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Introduction

This note is dedicated to introducing Higgs bundles
and the Hitchin fibration, with a view towards their
appearance within different branches of mathematics
and physics, focusing in particular on the role played
by the integrable system structure carried by their
moduli spaces. On a compact Riemann surface Σ of
genus g ≥ 2, Higgs bundles are pairs (E,Φ) where

• E is a holomorphic vector bundle on Σ;

• the Higgs field Φ : E → E ⊗K is a holomorphic
map, for K := T ∗Σ.

Since their origin in the late 80’s in work of Hitchin
and Simpson, Higgs bundles manifest as fundamental
objects which are ubiquitous in contemporary math-
ematics, and closely related to theoretical physics.
For GC a complex semisimple Lie group, the Dol-
beault moduli space of GC-Higgs bundles MGC has
a hyperkähler structure, and via different complex
structures it can be seen as different moduli spaces:

• Via the non-abelian Hodge correspondence de-
veloped by Corlette, Donaldson, Simpson and
Hitchin, and in the spirit of Uhlenbeck-Yau’s
work for compact groups, the moduli space is
analytically isomorphic as a real manifold to the
De Rahm moduli space MdR of flat connections
on a smooth complex bundle.

• Via the Riemann-Hilbert correspondence there
is a complex analytic isomorphism between the
de Rham space and the Betti moduli space MB

of surface group representations π1(Σ)→ GC.

∗The author is a professor of mathematics at the University
of Illinois at Chicago. Her email address is schapos@uic.edu.

Some prominent examples where these moduli spaces
appear in mathematics and physics are:

• Through the Hitchin fibration, MGC gives ex-
amples of hyperkähler manifolds which are in-
tegrable systems, leading to remarkable applica-
tions in physics which we shall discuss later on.

• Building on the work of Hausel and Thaddeus re-
lating Higgs bundles to Langlands duality, Don-
agi and Pantev presentedMGC as a fundamental
example of mirror symmetry.

• Within the work of Kapustin and Witten, Higgs
bundles were used to obtain a physical deriva-
tion of the geometric Langlands correspondence
through mirror symmetry. Soon after, Ngô
found Higgs bundles to be key ingredients when
proving the Fundamental Lemma of the Lang-
lands program, which led him to the Fields
Medal a decade ago.

Higgs bundles, and the corresponding Hitchin in-
tegrable systems, have been an increasingly vibrant
area, and thus there are several expository articles
some of which we shall refer to: from the Notices’ ar-
ticle “What is a Higgs bundle?” [BGPG07], to sev-
eral graduate notes on Higgs bundles (e.g., the au-
thor’s recent [Sch19]), to more advance reviews such
as Ngô’s 2010 ICM Proceedings article [Châ10]. Hop-
ing to avoid repeating material nicely covered in other
reviews, whilst still attempting to inspire the reader
to learn more about the subject, we shall take this op-
portunity to focus on some of the recent work done
by leading young members of the community1.

1As in other similar reviews, the number of references is
limited to twenty, and thus we shall refer the reader mostly to
survey articles where precise references can be found.
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Higgs bundles

Higgs bundles arise as solutions to self-dual Yang-
Mills equations, a non-abelian generalization of
Maxwell’s equations which recurs through much of
modern physics. Solutions to Yang-Mills self-duality
equations in Euclidean 4d space are called instantons,
and when these equations are reduced to Euclidean
3d space by imposing translational invariance in one
dimension, one obtains monopoles as solutions. Higgs
bundles were introduced by Hitchin in [Hit87a] as
solutions of the so-called Hitchin equations, the 2-
dimensional reduction of the Yang-Mills self-duality
equations, given by

FA + [Φ,Φ∗] = 0, ∂AΦ = 0, (1)

where FA is the curvature of a unitary connection
∇A = ∂A + ∂A associated to a Dolbeault operator
∂A on a holomorphic principal GC bundle P . The
equations give a flat connection

∇A + Φ + Φ∗, (2)

and express the harmonicity condition for a metric in
the resulting flat bundle. Concretely, principal GC-
Higgs bundles are pairs (P,Φ), where

• P is a principal GC-bundle, and

• Φ a holomorphic section of ad(P )⊗K.

We shall refer to classical Higgs bundles as those de-
scribed in the Introduction, and consider GC-Higgs
bundles in their vector bundle representation: seen
as classical Higgs bundles satisfying some extra con-
ditions reflecting the nature of GC, dictated by the
need for the (projectively) flat connection to have
holonomy in GC. For instance when GC = SL(n,C),
a GC-Higgs bundle (E,Φ) is composed of a holomor-
phic rank n vector bundle E with trivial determinant
ΛnE ∼= O, and a Higgs field satisfying Tr(Φ) = 0, for
which we shall write Φ ∈ H0(Σ,End0(E)⊗K).

