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Abstract—Functional electrical stimulation (FES) induced
cycling provides a means of therapeutic exercise and functional
restoration for people affected by neuromuscular disorders. A
challenge in closed-loop FES control of coordinated motion is
the presence of a potentially destabilizing input delay between
the application of the electrical stimulation and the resulting
muscle contraction. Moreover, switching amongst multiple ac-
tuators (e.g., between FES control of various muscle groups and
a controlled electric motor) presents additional challenges for
overall system stability. In this paper, a closed-loop controller is
developed to yield exponential cadence tracking, despite an un-
known input delay, switching between FES and motor only con-
trol, uncertain nonlinear dynamics, and additive disturbances.
Lyapunov-Krasovskii functionals are used in a Lyapunov-based
stability analysis to ensure exponential convergence for all time.

Index Terms—Functional electrical stimulation (FES), input
delay, switched systems, human-robot interaction, rehabilitation
robotics.

I. INTRODUCTION

Functional electrical stimulation (FES) induced cycling is
a common rehabilitative exercise for people with lower limb
movement disorders [1]–[4]. FES evokes muscle contractions
by applying an external electrical stimulus across the motor
neurons of a muscle. While FES has been shown to improve
muscle strength [5] and range of motion [6], FES-cycling
in particular has been shown to improve cardiovascular
parameters [7], bone mineral density [8], and physiological
motor control [9].

Challenges of closed-loop control of FES include muscle
force decaying under a constant stimulation intensity due
to fatigue [10], the unknown and nonlinear mapping from
electrical input to generated muscle force [11], and unmod-
eled disturbances and uncertain parameters in the dynamic
muscle model [12]. Furthermore, switching between different
muscle groups and motor only control is required for more
complicated functional tasks (e.g., FES cycling) [13], and the
muscle response from electrical stimulation exhibits delayed
contractions [14]. The delayed muscle response is modeled
as an input delay due to the complex electro-physiological
mechanism involved in muscle torque production. Specif-
ically, experimental evidence has demonstrated that there
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is a time lag, termed electromechanical delay (EMD), be-
tween the electrical activation and the onset of muscle force
[14]–[19]. The result in [18] concluded that the muscles
exhibited delays ranging from 75-200 ms; however, no delay
compensation was provided. Since EMD results in delayed
torque generation, it can potentially destabilize human motor
control tasks [16], [19]. Thus, there is a need for closed-loop
switched FES control strategies that are robust to uncertain
nonlinear muscle dynamics and unknown input delay.

Input delayed systems and their associated stability anal-
ysis have been extensively studied in recent years [20]–
[31]. In results such as [23], exact model knowledge with
a known delay is assumed. Other results such as [24] and
[25] instead focus on developing non-model based controllers
for an uncertain nonlinear system with a known input delay.
Since it is problematic for many practical engineering ap-
plications to measure the input delay [17], results such as
[26] and [27] analyze nonlinear systems with an unknown
input delay. Adaptive optimal output regulation of discrete-
time linear systems with unknown input delay was developed
in [28]. More recently, methods to compensate for input
delay in a switched system have been studied. Lyapunov-
Krasovskii functions are constructed in [29] to ensure input-
to-state stability of switched nonlinear systems with time-
varying input delay. In [30], linear control methods were
used to guarantee uniform stability of equilibrium points for
a switched system with input delay. In [31], a technique
is proposed to ensure global asymptotic stability for an
origin of switched time-varying systems with time-varying
discontinuous delays. However, the aforementioned results
do not yield exponential convergence to an ultimate bound
and do not account for effects that are unique to FES input
delay, such as a delayed activation of the muscle in addition
to a residual contraction that persists when the stimulation
ceases.

Recently, FES controllers have been developed to account
for the delayed response of muscle. The results in [32]
assume a known delay and uncertain dynamics and ensure
uniformly ultimately bounded tracking. A global asymptotic
tracking controller was developed for an unknown constant
delay in [33] but assumes exact model knowledge of the
lower limb dynamics. In [34] and [35] an unknown time-
varying input delay was assumed, and in [35], uniformly
ultimately bounded tracking was achieved by assuming a
bound on the time-varying rate of delay. To date, a closed-
loop switched FES controller has not been developed that is
robust to input delay.
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In this paper, a switched cadence tracking controller is
developed for FES cycling. A controller is designed to com-
pensate for the delay disturbance using Lyapunov-Krasovskii
functionals and an auxiliary tracking error signal that is
designed to inject a delay-free FES control signal in the
closed-loop dynamics. Trigger conditions are developed to
activate and deactivate the FES such that the muscles will
be generating torque when entering kinematically efficient
regions of the cycle and stop generating torque when entering
inefficient regions (i.e., kinematic dead zones). A Lyapunov-
based stability analysis proves exponential convergence of
the cadence error system despite uncertainties in the non-
linear model, additive disturbances, and an unknown input
delay.

