferences, social ties, and meet new community
members, and are exposed to new opinions through day to day
life. The 20% update probability is chosen based on assumptions
of previous work in low-income countries [20].

To capture choices that are made based on strong influence
of peers through word-of-mouth or social need motivation this
study incorporates imitation process of decision making based
on the Consumat approach [33]. This approach covers four main
behavioral rules that dominantly explain agent decision-making.
Imitation is the process of decision making as a result of peers’
behaviors. Through imitation, agent copies the choice that
majority of her peers successfully make. To define the threshold
that determines majority of peers, this model follows the
recommendations of Kempe et al. [24]. In their work, the
maximum influence from spread of information through social
network occurs when (63%) of the links are activated [34].
Therefore, in this model we assume imitation leads the agents to
copy their peers’ choice of stove if more than 63% of them have
adopted an ICS, bypassing utility analysis.

3.3 Decision-making based on DCA

In addition to the direct social influence, the decision to adopt
also includes the utility maximization theory, including TPB.
Equation (1) illustrates the integration of TPB attributes along
with technological attributes that predict choices of agent (i) for
technology alternative (n) as the deterministic part of utility
function (W;;,). The three TPB constructs included in the utility
function are attitude toward behavior (ATB), social norms (SN),
and perceived behavior control (PBC) [31].

Wi = ,80,1' + .BPrice,n Price, + .BFuel,n Fuel, +
Bincome,i Inc.i+ Barp,i ATB; + Bsn,i SNi + Bppc,i PBC; (1)

TPB analysis of data collected from the sample suggests that
most important representative of ATB attribute is individual’s
evaluation of importance of firewood consumption. Similarly,
evaluation of individuals regarding the importance of the opinion
of friends and family about choice of stove represents the SN
attribute and the perception of authority in making the decision
for stove type to use represents the PBC attribute in this study
[23].

3.4 Post-adoption behavior updates

Adopting a new stove provides users with experiences that
influence their evaluations and behavioral attributes. To capture
post adoption experiences, this study models two general cases.
The first case is based on the assumption that the user’s need is
satisfied and she has a pleasant experience with the new
technology. As a result, the TPB attributes improve in favor of
the new technology, which leads to higher intentions for the user
to keep using the technology. The second case corresponds to
negative experiences based on the assumption that new
technology is not fulfilling agent’s expectations. This is often the
case in projects due to stove break down and malfunction. The
model is developed to reflect such experiences by decreasing
behavioral attributes indicating that the person is less likely to
keep using the new technology. The ultimate choice of each
agent then is communicated with social ties to capture social
influences.
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TABLE 1. ABM INPUT DATA

Variable Level Type Initial value
ATB - Extended from survey
Attitude results® in Likert scale
toward Agent | Dynamic | from1to4
saving
firewood
SN- Extended from survey
Evaluation results® in Likert scale
ofsocial Agent | Dynamic | from1to4
ties” ICS
opinion
PBC- Extended from survey
Perception results® in Likert scale
of authority | Agent | Dynamic | from 1 to 4
in making
decision
From survey results®
. - <25,000 UGX,
Income Agent Static ~25.000 - 50,000
->50,000 UGX
. Field observation (0 for
Fuel type Tech. Static firewood, 1 for charcoal)
Field staff’s experience
5: open fire,
Stove price | Tech. Static 25: mud stove,
75: charcoal stoves,
100: ICS, normalized)
Field observation (open
Stove type | Tech. Static fire, mud stove, charcoal
stove, ICS)
Number of Model | Static Assumptign based on
peers literature °— from 6 to 12
Network Assumption based on
updating Model | Dynamic | literature ®—20%
probability
Technology Assumption based on field
degradation | Model | Static observation
rate (4% - 8% -10% - 18%)
Adoption . | Ratio of households with
rate Model | Dynamic ICS to all households
Stove . Extended from survey
choice Agent | Dynamic | (open fire: 18%, mud-
stove: 42% ICS: 40% )

ATB . 1:-16.686, 2:31.523
A Agent | Static | 3. 5834 | 4:-1.783°

SN . 1: 1.204 , 2:-0.556
B Agent | Static 3..0.55]

PEC . 1:-45.382, 2:-11.706
p Agent | Static 3:4.105 , 4:2.730°
pincome Agent | Static 0.071°
pruet Agent | Static -1.049 2
pPrice Agent | Static 0.019°
*[23]°[20]

3.5 Time steps

Although the time steps are not intended to represent a fixed
increment of real time, each time step of the model represents a
full model utilization and transfer of information across the
social network. As a result, at each time step, the choices of stove
are updated either through a social influence or utility
maximization process, and households opinions about
cookstoves are updated based on their satisfying or dissatisfying
experiences. The updated choice of stove, as well as the agent’s
dynamic attributes inform the next time step updating the social
network setup according to the network update probability. Since
the stove choice of agents have changed from the previous time
step, agents decisions are updated again to inform the next run,
as illustrated with the gray box in Figure 1.