Example 1. Choosing a square root of K, consider
the vector bundle E = K1/2⊕K−1/2. Then, a family
of SL(2,C)-Higgs bundles (E,Φa) parametrized by
quadratic differentials a ∈ H0(Σ,K2) is given by(

E = K1/2 ⊕K−1/2,Φa =

(
0 a
1 0

))
. (3)

One may also consider G-Higgs bundles, for G a
real form of GC, which in turn correspond to the
Betti moduli space of representations π1(Σ) → G.
For example, SL(2,R)-Higgs bundles are pairs (E =
L ⊕ L∗,Φ) for L a line bundle and Φ off diagonal, a
family of which is described in Example 1.

In order to define a Hausdorff moduli space of
Higgs bundles, one needs to incorporate the notion
of stability. For this, recall that holomorphic vector
bundles E on Σ are topologically classified by their
rank rk(E) and their degree deg(E), though which
one may define their slope as µ(E) := deg(E)/rk(E).
Then, a vector bundle E is stable (or semi-stable)
if for any proper sub-bundle F ⊂ E one has that
µ(F ) < µ(E) (or µ(F ) ≤ µ(E)). It is polystable if it
is a direct sum of stable bundles whose slope is µ(E).

One can generalize the stability condition to Higgs
bundles (E,Φ) by considering Φ-invariant subbun-
dles F of E, vector subbundles F ⊂ E for which
Φ(F ) ⊂ F ⊗ K. A Higgs bundle (E,Φ) is said to
be stable (semi-stable) if for each proper Φ-invariant
F ⊂ E one has µ(F ) < µ(E) (equiv. ≤). Then,
by imposing stability conditions, one can construct
the moduli space MGC of stable GC-Higgs bundles
up to holomorphic automorphisms of the pairs (also
denoted MDol). Going back to Hitchin’s equations,
one of the most important characterisations of sta-
ble Higgs bundles is given in the work of Hitchin
and Simpson, and which carries through to more gen-
eral settings: If a Higgs bundle (E,Φ) is stable and
deg E = 0, then there is a unique unitary connection
A on E, compatible with the holomorphic structure,
satisfying (1).

Finally, Hitchin showed that the underlaying
smooth manifold of solutions to (1) is a hyperkähler
manifold, with a natural symplectic form ω defined
on the infinitesimal deformations (Ȧ, Φ̇) of a Higgs
bundle (E,Φ) by

ω((Ȧ1, Φ̇1), (Ȧ2, Φ̇2)) =

∫
Σ

tr(Ȧ1Φ̇2 − Ȧ2Φ̇1), (4)

where Ȧ ∈ Ω0,1(End0E) and Φ̇ ∈ Ω1,0(End0E).
Moreover, he presented a natural way of studying
the moduli spacesMGC of GC-Higgs bundles through
what is now called the Hitchin fibration, which we
shall consider next.
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Integrable systems

Given a homogeneous basis {p1, . . . , pk} for the ring
of invariant polynomials on the Lie algebra gC of GC,
we denote by di the degree of pi. The Hitchin fibra-
tion, introduced in [Hit87b], is then given by

h : MGC −→ AGC :=
k⊕
i=1

H0(Σ,Kdi),

(E,Φ) 7→ (p1(Φ), . . . , pk(Φ)).

The map h is referred to as the Hitchin map: it is
a proper map for any choice of basis and makes the
moduli space into an integrable system whose base
and fibres have dimension dim(MGC)/2. In what fol-
lows we shall restrict our attention to GL(n,C)-Higgs
bundles, which are those Higgs bundles introduced in
the first paragraph of these notes, and whose Hitchin
fibration in low dimension is depicted in Figure 1.

Figure 1: An example of a Hitchin fibration.

The generic or regular fibre of the Hitchin fibration
— appearing in violet in Figure 1 — is an abelian
variety, leading to what is refer to as the abelianiza-
tion of the moduli space of Higgs bundles, and which
can be seen geometrically by considering eigenvalues
and eigenspaces of the Higgs field. Indeed, a Higgs
bundle (E,Φ) defines a ramified cover π : S → Σ
of the Riemann surface given by its eigenvalues and
obtained through its characteristic equation.

S = {det(Φ− η) = 0} ⊂ TotK, (5)

for η the tautological section of π∗K. This cover
allows one to construct the spectral data associated
to generic (E,Φ) given by:

• the spectral curve S from (5), generically
smooth, defining a generic point in the Hitchin
base, since the coefficients of {det(Φ − η) = 0}
give a basis of invariant polynomials, and

• a line bundle on S, defining a point in the Hitchin
fibre and obtained as the eigenspace of Φ.

For classical Higgs bundles, the smooth fibres are Ja-
cobian varieties Jac(S), and one recovers (E,Φ) up to
isomorphism from the data (S,L ∈ Jac(S)) by taking
the direct images E = π∗L and Φ = π∗η.