II. MODEL

The motorized cycle-rider system can be modeled as [13]1

τM (q, q̇, τ, t) + τe (q, t) = M (q) q̈ + V (q, q̇) q̇

+G (q) + P (q, q̇) + bcq̇ + d (t) ,
(1)

where q : R≥0 → Q, q̇ : R≥0 → R, and q̈ : R≥0 →
R denote the measurable crank angle and velocity, and
unmeasurable acceleration, respectively. The set Q ⊆ R
denotes all possible crank angles and time is denoted by
t ∈ R≥0. The electromechanical delay2, i.e., the delay
between the application/removal of the current and the
onset/elimination of muscle force production is denoted by a
constant3 unknown delay denoted by τ ∈ R>0. The inertial
effects, centripetal-Coriolis effects, gravitational effects, and
passive viscoelastic tissue forces from the legs are denoted
as M : Q → R>0, V : Q × R → R, G : Q → R,
and P : Q × R → R, respectively. The viscous damping
effects and disturbances applied about the crank axis are
denoted by bc ∈ R>0 and d : R≥0 → R, respectively.
The torque contributions due to the motor and FES induced
muscle contractions are denoted as τe : Q× R≥0 → R and
τM : Q× R× R× R≥0 → R, respectively defined as

τe (q, t) , BeuE (q, t) , (2)

τM (q, q̇, τ, t) ,
∑
m∈M

Bm (q, q̇)um (q, q̇, τ, t) , (3)

where the unknown motor control effectiveness is denoted
by Be ∈ R>0. The control effectiveness for the elec-
trically stimulated muscle groups in (3) is denoted by
Bm : Q × R → R>0 ∀m ∈ M, where m ∈ M ,
{RG, RQ, RH, LG, LQ, LH} indicates the right (R) and
left (L) gluteal (G), quadriceps femoris (Q), and hamstrings
(H) muscle groups. The electrical stimulation input (i.e.,

1For notational brevity, all explicit dependence on time, t, within the
terms q(t), q̇(t), q̈(t) is suppressed.

2For simplicity, and without loss of generality, the delay for the onset of
torque and the delay resulting in residual torque are set to the same value.

3Time-varying delay effects due to muscle fatigue are the focus of future
efforts.

pulse width) delivered to the rider’s muscles, denoted by
um : Q × R × R × R≥0 → R ∀m ∈ M, and the control
current to the electric motor denoted by uE : Q×R≥0 → R,
are defined as

um (q, q̇, τ, t) , kmσm (q, q̇, τ , τ)u (t− τ) , (4)

uE (q, t) , keue (t) , (5)

where km, ke ∈ R>0 ∀m ∈ M are selectable constants and
τ , τ ∈ R>0 are known constants that represent the upper
and lower bound of the delay, respectively (e.g., determined
from experimental results such as [17]). The subsequently
designed FES control in (4) and motor input in (5) are
denoted by u : R × R≥0 → R and ue : R≥0 → R,
respectively. In (4), σm : Q × R → {0, 1} denotes a
piecewise left-continuous switching signal for each muscle
group and is defined as

σm (q, q̇, τ , τ) ,


1,

1,

0,

qα ∈ Qm, q ∈ Qe
qβ ∈ Qm
otherwise

, (6)

∀m ∈M, where trigger conditions qα, qβ : Q× R→ R are
defined as qα , f (q, q̇, τ) and qβ , f (q, q̇, τ), where f
is designed to stimulate the rider’s muscles sufficiently prior
to the crank entering the FES region and for stimulation to
cease sufficiently prior to the crank leaving the FES region.