TABLE 2. TPB ATTRIBUTE DISTRIBUTION IN SAMPLE
AND PROJECTED POPULATION [22]

Sample Population
(collected) (estimated)
N=175 N=1045
Attribute Mean Star.nda}rd Mean Star.ldz!rd
Deviation Deviation
ATB 3.54 0.68 3.52 0.70
SN 3.60 0.91 3.59 0.93
PBC 3.12 1.44 3.12 1.44
Income 1.76 0.85 1.77 0.86

4. RESULTS AND DISCUSSION

Four scenarios are investigated against the baseline analysis
discussed in section 3 to reflect real-world situations that may
occur, and policy implications of each scenario are explored.

4.1 Scenario I: Price elasticity

—&— Negative Elasticity
—<— Positive Elasticity

Adoption Rate

1 3 3 7 9 11 13 15 17 19
Time Step
FIGURE 2: PRICE ELASTICITY’S IMPACT IN COMMUNITY
SCALE ICS ADOPTION

One of the key factors in decision-making is the price of
available alternatives [35]. The ICS owners in this study received
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their cookstoves fully subsidized. As a result, their decisions of
whether or not to adopt the ICS were not significantly influenced
by the price of the technology. To investigate how price changes
influence the technology adoption pattern, the model was used
to simulate the ceferis paribus effect of positive and negative
price elasticity of demand for ICS. Price elasticity of demand is
an economic term referring to the rate at which demand for a
product changes due to product price changes. Negative
elasticity is based on the assumption that as the price of an ICS
increases its demand decreases (ICS is normal good as defined
in microeconomics). Positive elasticity means that as the price of
an ICS increases, demand for it increases by some ratio.

Since real choices of houscholds (revealed preferences)
were not recorded, utilities calculated based on stated
preferences are used to approximate demand. The adoption rate
simulated in Figure 2 suggests that if households consider ICS
as a normal good, adoption of cookstoves is not likely to
approach satisfactory scales through time. Despite the value of
negative elasticity in the model, which is set to (-0.001)
compared to the value from Table 1 (0.019) for positive price
elasticity, results of simulations suggest that changes in the sign
of price elasticity significantly reduces the adoption rate in the
community from status quo. Negative sign of beta implies that
households consider ICS a normal good. Therefore, increasing
its price leads to decrease in its demand. However, regression
results of the sampled households suggest that the price has a
small positive influence in the utility perceived by users in the
community, as evidenced by the positive price elasticity of utility
(0.019) in the sample size. That means the higher the price, the
utility that households assign to the ICS increases. It is important
to mention that approximately 40% of the households in the
survey already owned a fully subsidized ICS. Therefore, their
price sensitivity is prone to be unrealistic. Another potential
explanation for assigning higher utility to a technology as its
price increases could be due to the social status that ownership
of the technology provides for the household, referred to as
Giffen goods in economics [36]. Although the discussion
regarding causes of positive price elasticity of demand are
beyond the scope of this study, the model suggests that having
positive price responsiveness is likely to improve technology
adoption considerably holding all other variables constant. In
addition, if further investigations suggest that ICS is a normal
good, one can conclude based on the results presented in Figure
2 that ICS adoption is likely to not reach to the scale.

4.2 Scenario ll: Influence of household’s psychological
attributes of behavior

As discussed above, according to TPB, three categories of
attributes formulate intention. In Figure 3, the influence of
changes in each of these categories on overall adoption behavior
are presented with respect to the baseline. The baseline refers to
the values of TPB attributes that were assigned based on survey
data and extended through all community members, reported in
Table 1. Any consistent change in widespread beliefs in the
community may lead to higher or lower adoption rates than
baseline. Information campaigns, and behavior change

communications are two examples of the methods that could
influence such attributes in a consistent way throughout the
community.

0.8

o
\_1

Adoption Rate
(=]
(=)

0.5 —8— Lower ATB
—<— Baseline
—&— Lower SN

0.4 —— Lower PBC

1 3 5 7 9 11 1B 15 17 19
Time Step
FIGURE 3: INFLUENCES OF CHANGES IN TPB ATTRIBUTES
ON COMMUNITY SCALE ICS ADOPTION

Results of the analysis suggest that a uniform decrease by
one unit in a scale of one to five in households’ perception of
their independence in making decisions, or PBC, regarding
choice of stove decreases ICS adoption rate in the community.
This finding matches with results of [37], which found that
women being more exposed to risks associated with inefficient
cooking are more likely to adopt ICS. However, in many
contexts they have lack of authority to purchase such stoves.