When considering GC-Higgs bundles, one has to
require appropriate conditions on the spectral curve
and the line bundle reflecting the nature of GC. This
approach originates in the work of Hitchin and of
Beauville, Narasimhan and Ramanan (see [Sch19] for
references), and we shall describe here an example
to illustrate the setting. For SL(n,C)-Higgs bundles,
the linear term in (5) since Tr(Φ) = 0, and the generic
fibres are isomorphic to Prym varieties Prym(S,Σ)
since ΛnE ∼= O.

Example 2. For rank two Higgs bundles, we return
to the example in the previous page in which the
Hitchin fibration is over H0(Σ,K2), and the Hitchin
map is h : (E,Φ) 7→ −det(Φ). The family (E,Φa)
gives a section of the Hitchin fibration: a smooth
map from the Hitchin base to the fibres, known as
the Hitchin section. Moreover, this comprises a whole
component of the moduli space of real SL(2,R)-Higgs
bundles inside MGC , which Hitchin identified with
Teichmuller space, and which is now refer to as a
Hitchin component or Teichmüller component. Re-
call that the Teichmüller space T (S) of the underly-
ing surface S of Σ is the space of marked conformal
classes of Riemannian metrics on S.

In the early 90’s Hitchin showed that for any split
group G, e.g. for the split form SL(n,R) of SL(n,C),
the above components are homeomorphic to a vector
space of dimension dim(G)(2g − 2) and conjectured
that they should parametrize geometric structures.
These spaces presented the first family of higher
Teichmüller spaces within the Betti moduli space
of reductive surface group representations MB(G),
which leads us to applications of Higgs bundles within
Higher Teichmuller Theory for real forms G of GC.
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Higher Teichmüller theory

The moduli spaces of G-Higgs bundles have sev-
eral connected components. For a split real form
G of GC, the Hitchin component of G-Higgs bun-
dles, or equivalently of surface group representations,
can be defined as the connected component of the
Betti moduli spaceMB(G) containing Fuchsian rep-
resentations in G, which are representations obtained
by composing a discrete and faithful representation
ρ : π1(Σ) → SL(2,R) (classically called Fuchsian)
with the unique (up to conjugation) irreducible rep-
resentation SL(2,R) → G. Moreover, as mentioned
before, these representations, called Hitchin represen-
tations, are considered the first example of higher Te-
ichmüller space for surfaces: a component of the set of
representations of discrete groups into Lie groups of
higher ranks consisting entirely of discrete and faith-
ful elements. In order to give a geometric descrip-
tion of Hitchin representations, and motivated by dy-
namical properties, Labourie introduced the notion of
Anosov representations, which can be thought of as a
generalization of convex-co-compact representations
to Lie groups G of higher real rank2.

As beautifully described in Wienhard’s ICM Pro-
ceedings article [Wie18], building on Labourie’s work,
higher Teichmüller theory recently emerged as a new
field in mathematics, closely related to Higgs bun-
dles (see also [Kas18, Col19]). There are two known
families of higher Teichmüller spaces, giving the only
known examples of components which consist entirely
of Anosov representations for surfaces:

(I) the space of Hitchin representations into a real
split simple Lie group G; and

(II) the space of maximal representations into a Her-
mitian Lie group G.

A representation ρ : π1(Σ)→ G is maximal if it max-
imizes the Toledo invariant T (ρ), a topological invari-
ant defined for any simple Lie group G of Hermitian
type as

1

2π

∫
Σ

f∗ω (6)

2For example, for representations in SL(2,C), these are
quasi-Fuchsian representations.

for ω the invariant Kähler form on the Riemannian
symmetric space, and f : Σ̃ → X any ρ-equivariant
smooth map.

Example 3. The Toledo invariant can be expressed
in terms of Higgs bundles. For example for SL(2,R)-
Higgs bundles (L ⊕ L∗,Φ), the Toledo invariant is
2 deg(L) and satisfies 0 ≤ |2 deg(L)| ≤ 2g−2. Hence,
the family (E,Φa) from Example 1 is maximal.

The existence of spaces other than those in (I) and
(II) with similar properties to Teichmüller space is
a topic of significant investigation. Expected can-
didates are spaces of θ-positive representations con-
jectured by Guichard-Wienhard, some of which were
shown to exist via Higgs bundles [AABC+19].

Whilst Anosov representations give a clear link be-
tween discrete and faithful representations and ge-
ometric structures, there is no known Higgs bundle
characterization of Anosov representations, and very
little is known about which explicit geometric struc-
tures correspond to these spaces. For instance, work
of Choi and Goldman shows that the holonomy rep-
resentations of convex projective structures are the
Hitchin representations when G = PSL(3,R).