Definitions for the subsequent FES regions, denoted by
Qm ⊂ Q, and switching laws are based on [13], where each
muscle group is stimulated in specific regions of the crank
cycle (i.e., when kinematically efficient). In this manner, Qm
is defined for each muscle group as

Qm , {q ∈ Q | Tm (q) > εm} , (7)

∀m ∈ M, where εm ∈(0, max(Tm)] is the lower threshold
for each torque transfer ratio denoted by Tm : Q → R, which
limits the FES regions for each muscle so that each muscle
group can only contribute to forward pedaling (i.e., positive
crank motion). The union of all muscle regions defined in
(7) represents the entire FES region, denoted by QFES ,
defined as QFES , ∪

m∈M
{Qm}. The kinematic dead zones

are defined as Qe , Q\QFES . Substituting (3)-(5) into (1)
yields4

BτMuτ +BEue = Mq̈ + V q̇ +G+ P + bcq̇ + d, (8)

where BτM ,
∑
m∈MBm (q, q̇) kmσm (q, q̇, τ , τ) , BE ,

Beke, and uτ , u (t− τ). Throughout the paper, delayed
functions are defined as

hτ ,

{
h (t− τ)

0

t− τ ≥ t0
t− τ < t0

,

where t0 ∈ R≥0 is the initial time.
The switched system in (8) has the following properties

and assumptions [13]. Property: 1 cm ≤ M ≤ cM , where

4For notational brevity, all functional dependencies are hereafter sup-
pressed unless required for clarity of exposition.
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cm, cM ∈ R>0 are known constants. Property: 2 |V | ≤
cV |q̇|, where cV ∈ R>0 is a known constant and | · | denotes
the absolute value. Property: 3 |G| ≤ cG, where cG ∈ R>0

is a known constant. Property: 4 |P | ≤ cP1 + cP2|q̇|,
where cP1, cP2 ∈ R>0 are known constants. Property: 5
bcq̇ ≤ cc|q̇|, where cc ∈ R>0 is a known constant. Property:
6 |d| ≤ cd, where cd ∈ R>0 is a known constant. Property:
7 1

2Ṁ = V . Property: 8 The muscle control effectiveness
Bm is lower and upper bounded ∀m ∈ M, and thus, when∑
m∈M

σm > 0, cb ≤ BτM ≤ cB , where cb, cB ∈ R>0

are known constants. Property: 9 ce ≤ BE ≤ cE , where
ce, cE ∈ R>0 are known constants.

III. CONTROL DEVELOPMENT

The control objective is for the crank to track a desired
cadence q̇d : R≥0 → R despite the unknown input delay
and uncertainties in the dynamic model. To facilitate the
subsequent analysis, measurable auxiliary tracking errors,
denoted by e1 : R≥0 → R and r : R≥0 → R , are defined
as5

e1 , qd − q, (9)

r , ė1 + αe1 + ηeu, (10)

where α, η ∈ R≥0, are selectable constants. To incorporate
a delay-free input term in the closed-loop error system, an
auxiliary error signal, denoted by eu : R≥0 → R, is defined
as

eu , −
∫ t

t−τ̂
u (θ) dθ, (11)

where τ̂ ∈ R>0 is the delay estimate. Taking the time
derivative of (10), multiplying by M , and using (8), (9), and
(11), the open-loop error system can be obtained as

Mṙ = −V r − e1 + χ−BEue +BτM (uτ̂ − uτ )

+ (Mη −BτM )uτ̂ −Mηu,
(12)

where the auxiliary term χ : Q× R × R≥0 → R is defined
as

χ , Mq̈d + V (q̇d + αe1 + ηeu) +G

+P + bcq̇ + d+Mαė1 + e1.

From Properties 1-6, χ can be bounded as

|χ| ≤ Φ + ρ (‖z‖) ‖z‖ , (13)

where Φ ∈ R>0 is a known constant, ρ (·) is a positive,
radially unbounded, and strictly increasing function, and z ∈
R3 is a vector of error signals defined as

z , [ e1 r eu ]
T
. (14)

Based on (12) and (13), and the subsequent stability
analysis, the FES control input is designed as

u = ksr, (15)

5The control objective can be quantified in terms of the first time
derivative of e1, (i.e., ė1).

where ks ∈ R>0 is a selectable constant. The motor control
input is designed as

ue = k1esgn (r) + k2er, (16)

where sgn (·) denotes the signum function, and k1e, k2e ∈
R>0 are selectable constants. Substituting (15) and (16) into
(12) yields the closed-loop error system

Mṙ = −V r − e1 + χ−BE (k1esgn (r) + k2er)

+ksB
τ
M (rτ̂ − rτ ) + (Mη −BτM ) ksrτ̂

−Mηksr.
(17)

Based on (17) and the subsequent stability analysis, let the
Lyapunov-Krasovskii functionals Q1, Q2, Q3, Q4 : R≥0 →
R≥0 be defined as