Lowering housecholds’ ATB regarding the importance of
firewood consumption by one unit in a scale of one to five
increases the adoption rates through time. This counterintuitive
finding suggests that the current technology’s performance is not
fulfilling expectations of those households that consider less
firewood consumption more important than other community
members. A household with strong beliefs regarding reducing
firewood consumption may stop using ICS because despite the
efforts to change their behavior and the cost of acquiring an ICS,
the technology does not reduce their firewood consumption as
expected. Therefore, it is important that information campaigns
reflect the actual performance of the technology instead of
exaggerating it.

Assigning less value to the importance of opinions of friends
and family by reducing one unit in a scale of one to five is likely
to increase technology adoption over time. This finding suggests
that behavior change communications that improve community
scale beliefs regarding ICS play an important role in the overall
adoption pattern. Other literature in social capital and the
influence of word of mouth in technology adoption validate this
finding. For example, a study in Northern Peruvian Andes found
that households are more likely to follow the widespread
behavior in the community if the social bonds are strong [38].
Another study in western Honduras apply social network
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analysis to describe how spread of information solely through
word-of-mouth by active community members led to a
successful ICS intervention [39].

4.3 Scenario lll: Degree centrality of households

0.575

0.550

0.525

0.500

Adoption Rate

—@— 41ICS users from 6 peers network
—— 51ICS users from 8 peers network
—— 6 ICS users from 10 peers network
0.400 —&— 7ICS users from 12 peers network

1 3 5 7 9 11 13 15 17 19
Time Step
FIGURE 4: INFLUENCES OF DEGREE CENTRALITY ON
COMMUNITY SCALE ICS ADOPTION

This scenario studies the influence of social network on
adoption based on degree centrality. Degree centrality is the
number of households each agent is connected with, essentially
representing the number of peers with which information is
exchanged. Degree centrality of the network represents the
overall social capital of the community. Social capital is referred
to as a measure for intra-communal link strength [38]. Social
capital provides the capacity within a social network for
collective actions [40]. Thus, strength of social capital impacts
on adoption pattern can be simulated in the model through
varying the degree centrality modeled as the number of peers
connected to each agent varies from 6 to 12 households.

Results suggest that the stronger the social capital, adoption
rates improve ceteris paribus. However, the strength of social
networks facilitates the spread of both positive and negative
feedback. As a result, although adoption rates improve initially
likely due to spread of positive influence, negative feedback
caused by stove malfunction leads to decreasing long-term
adoption behavior for a network with less degree centrality. If a
household is connected to only five other households and two of
them have negative experiences with ICS, this household is
surrounded by negative feedback from one-third of her peers.
While a household that is connected to eleven other households,
only two of which have negative experiences with their ICSs, is
affected by negative feedback of only one-sixth of her peers.
Such change in weight of influence of peers leads to decreasing
adoption rate in the community if the communal ties are not
relatively strong.

4.4 Scenario IV: Rate of ICS malfunction

The durability of ICS is among the major challenges that
impact adoption rates [41]. While these cookstoves optimize
combustion to reduce firewood consumption and smoke

0.75
0.65
—h—k

E ‘\‘“ﬁ—H—H*t—ii' -
g 0.55 —@— 60 malfunctioned ICS
‘8 —#— 100 malfunctioned ICS
;% —l- 150 malfunctioned ICS

045 —— 180 malfunctioned ICS

0.25

1 3 5 7 9 11 13 15 17 19
Time Step
FIGURE 5: INFLUENCES OF STOVE MALFUNCTION ON
COMMUNITY SCALE ICS ADOPTION

emissions, high temperatures, corrosive environmental, material
limitations, and cost constraints are some challenges that could
lead to stove failure from continuous use. Therefore, it is
important to capture the effect of stove failure on community
scale adoption pattern.

Figure 5 illustrates the adoption rates in the community with
respect to four scenarios based on number of ICSs that fail to
work properly due to durability issues. This is modeled by
randomly assigning 60 to 180 malfunctioning stoves among all
ICS owners. These housecholds disseminate negative feedback
regarding their broken stove. Having more than one peer with
negative experiences lowers the agent’s intention to choose ICS.
Results suggest that durability significantly influences the
adoption pattern in the community in the long term. As the
number of malfunctioning stoves increases, the spread of
negative feedback throughout the community negatively
decreases peers’ behavioral attributes. Throughout time such
negative influences are likely to lower intention of households
who are not experiencing any issues with their ICSs to cook
fewer meals with it. Therefore, it is important for stove designers
and project implementers to provide ongoing maintenance and
repair services through the community to improve the durability
and operation of designed technologies.