Whilst there is no Higgs bundle characterization
of Anosov representations3, Higgs bundles have been
an effective tool for describing these structures. This
brings us to one of the fundamental problems in mod-
ern geometry: the classification of geometric struc-
tures admitted by a manifold M . Recall that a model
geometry is a pair (G,X) where X is a manifold
(model space) and G is a Lie group acting transitively
on X (group of symmetries). A (G,X)-structure on
a manifold M is a maximal atlas of coordinate charts
on M with values in X such that the transition maps
are given by elements of G. Higgs bundles have
played a key role describing the closed manifold on
which (G,X)-structures live, for example when show-
ing that maximal representations to PO(2, q) give
rise to (G,X)-manifolds for at least two choices of X:
when X is the space of null geodesics (photons) in a
particular Einstein manifold, and when X = P(R2+q)
(e.g. see [Col19]). For an excellent review of geomet-
ric structures, see Kassel’s ICM Proceedings [Kas18].

3Anosov representations are holonomy representations of
geometric structures on certain closed manifolds.
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Harmonic metrics

Equivariant harmonic maps play an important role
in the non-abelian Hodge correspondence mentioned
before (and beautifully reviewed in [BGPG07]), and
thus we shall dedicate this section to look into some
of the advances made in this direction. In our setting,
from the work of Corlette and Donaldson, any reduc-
tive representation ρ : π1(Σ) → GC has associated
a ρ-equivariant harmonic map f from the universal
cover Σ̃ of Σ to the corresponding symmetric space
of GC, which in turn defines a Higgs bundle (E,Φ).
Recall that a map f : Σ̃→M is called ρ-equivariant
if f(γ · x) = ρ(γ) · f(x) for all x ∈ Σ̃ and γ ∈ π1(Σ).
Moreover, though a choice of metric on Σ, one may
define the energy density

e(f) =
1

2
< df, df >: Σ̃→ R, (7)

which is ρ-invariant and descends to Σ. Then, the
energy of f is defined as

E(f) =

∫
Σ

e(f)dVol. (8)

It only depends on the conformal class, and is finite
since Σ is compact. The map f is harmonic if it is a
critical point of the energy functional E(f) in (8).

Conversely, through the work of Hitchin and Simp-
son, a polystable Higgs bundle admits a hermitian
metric h on the bundle such that the associated
Chern connection A solves the Hitchin equations (1),
and such a metric is called harmonic. Moreover, the
harmonic metric induces a completely reducible rep-
resentation ρ : π1(Σ)→ GC and a ρ-equivariant har-
monic map into the corresponding symmetric space.
These two directions together give the celebrated
non-abelian Hodge correspondence.

Understanding the geometric and analytic prop-
erties of the harmonic maps arising from Hitchin’s
equations (1) is of significant importance. For in-
stance, one may ask how do those metrics behave at
the boundaries of the moduli space, or how do the en-
ergy densities of the corresponding harmonic maps at
different points of the Hitchin fibration relate to each
other (the reader may be interested in the reviews
[Li19] and [Fre19], and references therein).

Hitchin’s work, the moduli space of Higgs bundles
has a natural C∗-action λ · (E,Φ) = (E, λΦ), whose
fixed point sets allow one to study different aspects of
the topology and the geometry of the space, as done
in [Hit87b] (see also [Ray18, Col19]). Moreover, as
shown by Simpson, the fixed points of this action are
complex variations of Hodge structure (VHS). Recall
that a VHS is a C∞ vector bundle V with a Hodge
decomposition V =

⊕
p+q V

p,q, a rational structure
and a flat connection, satisfying the axioms of Grif-
fiths transversality and existence of a polarization.

From the above, one may ask how the energy den-
sity of harmonic maps changes along the C∗-flow on
the moduli space of Higgs bundles. Whilst this re-
mains a challenging open question in the area, a bet-
ter understanding might come from the following con-
jectural picture of Dai-Li described in Figure 2, and
through which the harmonic map of a fixed point set
of the C∗ action on MGC gives rise to two other re-
lated harmonic maps.

Figure 2: The nilpotent cone in red over the 0, and
the points A,B and C lying over the C∗-flow and over
the Hitchin section respectively.

A point A within the Hitchin fibration naturally
determines two other points: the point B which is
the limit of the C∗-flow λ·A as λ→ 0 in the nilpotent
cone, and the point C which is the intersection point
of the Hitchin fiber containing A and the Hitchin sec-
tion. Then Dai-Li’s conjecture states that the energy
densities defined as in Eq.(7) of the corresponding
harmonic maps fA, fB , fC satisfy

e(fB) < e(fA) < e(fC). (9)

As evidence for the above conjecture, one can con-
sider the integral version (through Eq.(8)), for which
Hitchin showed that E(fB) < E(fA), but where the
other corresponding inequality in (9) remains open.
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Limiting structures

The study of ρ-equivariant harmonic metrics and
higher Teichmüller theory through Higgs bundles has
received much attention in recent years and brings us
to one of the most important conjectures in the area.
This conjecture, due to Labourie, states that for each
Hitchin representation ρ there is a unique conformal
structure Xρ on the underlying surface S in which
the ρ-equivariant harmonic metric is a minimal im-
mersion. In particular, Labourie showed that for all
Anosov representations such a conformal structure
exists, but the difficultly lies in proving uniqueness
— the conjecture has been established only for Lie
groups of rank two ([Lab17, Col19]). To understand
this problem, one may consider the study of defor-
mations of conformal structures on surfaces and the
corresponding harmonic metric.

