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Abstract
Communication-efficient SGD algorithms, which
allow nodes to perform local updates and period-
ically synchronize local models, are highly ef-
fective in improving the speed and scalability
of distributed SGD. However, a rigorous conver-
gence analysis and comparative study of differ-
ent communication-reduction strategies remains
a largely open problem. This paper presents a
unified framework called Cooperative SGD that
subsumes existing communication-efficient SGD
algorithms such as periodic-averaging, elastic-
averaging and decentralized SGD. By analyz-
ing Cooperative SGD, we provide novel conver-
gence guarantees for existing algorithms. More-
over, this framework enables us to design new
communication-efficient SGD algorithms that
strike the best balance between reducing com-
munication overhead and achieving fast error con-
vergence with low error floor.

1. Introduction
Stochastic gradient descent (SGD) is the backbone of most
state-of-the-art machine learning algorithms. Due to its
widespread applicability, speeding-up SGD is arguably the
single most impactful and transformative problem in ma-
chine learning. Classical SGD was designed to be run on
a single computing node, and its error-convergence has
been extensively analyzed and improved in optimization
and learning theory (Bottou et al., 2018). However, with
the massive training datasets and deep neural network ar-
chitectures used today, running SGD at a single node can
be prohibitively slow. This calls for distributed implementa-
tions of SGD, where gradient computations and aggregation
are parallelized across multiple worker nodes. Although par-
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allelism boosts the amount of data processed per iteration, it
exposes SGD to unpredictable synchronization and commu-
nication delays stemming from variability in the computing
infrastructure.

Limitations of Parameter Server Framework. A com-
monly used method to parallelize gradient computation and
process more training data per iteration is the parameter
server framework (Li et al., 2014). Each of the m worker
nodes computes the gradients of one mini-batch of data, and
a parameter server aggregates these gradients and updates
the model parameters. Synchronization delays caused by
waiting for slow workers can be alleviated via asynchronous
gradient aggregation. However, it is difficult to eliminate
communication delays since by design, parameter server
framework requires gradients and model updates to be com-
municated between the parameter server and workers after
every iteration.

Communication-Efficient Distributed SGD Variants.
To address the limitations of the parameter server frame-
work, recent works have proposed several strategies to re-
duce the communication overhead in distributed SGD algo-
rithm. A natural idea is to allow workers to perform τ local
updates to the model instead of just computing gradients,
and then periodically average the local models. Although ex-
tensive empirical results have validated the effectiveness of
this periodic averaging strategy, rigorous theoretical under-
standing of how its convergence depends on the number of
local updates τ is limited to convex setting (Stich, 2018). In-
stead of simple averaging, elastic-averaging SGD (EASGD)
(Zhang et al., 2015) adds a proximal term to the objective
function in order to allow some slack between local mod-
els. The efficiency of EASGD and its asynchronous and
periodic averaging variants has been empirically validated.
However, its convergence analysis under general convex or
non-convex objectives is an open problem.

A different approach to reducing communication overhead
is to perform decentralized training with a sparse-connected
network of worker nodes. Each node only synchronizes with
its one or very few neighbors. Decentralized (or gossip-type)
training has a long history in the distributed and consensus
optimization community and was successfully applied to
deep learning in recent works (Lian et al., 2017; Jiang et al.,
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2017). While the authors provide the convergence analysis
for 1 local update per worker case, it is still unclear how
decentralized training compares or combines with periodic
averaging strategy.

Main Contributions. We note that a common thread in all
the communication-efficient strategies described above is
that they allow worker nodes to perform local model-updates
and limit the synchronization/consensus between the local
models. Based on this observation, we propose a powerful
framework called Cooperative SGD that enables us to obtain
an integrated analysis and comparison of communication-
efficient algorithms. Existing algorithms including periodic
averaging SGD (PASGD), EASGD, decentralized parallel
SGD (D-PSGD) are all special cases of cooperative SGD,
and thus can be analyzed under one single umbrella. By an-
alyzing cooperative SGD, we provide the first convergence
guarantee for EASGD with non-convex objective function
and better optimization error bound for PASGD. The novel
theoretical results can serve as guidelines to choose the best
hyperparameters in practice. Moreover, the general frame-
work greatly enlarges the design space of distributed SGD
algorithms. One can easily design and analyze new efficient
SGD variants by combining different strategies.

Notation. All vectors considered in this paper are column
vectors. For convenience, we use 1 to denote [1, 1, . . . , 1]>

and define matrix J = 11>/(1>1). Unless otherwise
stated, 1 is a size m column vector, and the matrix J and
identity matrix I are of size m×m, where m is the number
of workers.

2. The Cooperative SGD Framework
The Cooperative SGD algorithm is denoted by A(τ,W, v),
where τ is the number of local updates, W is the mixing
matrix used for model averaging, and v is the number of
auxiliary variables.

At iteration k, the m workers have different versions
x
(1)
k , . . . ,x

(m)
k ∈ Rd of the model. In addition, there are v

auxiliary variables z(1)k , . . . , z
(v)
k that are either stored at v

additional nodes or at one or more of the workers, depend-
ing upon implementation. These model versions will update
at each iteration as follows.

1. Local Compute Phase. The workers evaluate the gra-
dient g(x(i)

k ) for one mini-batch of data and update
x
(i)
k . The auxiliary variables are only updated by aver-

aging a subset of the local models as described in point
2 below. Thus, their gradients are zero.