5. VERIFICATION AND VALIDATION

Verification refers to the process that examines models
performance against intended designed study while, validation
evaluates to what extend the model explains the real-world
system. Following recommendations of Macal and North [42]
the model in this study has been verified to implement the
designed study illustrated in Figure 1. Macal and North present
multiple types of validation for ABM including requirement
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validation, data validation, face validation, process validation,
theory validation, agent validation, and model output validation.
This work captures four types of validations, including:

(1) Data validation: The data collected to represent agents
in this study are based on a standard survey method in a real-
world setting. Participants in the survey were randomly selected
and survey questions were carefully designed to avoid inherent
biases associated with survey questions. Surveyors were trained
to avoid potential implications during the data collection process.
Full discussion on the survey procedure is presented in [23].

(2) Theory validation: The theories implemented in this
study are among well-established theories in the literature. The
DCA, TPB, Social Networks, and Dol methods have been
reviewed extensively and applied in different domains of
technology adoption using ABM through literature as discussed
in the background.

(3) Model output validation: The output of the model in
scenarios II, III, and IV agree with independent analytical work
discussed at the end of each scenario. Therefore, output of the
model reinforces the conclusions of independent researchers that
have applied different analytical techniques for similar research
questions.

(4) Requirements validation: The requirements that have
been integrated into the model are selected based on Dol theory
and field observations. To ensure the model captures the correct
elements to address the research questions, a pilot study that
included open-ended questions was implemented from a group
of five community members and field staff. Results of the pilot
study guided this research to reflect widespread beliefs in the
community and incorporate techniques based on literature that
could provide quantitative and systematic insight based on such
beliefs and context-specific attributes.

6. CONCLUSIONS AND FUTURE WORK

In this study, the long-term technology adoption behavior in
a community is studied based on emerging patterns of household
decision-making accounting for utility maximization and
influence of social networks. Households’ decisions and their
peers’ choice of stove updates their TPB-based behavioral
attributes through time. The dynamic ABM platform provides
the opportunity to study impacts of different scenarios related to
clean cookstove adoption in the community. The four scenarios
investigated in this research highlight the importance of
systematic integration of users’ behavioral attributes and having
a long-term perspective for technology designers and project
implementers to achieve higher impacts in the context of
international development. The technology designers can benefit
from the results discussed in this paper that sheds light on how
technology performance coupled with user preferences alters the
impact assumed in the design phase.

The methodology in this study captures dependency of
technology adoption throughout time based on technology
performance and user preferences. Results indicate that
technology degradation and malfunction is one of the key factors
that could define whether an intervention will be successful or

not. One implication of this finding is that providing long-term
customer service and scheduled maintenance programs are
essential for scalable technology adoption. Information
campaigns and behavior change communications that target
mass populations should be carefully designed to avoid inflated
expectations about technology performance, while realistically
informing communities regarding the challenges associated with
conventional inefficient practices. In addition, the messages of
such public awareness programs should reflect wide-spread
community beliefs and recognize the power and level of
authority in changing behaviors. For instance, in a community
where husbands and male family heads are the main decision
makers, informing wives and female cooks about the benefits of
using ICS may not lead to successful adoption patterns due to
lack of enough authority to make such decisions.

The role of society and intra-communal ties is significant in
adoption patterns. Recognizing the strength of social capital in a
target community could help project implementers to
appropriately focus on influence maximization through the
spread of information in the social network of the community.
For this purpose, further studies should incorporate different
household types according to Dol theory for investigating how
identifying households with higher social reputation could
influence adoption behavior of the community.

Households’ sensitivity to price significantly influences
technology adoption. While negative and positive price elasticity
of ICS demand is shown to be strongly correlated with
technology adoption behavior, future work is needed to
determine whether an ICS is a normal good or Giffen good. The
difference between these two types of goods may depend on how
ICS ownership is regarded in the community. If ICS is a normal
good, increasing its price will lead to less ICS demand and
project implementers should consider the price sensitivity of
households as a key determinant of adoption. In the case of a
Giffen good, ICS could be regarded as a social status product. As
a result, increases in its price may lead to higher demand for it.

Results of this study could be improved based on the fact
that community members have different levels of influence
based on their social status. Therefore, designing the social
network of target community through reflecting the weight of
influences for households that are naturally more influential in
community could improve the robustness of the model.

Applying this model to different types of technologies that
aim to address challenges of bottom of pyramid based on
appropriate user heterogeneity attributes could lead future works
toward more successful projects. In larger scale, integrating such
adoption behavior model to extended village scale models,
policy level toolkits for international development, and macro
scale energy policy systems could improve the overall approach
to energy aspects of international development.
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