Some of these deformations can be seen through
the hyperkähler structure of the moduli space, by
virtue of which it has a CP1-worth of complex struc-
tures labelled by a parameter ξ. Indeed, we can think
of a hyperkähler manifolds as a manifold whose tan-
gent space admits an action of three complex struc-
tures I, J and K satisfying the quaternionic equa-
tions and compatible with a single metric. In our
case, I arises from the complex structure I on the Rie-
mann surface Σ, while J is from the complex struc-
ture on the group GC. In this setting, one has the
following moduli spaces:

• for ξ = 0 the space of Higgs bundles,

• for ξ ∈ C× the space of flat connections4

∇ξ = ξ−1Φ + ∂̄A + ∂A + ξΦ
∗
; (10)

• for ξ =∞ the space of “anti-Higgs bundles”.

The hyperkähler metric on Hitchin moduli space is
expected to be of type “quasi-ALG”, which is some
expected generalization of ALG. A far reaching open
question is the understanding of the behaviour of the
metrics at the boundaries of the space, for instance
along a path in the Hitchin’s base via the limit

lim
t→∞

(∂̄A, tΦ).

4In particular, for ξ = 1 we recover (2).

Almost a decade ago Gaiotto-Moore-Neitzke gave
a conjectural description of the hyperkähler met-
ric on MGC near infinity, which surprisingly sug-
gests that much of the asymptotic geometry of the
moduli space can be derived from the abelian spec-
tral data described before. Recent progress has
been made by Mazzeo-Swoboda-Weiss-Witt, Dumas-
Neitzke and Fredrickson but the global picture re-
mains open (for a survey of the area, see [Fre19]).

Finally, one further type of limiting structure we
would like to mention is that of opers, appearing as
certain limits of Higgs bundles in the Hitchin com-
ponents. To see this, note that for a solution of (1)
in the SL(n,C)-Hitchin section, one can add a real
parameter R > 0 to (10) to obtain a natural family
of connections

∇(ξ,R) := ξ−1RΦ + ∂̄A + ∂A + ξRΦ
∗
. (11)

Some years ago Gaiotto conjectured that the space
of opers (a generalization of projective structures
which, like the Hitchin section, is parametrized by the
Hitchin base) should be obtained as the ~-conformal
limit of the Hitchin section: taking R→ 0 and ξ → 0
simultaneously while holding the ratio ~ = ξ/R fixed.

The conjecture was recently established for gen-
eral simple Lie groups by Dumistrescu-Fredrickson-
Kydonakis-Mazzeo-Mulase-Neitzke, who also conjec-
tured that that this oper is the quantum curve in
the sense of Dumitrescu-Mulase, a quantization of
the spectral curve S of the corresponding Higgs bun-
dle by topological recursion (see references and de-
tails in [Dum18]). More recently, Collier-Wentworth
showed that the above conformal limit exists in much
more generality and gives a correspondence between
(Lagrangian) strata for every stable VHS — and not
only the Hitchin components. Specifically, they con-
structed a generalization of the Hitchin section by
considering stable manifoldsW0(E0,Φ0) arising from
each VHS (E0,Φ0) given by

{(E, φ) ∈MGC | lim
t→0

t · (E,Φ) = (E0,Φ0)}. (12)

The analog of the Hitchin section is then obtained by
parameterizing W0(E0,Φ0) with a slice in the space
of Higgs bundles through a global slice theorem, anal-
ogous to the definition of the Hitchin section.
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Correspondences

The appearance of Higgs bundles as parameter spaces
for geometric structures is an example of the study of
correspondences between solutions to Hitchin’s equa-
tions (1) and different mathematical objects. In what
follows we shall restrict our attention to a few corre-
spondences between Higgs bundles and two classes
of mathematical objects: quiver varieties and hyper-
polygons (e.g. see references in [Hos18,Ray18]).

Recall that a quiver Q = (V,A, h, t) is an oriented
graph, consisting of a finite vertex set V , a finite ar-
row set A, and head and tail maps h, t : A → V .
A Nakajima representation of a quiver Q can be
written as families W := ((Wv), φa, ψa) for a ∈ A
and v ∈ V , where Wv is a finite dimensional vector
space; the map φa : Wt(a) → Wh(a) is a linear map
for all a ∈ A, and ψa is in the cotangent space to
Hom(Wt(a),Wh(a)) at φa. In particular, a hyperpoly-
gon is a representation of the star-shaped quiver, an
example of which appears in Figure 3.