Q1 ,

(
ε1ω1ks +

kscB
2

)∫ t

t−τ̂
r (θ)

2
dθ, (18)

Q2 ,
ω2ks
τ̂

∫ t

t−τ̂

∫ t

s

r (θ)
2
dθds, (19)

Q3 ,
kscB

2

∫ t

t−τ
r (θ)

2
dθ, (20)

Q4 ,
ω3ks
τ

∫ t

t−τ

∫ t

s

r (θ)
2
dθds, (21)

where ω1, ω2, ω3,ε1, ε2 ∈ R>0 are selectable constants. To
facilitate the subsequent stability analysis, auxiliary bounding
constants β1, δ1, β2, δ2 ∈ R>0 are defined as

β1 , min

(
α− ε2η

2

2
,

3

4
cmηks − 2cBks − 2ε1ω1ks

−ω2ks − ω3ks + k2ece,
ω2

3ksτ̂2
− 1

2ε2
− ω1ks

ε1

)
, (22)

δ1 , min

(
β1

2
,

ω2

3τ̂
(
ε1ω1 + 1

2cB
) , 1

3τ̂
,
ω3

cB τ̄
,

1

2τ̄

)
, (23)

β2 , min

(
α− ε2η

2

2
,

1

2
cek2e + cmηks − kscB − ω3ks

−2ε1ω1ks − ω2ks,
ω2

3ksτ̂2
− 1

2ε2
− ω1ks

ε1

)
, (24)

δ2 , min

(
β2

2
,

ω2

3τ̂
(
ε1ω1 + 1

2cB
) , 1

3τ̂
,
ω3

cBτ
,

1

2τ̄

)
. (25)
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IV. STABILITY ANALYSIS

To facilitate the analysis, switching times are denoted
by
{
tin
}
, i ∈ {u, e} , n ∈ {0, 1, 2, ...} , which represent

the time instances when BτM becomes nonzero (i = u), or
the time instances when BτM becomes zero (i = e). Let
VL : R7 → R denote a continuously differentiable, positive
definite, common Lyapunov function candidate defined as

VL ,
1

2
e2

1 +
1

2
Mr2 +

1

2
ω1e

2
u +Q1 +Q2 +Q3 +Q4. (26)

The common Lyapunov function candidate VL satisfies the
following inequalities:

λ1 ‖y‖2 ≤ VL ≤ λ2 ‖y‖2 , (27)

where y ∈ R7 is defined as

y ,
[
z
√
Q1

√
Q2

√
Q3

√
Q4

]T
, (28)

and λ1, λ2 ∈ R>0 are known constants defined as

λ1 ,
1

2
min (1, cm, ω1) , λ2 , max

(
1,
cM
2
,
ω1

2

)
.

To facilitate the following analysis, let D be an open and
connected set, and let the set of initial conditions SD ⊂ D
be defined as6

SD ,
{
y
(
tin
)
∈ R7 | ‖y‖ < inf

{
ρ−1 ((

√
κ,∞))

}}
,
(29)

where κ , min
(

1
2β1cmηks, β2cek2e

)
.

Theorem 1. The closed-loop error system in (17) is expo-
nentially stable in the sense that

‖y (t)‖
a.e.
≤

√
λ2

λ1
‖y(t0)‖ exp

(
−λ3

2
(t− t0)

)
, (30)

where λ3 , λ−1
2 min (δ1, δ2) ∀t ∈ [t0,∞), provided

‖y (tun)‖ ∈ SD, ‖y (ten)‖ ∈ SD, ∀n, and the following gain
conditions are satisfied:

α >
ε2η

2

2
, ω2 >

3

2
ksτ̂

2

(
1

ε2
+

2ω1ks
ε1

)
, k1e >

Φ

ce
,

ε1ω1 ≥ max (|cMη − cb| , |cmη − cB | , cMη) ,

η ≥ 4

3cm

(
2cB + 2ε1ω1 + ω2 + ω3 −

k2ece
ks

)
,

k2e ≥
ks
ce

(4ε1ω1 + 2ω2 + 2ω3 + 2cB − 2cmη) . (31)

Proof: When BτM > 0, the delay effect is present in
the system because the rider’s muscles are stimulated (i.e.,
t ∈

[
tun, t

e
n+1

)
). Furthermore, since BτM is discontinuous,

the time derivative of (26) exists almost everywhere (a.e.)