2. Model Averaging Phase. The local models and auxil-
iary variables are averaged with neighbors according
to matrix Sk ∈ R(m+v)×(m+v). To capture periodic-
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Figure 1: Illustration of the execution pipeline of coopera-
tive SGD. Blue, red, grey arrows represent gradient com-
putation, worker communication, and update of auxiliary
variables respectively.

averaging pattern, we use a time-varying Sk that varies
as:

Sk =

{
W, kmod τ = 0

I(m+v)×(m+v), otherwise,
(1)

where the identity matrix I means that there is no inter-
node communication during the τ local updates.

We now present a general update rule that combines the
above elements. Define matrices Xk,Gk ∈ Rd×(m+v) that
concatenate all local models and gradients:

Xk =[x
(1)
k , . . . ,x

(m)
k , z

(1)
k , . . . , z

(v)
k ], (2)

Gk =[g(x
(1)
k ), . . . , g(x

(m)
k ),0, . . . ,0]. (3)

The update rule in terms of these matrices is

Xk+1 = (Xk − ηGk)Sk. (4)

Remark 1. Instead of using update (4), one can use an
alternative rule: Xk+1 = XkWk−ηGk. The convergence
analyses and insights in this paper can be extended to this
update rule.

The framework improves the communication-efficiency of
distributed SGD in three different ways. We illustrate these
in Figure 1, which compares the execution timeline of coop-
erative SGD with fully synchronous SGD.
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3. Unified Convergence Analysis
In this section, we present the unified convergence analysis
of algorithms in cooperative SGD framework. Due to the
space limitations, please refer to (Wang & Joshi, 2018) to
check the assumptions 1 and proof details.

Theorem 1 (Convergence of Cooperative SGD). For al-
gorithm A(τ,W, v), suppose the total number of iterations
K can be divided by the communication period τ . Under
certain assumptions (stated in (Wang & Joshi, 2018)), if the
learning rate satisfies ηeffL + 5η2effL

2[
(
1 + v

m

)
τ

1−ζ ]
2 ≤ 1

where ζ = max{|λ2(W)|, |λm+v(W)|}, and all local
models are initialized at a same point u1, then after K
iterations,

E

[
1

K

K∑
k=1

‖∇F (uk)‖2
]
≤

2 [F (u1)− Finf]

ηeffK
+
ηeffLσ

2

m︸ ︷︷ ︸
fully sync SGD

+

η2effL
2σ2

(
1 + ζ2

1− ζ2
τ − 1

)(
1 +

v

m

)2
︸ ︷︷ ︸

network error

(5)

where uk = XkJ, ηeff =
m
m+vη are averaged model and

effective learning rate, respectively.

Error decomposition. It is worth noting that the upper
bound is decomposed into two parts. The first two terms are
same as the optimization error bound in fully synchronous
SGD (Bottou et al., 2018). The last term is network error,
resulted from performing local updates and reducing inter-
worker communication. It directly increases the error floor
at convergence. Note that the network error term is in a
higher order of learning rate. Thus, by setting a small or
decaying learning rate, the negative effect of communication
reduction can be omitted.

Dependence on τ,W, v. Theorem 1 states that the error
floor at convergence will monotonically increase along with
communication period τ and the second largest eigenvalue
magnitude ζ. The value of ζ reflects the mixing rates of
different variables. When there is no communication among
local workers, then W = Im+v and ζ = 1; When local
models are fully synchronized, then W = Jm+v and ζ =
0. Typically, a sparser matrix means a larger value of ζ.
Moreover, note that the effective learning rate is determined
by the number of auxiliary variables.

4. Novel Analyses for Existing Algorithms.
By setting different hyperparameters in Theorem 1, one can
easily model existing algorithms as special cases and obtain
the convergence guarantee.

1We do not assume convex objective function.

Fully synchronous SGD⇔ A(1,J, 0). The local models
are synchronized with all other workers after every iteration.
PASGD⇔ A(τ,J, 0). The local models are synchronized
with all other workers after every τ iterations.

D-PSGD ⇔ A(1,W, 0). The mixing matrix W in D-
PSGD is fixed as a sparse matrix. Only one local update
before averaging is considered and there are no auxiliary
variables.

EASGD⇔ A(1,Wα, 1). In EASGD, there is one auxiliary
variable. Besides, the mixing matrix is controlled by a hyper-
parameter α as follows

Wα =

[
(1− α)I α1
α1> 1−mα

]
∈ R(m+1)×(m+1). (6)

One can validate that the updates defined in (1), (4) and (6)
are equivalent to the updates in (Zhang et al., 2015) when
using the alternative update rule Xk+1 = XkSk − ηGk.

The unified analysis brings new insights such as the best
choice of elasticity parameter α.

Lemma 1 (Best Choice of α). If α = 2/(m+ 2), then the
second largest absolute eigenvalue of Wα (6), achieves the
minimal value m/(m+ 2).

Accordingly, by choosing the best α, the upper bound of er-
ror floor at convergence given by (5) can also be minimized.

To the best of our knowledge, Theorem 1 together with
Lemma 1 provide the first convergence result for EASGD
with general objectives and also the first theoretical justifi-
cation for the best choice of α. In Figure 2, we validate our
theoretical findings. Please refer to (Wang & Joshi, 2018)
to check more empirical results.
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Figure 2: EASGD training on CIFAR-10 with VGG-16.
Since there are 8 worker nodes and 1 auxiliary variable,
the best value of α given by Lemma 1 is 2/(m + 2) =
0.2, which performs better than the empirical choice α =
0.9/m = 0.1125 suggested in (Zhang et al., 2015). The
best choice of α yields the lowest training loss and the least
discrepancies between workers and auxiliary variable.
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