Figure 3: A star-shaped quiver.

For the star-shaped quiver in Figure 3, for which the
dimensions of Wv are indicated in each vertex, the
cotangent space T ∗Rep(Q) of representations of Q is

T ∗

(
n⊕
i=1

Hom(C,Cr)

)
= T ∗ (Hom(Cn,Cr))

Konno showed that hyperpolygon spaces are hy-
perkähler analogs of polygon spaces, which are repre-
sentation spaces of the star-shaped quivers with sim-
ple arrows. Moreover, through the work of Fisher-
Rayan, the space of hyperpolygons as in Figure 3
may be identified with a moduli space of certain rank
r parabolic Higgs bundles on P1.

In this setting, one has to puncture P1 along a pos-
itive divisor D and then regard the Higgs field as be-
ing valued in O(q) = K ⊗O(D), with poles along D
and satisfying certain conditions on its residues at the
poles. This takes us to a generalization of Higgs bun-
dles on higher genus surfaces obtained by allowing the
Higgs field to have poles, leading to the moduli spaces
of tame or parabolic Higgs bundles (for logarithmic
singularities) initiated by Simpson [Sim92], or of wild
Higgs bundles (for higher order poles) initiated by
Boalch and Biquard — see references in [AEFS18] to
learn more about these other settings. Understanding
the more general appearance of parabolic (and wild)
Higgs bundles on higher genus Riemann surfaces in
terms of hyperpolygons remains an open question.

In a different direction, given a fixed Riemann sur-
face Σ and a homomorphism between two Lie groups
Ψ : GC → G′C, there is a naturally induced map be-
tween the Betti moduli spaces of representations

Ψ :MB(GC)→MB(G′C).

It follows that there must be a corresponding induced
map between the Higgs bundle moduli spaces, but
this does not transfer readily to the induced map on
the Hitchin fibrations, in particular since the image
might be over the singular locus of the base. When
the maps arise through isogenies, together with Brad-
low and Branco, the author obtained a description of
the map for spectral data in terms of fibre products
of spectral curves [Sch19], but of much interest is the
understanding of other maps arising in this manner.

Finally, when considering compactifications of the
moduli space, one may ask how do the moduli spaces
transform when the base Riemann surface Σ changes
(for instance, when degenerating the surface Σ as in
Figure 4), a question closely related to the relation
between Higgs bundles and singular geometry, which
we shan’t touch upon here — see [AEFS18] for a sur-
vey and open problems in this direction.

Figure 4: A degeneration of the Riemann surface.
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Mirror symmetry and branes

One of the most interesting correspondences of
Hitchin systems arises through mirror symmetry. For
LGC the Langlands dual group of GC, there is an
identification of the Hitchin basis AGC ' ALGC . The
two moduli spaces MGC and MLGC are then torus
fibrations over a common base, and through the fa-
mous SYZ conjecture, mirror symmetry should man-
ifest as a duality between the spaces of Higgs bun-
dles for Langlands dual groups fibred over the same
base via the Hitchin fibration. As first observed by
Hausel-Thaddeus for SL(n,C) and PGL(n,C)-Higgs
bundles, and shown by Donagi and Pantev for gen-
eral pairs of Langlands dual reductive groups, the
non-singular fibres are dual indeed abelian varieties.
Kapustin and Witten gave a physical interpretation
of this in terms of S-duality, using it as the basis for
their approach to the geometric Langlands program.

The appearance of Higgs bundles (and flat connec-
tions) within string theory and the geometric Lang-
lands program has led researchers to study the de-
rived category of coherent sheaves (B-model) and the
Fukaya category (A-model) of these moduli spaces. It
then becomes fundamental to understand Lagrangian
submanifolds ofMGC (the support of A-branes), and
their dual objects (the support of B-branes). By con-
sidering the support of branes, we shall refer to a sub-
manifold of a hyperkähler manifold as being of type
A or B with respect to each of the complex struc-
tures (I, J,K). Hence one may study branes of the
four possible types: (B,B,B), (B,A,A), (A,B,A)
and (A,A,B), whose dual partner is predicted by
Kontsevich’s homological mirror symmetry to be:

(B,A,A)←→ (B,B,B) (13)

(A,A,B)←→ (A,A,B) (14)

(A,B,A)←→ (A,B,A) (15)

In view of the SYZ conjecture, it is crucial to ob-
tain the duality between branes within the Hitchin
fibration, and in particular between those completely
contained within the irregular fibres since the duality
has not been established there, and this has remained
a very fruitful direction of research for decades. In
2006 Gukov, Kapustin and Witten introduced the

first studies of branes of Higgs bundles in relation to
the Geometric Langlands Program and electromag-
netic duality where the (B,A,A)-branes of real G-
Higgs bundles were considered. These branes, which
correspond to surface group representations into the
real Lie group G, may intersect the regular fibres
of the Hitchin fibration in very different ways (see
[Sch15,Sch19] for references):

• Abelianization — zero-dimensional intersection.
When G is a split real form, the author showed
that the (B,A,A)-brane intersects the Hitchin
fibration in torsion two points.