6For a set A, the inverse image is defined as ρ−1 (A) , {a | ρ (a) ∈ A}.

within t ∈ [t0, ∞). After using (9)-(11), (17), and applying
the Leibniz Rule for (18)-(21), the time derivative of (26) is

V̇L
a.e.
= e1 (r − αe1 − ηeu) + r (−V r − e1 + χ

+ksB
τ
M (rτ̂ − rτ ) + (Mη −BτM ) ksrτ̂

−Mηksr −BE (k1esgn (r) + k2er))

+ω1euks (rτ̂ − r) + 1
2Ṁr2 + kscB

2

(
r2

−r2
τ

)
+
(
ε1ω1ks + kscB

2

) (
r2 − r2

τ̂

)
+ω2ks

τ̂

(
τ̂ r2 −

∫ t
t−τ̂ r (θ)

2
dθ
)

+ω3ks
τ

(
τr2 −

∫ t
t−τ r (θ)

2
dθ
)
.

(32)

Using Properties 1, 7-9, canceling common terms, and
setting ε1 and ω1 such that max (|cMη − cb| , |cmη − cB |) ≤
ε1ω1, and setting BE = 0 in (32) yields

V̇L
a.e.
≤ −αe2

1 + η |e1eu|+ |r| |χ|+ kscB |rrτ̂ |
+kscB |rrτ |+ ε1ω1ks |rrτ̂ | − cmηksr2

+ω1ks (|eurτ̂ |+ |eur|) + kscB
2

(
r2 − r2

τ

)
+
(
ε1ω1ks + kscB

2

) (
r2 − r2

τ̂

)
− k1ece |r|

+ω2ks
τ̂

(
τ̂ r2 −

∫ t
t−τ̂ r (θ)

2
dθ
)
− k2ecer

2

+ω3ks
τ

(
τr2 −

∫ t
t−τ r (θ)

2
dθ
)
.

(33)
To facilitate the analysis, Young’s Inequality is used to obtain
the following inequalities:

|e1eu| ≤
1

2ε2η
e2
u +

ε2η

2
e2

1, (34)

|rrτ̂ | ≤
1

2
r2 +

1

2
r2
τ̂ , (35)

|rrτ | ≤
1

2
r2 +

1

2
r2
τ , (36)

|eurτ̂ | ≤
1

2ε1
e2
u +

ε1

2
r2
τ̂ , (37)

|eur| ≤
1

2ε1
e2
u +

ε1

2
r2. (38)

Substituting (13) and (34)-(38) into (33), choosing k1e >
Φ
ce
,

and completing the squares on |r| ρ (‖z‖) ‖z‖, yields

V̇L
a.e.
≤ −

(
α− ε2η

2

2

)
e2

1 +
(

1
2ε2

+ ω1ks
ε1

)
e2
u

−ks
(

3
4cmη + k2ece

ks
− 2cB − 2ε1ω1 − ω3

)
r2

+ 1
cmηks

ρ2 (‖z‖) ‖z‖2 − ω2ks
τ̂

∫ t
t−τ̂ r (θ)

2
dθ

+ω2ksr
2 − ω3ks

τ

∫ t
t−τ r (θ)

2
dθ.

(39)
Using (15) and the Cauchy-Schwarz inequality, upper bounds
for e2

u, Q2, and Q4 can be obtained as

e2
u ≤ τ̂ ks

∫ t

t−τ̂
r (θ)

2
dθ, (40)

Q2 ≤ ω2ks

∫ t

t−τ̂
r (θ)

2
dθ, (41)
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Q4 ≤ ω3ks

∫ t

t−τ
r (θ)

2
dθ. (42)

Using (18), (20), and (40)-(42) the following upper bound
can be developed

V̇L
a.e.
≤ −

(
α− ε2η

2

2

)
e2

1− ω3

cBτ
Q3 − 1

2τQ4

−ks
(

3
4cmη + k2ece

ks
− 2cB − 2ε1ω1 − ω2 − ω3

)
r2

−
(

ω2

3ksτ̂2 − 1
2ε2
− ω1ks

ε1

)
e2
u

− ω2

3τ̂(ε1ω1+ 1
2 cB)

Q1 − 1
3τ̂Q2

+ 1
cmηks

ρ2 (‖z‖) ‖z‖2 .
(43)

Based on the definition of β1 in (22), the fact that ‖y‖ ≥ ‖z‖
and τ̄ ≥ τ , and imposing the aforementioned gain conditions
in (31), the following upper bound is obtained

V̇L
a.e.
≤ −

(
β1

2 −
1

cmηks
ρ2 (‖y‖)

)
‖z‖2

−β1

2 ‖z‖
2 − ω2

3τ̂(ε1ω1+ 1
2 cB)

Q1 − 1
3τ̂Q2

− ω3

cB τ̄
Q3 − 1

2τ̄Q4.

(44)

Provided ‖y (tun)‖ ∈ SD and using (23) with (44) the
following upper bound is obtained

V̇L
a.e.
≤ −δ1 ‖y‖2 . (45)

From (27), the bound in (45) can be further bounded as

V̇L ≤ −
δ1
λ2
VL, (46)

∀t ∈
[
tun, t

e
n+1

)
.

When BτM = 0, the delay effect is absent from the system
(i.e., t ∈

[
ten, t

u
n+1

)
). According to the switching laws in

(6), when BτM = 0, the system is controlled by the motor
only. Using Properties 1 and 7-9, canceling common terms,
choosing ε1 and ω1 such that ε1ω1 ≥ cMη, and setting
BτM = 0 in (32), an upper bound for (32) can be obtained
as

V̇L
a.e.
≤ −αe2

1 + η |e1eu|+ |r| |χ| − cek1e |r|
− (cek2e + cmηks) r

2 + ε1ω1ks |rrτ̂ |
+ω1ks (|eurτ̂ |+ |eur|) + kscB

2

(
r2 − r2

τ

)
+
(
ε1ω1ks + kscB

2

) (
r2 − r2

τ̂

)
+ω2ks

τ̂

(
τ̂ r2 −

∫ t
t−τ̂ r (θ)

2
dθ
)

ω3ks
τ

(
τr2 −

∫ t
t−τ r (θ)

2
dθ
)
.

(47)
After substituting (13) and (34)-(37) into (47), selecting the
gain conditions according to (31), and completing the squares
on |r| ρ (‖z‖) ‖z‖, the following upper bound is obtained

V̇L
a.e.
≤ −

(
α− ε2η

2

2

)
e2

1 +
(

1
2ε2

+ ω1ks
ε1

)
e2
u

−
(

1
2cek2e + cmηks − 2ε1ω1ks − ω2ks

−kscB − ω3ks) r
2 − ω3ks

τ

∫ t
t−τ r (θ)

2
dθ

+ 1
2cek2e

ρ2 (‖z‖) ‖z‖2 − ω2ks
τ̂

∫ t
t−τ̂ r (θ)

2
dθ.

(48)

After following a similar development as the case when
BτM > 0, (48) can be upper bounded as

V̇L
a.e.
≤ − δ2

λ2
VL, (49)

∀t ∈
[
ten, t

u
n+1

)
provided that ‖y (ten)‖ ∈ SD. The result in

(46) and (49) can be further upper bounded by substituting
the decay rate λ3 , λ−1

2 min (δ1, δ2) to yield

V̇L
a.e.
≤ −λ3VL. (50)

Hence, (46) and (49) can be used with (50) to verify (26) as
a common Lyapunov function across all regions of the crank
cycle. Furthermore, the decay rate in (50) represents the most
conservative decay rate across all regions (i.e., ∀t ∈ [t0,∞)).
Solving the differential inequality in (50) yields the following
bound

VL (t)
a.e.
≤ (VL(t0)) exp (−λ3(t− t0)) . (51)

Provided ‖y (tun)‖ ∈ SD and ‖y (ten)‖ ∈ SD and the
aforementioned gain conditions are met, (26) can be used
with (51) to yield the exponential bound in (30). From (26)
and (50), e1, r, eu ∈ L∞. By (15) and (16), u, ue ∈ L∞ and
the remaining signals are bounded.

V. CONCLUSION

Robust muscle delay-compensating controllers for
switched FES and motor only control were designed
to provide cadence tracking despite uncertain nonlinear
lower limb dynamics subject to bounded unknown additive
disturbances and an unknown FES input delay. An auxiliary
tracking error signal was designed to inject a delay-free
FES control signal in the closed-loop dynamics without
measuring the FES input delay. Lyapunov-Krasovskii
functionals are used in the Lyapunov stability analysis to
ensure exponentially converging cadence tracking. Future
efforts will focus on applying the developed control system
to people with neurological disorders and will consider
disorder-specific challenges to implementation. Further work
can also allow for the FES input delay to be time-varying
and implement an adaptive time-varying estimate of the
delay in the control design instead of a constant estimate to
achieve more precise cadence tracking.
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