• Abelianization — positive dimensional intersec-
tion. Moreover, we can also show that for other
real groups such as SU(n, n), the intersection
has positive dimension but may still be described
solely in terms of abelian data.

• Cayley/Langlands type correspondences. Sur-
prisingly, many spaces of Higgs bundles cor-
responding to non-abelian real gauge theories
do admit abelian parametrizations via auxiliary
spectral curves, as shown with Baraglia through
Cayley/Langlands type correspondences for the
groups G = SO(p+q, p) and G = Sp(2p+2q, 2p).

• Nonabelianization. Together with Hitchin we
initiated the study of branes which don’t inter-
sect the regular locus, through the nonabelian-
ization of Higgs bundles, which characterized the
branes forG = SL(n,H), SO(n,H) and Sp(n, n)
in terms of non-abelian data given by spaces of
rank 2 vector bundles on the spectral curves.

Moreover, it has been conjectured (Baraglia-
Schaposnik) that the Langlands dual in (13) to
the above (B,A,A)-branes should correspond to the
(B,B,B)-branes of Higgs bundles with structure
group the Nadler group [Sch15]. More generally,
branes of Higgs bundles have shown to be notoriously
difficult to compute in practice, and very few broad
classes of examples are known — e.g. see [Sch19] for
a partial list of examples. We shall next describe a
family of branes defined by the author and Baraglia,
obtained by imposing symmetries to the solutions of
(1) — see [Sch15] and references therein.
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Higgs bundles and 3-manifolds

By considering actions on the Riemann surface Σ and
on the Lie group GC, one can induce actions on the
moduli space of Higgs bundles and on the Hitchin
fibration, and study their fixed point sets. Indeed, for
ρ the compact structure of GC, and σ a real form of
GC, together with Baraglia we defined the following:

(i) Through the Cartan involution θ of a real form
G of GC one obtains i1(∂̄A,Φ) = (θ(∂̄A),−θ(Φ)).

(ii) A real structure f : Σ → Σ on Σ induces
i2(∂̄A,Φ) = (f∗(ρ(∂̄A)),−f∗(ρ(Φ))).

(iii) Lastly, by looking at i3 = i1 ◦ i2, one obtains
i3(∂̄A,Φ) = (f∗σ(∂̄A), f∗σ(Φ)).

The fixed point sets of i1, i2, i3 are branes of type
(B,A,A), (A,B,A) and (A,A,B) respectively. The
topological invariants can be described using KO,
KR and equivariant K-theory [Sch15]. In particular,
the fixed points of i1 give the (B,A,A)-brane of G-
Higgs bundles mentioned in the previous section, an
example of which appears in Figure 5, and which one
can study via the monodromy action on the Hitchin
fibration (e.g. see [Sch19]).

Figure 5: A real slice fixed by i1 of the moduli space
of SL(2,C)-Higgs bundles, from two different angles,
obtained through Hausel’s 3d prints of slices ofMGC .

The fixed points of i3 are pseudo-real Higgs bun-
dles. To describe the fixed points of the involution i2,
note that a real structure (or anti-conformal map) on
a compact connected Riemann surface Σ is an anti-
holomorphic involution f : Σ→ Σ. The classification
of real structures on compact Riemann surfaces is a
classical result of Klein, who showed that all such in-
volutions on Σ may be characterised by two integer
invariants (n, a): the number n of disjoint union of

copies of the circle embedded in Σ fixed by f ; and
a ∈ Z2 determining whether the complement of the
fixed point set has one (a = 1) or two (a = 0) com-
ponents, e.g. see Figure 6.

Figure 6: A genus 2 Riemann surface and its fixed
point sets under an anti-holomorphic involution with
invariants (n, a) = (3, 0).

A real structure f on the Riemann surface Σ in-
duces involutions on the moduli space of represen-
tations π1(Σ) → GC, of flat connections and of GC-
Higgs bundles on Σ, and the fixed points sets define
the (A,B,A)-branes of Higgs bundles in (ii). These
branes can be shown to be real integrable systems,
given by (possibly singular) Lagrangian fibrations.

From a representation theoretic point of view,
one may ask which interesting representations these
branes correspond to, a question closely related to the
understanding of which representations of π1(Σ) ex-
tend to π1(M) for M a 3-manifold whose boundary is
Σ. Whilst this question in its full generality remains
an important open problem, we can consider some
particular cases in which the answer becomes clear
from the perspective of Higgs bundles. For this, as
seen in [Sch15] and references therein, we considered
the 3-manifolds

M =
Σ× [−1, 1]

(x, t) 7→ (f(x),−t)
, (16)

for which ∂M = Σ (e.g. a handle body). In this
setting, together with Baraglia, we were able to show
that a connection solving the Hitchin equations (1)
on Σ extends over M given in (16) as a flat connec-
tion if and only if the Higgs bundle (E,Φ) is fixed by
i2 and the class [E] ∈ K̃0

Z2
(Σ) in reduced equivariant

K-theory is trivial. That is, the Higgs bundles which
will extend are only those whose vector bundle is pre-
served by the lift of the involution i2, and for which
the action of i2 over the fibres of E is trivial when
restricted to each fixed circles.
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Global topology

The computation of topological invariants of Higgs
bundle moduli spaces has received vast attention
from researchers who have tackled this problem with
a diverse set of mathematical tools (see references in
[Hau13, Ray18]). One of the central questions con-
sidered for Higgs bundles and their generalizations is
what the Poincaré polynomial of the space is. A use-
ful fact is that the total space of the Hitchin fibration
deformation retracts onto the nilpotent cone h−1(0)
via the gradient flow of the moment map of the C∗-
action introduced in the harmonic metrics section.
The cohomology ring localises to the fixed-point locus
inside h−1(0): as first seen by Morse-theoretic meth-
ods in the work of Hitchin, the Poincaré series that
generates the Betti numbers of the rational cohomol-
ogy H•(MGC ,Q) is a weighted sum of the Poincaré
series of the connected components of the fixed-point
locus.

Example 4. As shown by Hitchin, for the family
of SL(2,C)-Higgs bundles in Example 1, when the
genus of Σ is g = 2, the Poincaré series is

1 + t2 + 4t3 + 2t4 + 34t5 + 2t6. (17)

Using Morse theory, it has only been possible to
compute Poincaré polynomials for low rank groups,
and extending this to higher rank has been a chal-
lenging open problem for some time. More recently,
interesting alternative techniques have been used to
access the higher-rank Poincaré polynomials by Moz-
govoy, Schiffmann, Mellit, and others. One may fur-
ther ask about the structure of the ring H•(MGC ,Q)
itself: for instance Heinloth recently proved that the
intersection pairing in the middle dimension for the
smooth moduli space vanishes in all dimensions for
GC = PGL(n,C); and Cliff-Nevins-Shen proved that
that the Kirwan map from the cohomology of the
moduli stack of G-bundles to the moduli stack of
semistable G-Higgs bundles fails to be surjective.

One of the most important cohomological conjec-
tures in the area is de-Cataldo-Hausel-Migliorini’s
P=W conjecture, which gives a correspondence be-
tween the weight filtration and the perverse filtration
on the cohomology of MB and MDol, respectively,

obtained via non-abelian Hodge theory. Only certain
special cases are known, e.g., for rank 2 Higgs bun-
dles, shown by de-Cataldo-Hausel-Migliorini’s (see
[Hau13]), and for certain moduli spaces of wild Higgs
bundles, proven recently by Shen-Zhang and Szabo.

Inspired by the SYZ conjecture mentioned be-
fore, Hausel-Thaddeus conjectured that mirror mod-
uli spaces of Higgs bundles present an agreement of
appropriately defined Hodge numbers:

hp,q(MGC) = hp,q(MLGC). (18)

Very recently, the first proof of this conjecture
was established for the moduli spaces of SL(n,C)
and PGL(n,C)-Higgs bundles by Groechenig-Wyss-
Ziegler in [GWZ17], where they established the equal-
ity of stringy Hodge numbers using p-adic integration
relative to the fibres of the Hitchin fibration, and in-
terpreted canonical gerbes present on these moduli
spaces as characters on the Hitchin fibres.

Further combinatorial properties of MGC can be
glimpsed through their twisted version, consisting of
Higgs bundles (E,Φ) on Σ with Φ : E → E ⊗ L,
where Σ now has any genus, L is a line bundle
with deg(L) > deg(K), but without any punctures
or residues being fixed. The corresponding moduli
spaces carry a natural C∗-action but but are not hy-
perkähler and there is no immediate relationship to a
character variety. Hence, there is no obvious reason
for the Betti numbers to be invariant with regards to
the choice of deg(E), which in the classical setting
would follow from non-abelian Hodge theory. How-
ever, the independence holds in direct calculations
of the Betti numbers in low rank, and was recently
shown for GL(n,C) and SL(n,C)-Higgs bundles by
Groechenig-Wyss-Ziegler in [GWZ17]. This suggests
that some topological properties of Hitchin systems
are independent of the hyperkähler geometry (see ref-
erences in [Hau13,Ray18] for more details).

Finally, it should be mentioned that an alterna-
tive description of the Hitchin fibration can be given
through Cameral data, as introduced by Donagi and
Gaitsgory, and this perspective presents many ad-
vantages, in particular when considering correspon-
dences arising from mirror symmetry and Langlands
duality, as those mentioned in previous sections stud-
ied by Donagi-Pantev.
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