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Abstract—We present Vesti, a Deep Neural Network (DNN)
accelerator optimized for energy-constrained hardware platforms
such as mobile, wearable, and Internet of Things (IoT) devices.
Vesti integrates instances of in-memory computing (IMC) SRAM
macros with an ensemble of peripheral digital circuits for
dataflow management. The IMC SRAM macros eliminate the
data access bottleneck that hinders conventional ASIC implemen-
tations performing dot-product computation, while the peripheral
circuits improve the macros’ parallelism and utilization for
practical applications. Vesti supports large-scale DNNs with
configurable activation precision, substantially improving chip-
level energy-efficiency with favorable accuracy trade-off. The
Vesti accelerator is designed and laid out in 65 nm CMOS,
demonstrating ultra-low energy consumption of less than <20nJ
for MNIST classification and <40µJ for CIFAR-10 classification
at 1.0V supply.

Index Terms—In-memory computing, SRAM, deep learning
accelerator, deep neural networks, double-buffering.

I. INTRODUCTION

In recent years, works from algorithms to hardware reduced
the energy cost of increasingly deeper and largeer DNNs.
On the algorithm side, pruning, compression [1], and low-
precision techniques [2]–[5] have been investigated with
minimal degradation in the classification accuracy. In [2], the
weights and activations are binarized to +1 or -1. On the
hardware side, many digital accelerators [6]–[8] have been
presented to lower the cost of computing DNNs. However,
limitations remain. In particular, memory is the biggest energy-
efficiency bottleneck, in terms of storing parameters, loading
from memory, and moving to processing unit.

To improve this limitation, in-SRAM computing was intro-
duced. It performs computation in SRAM hardware without
reading out each row of SRAM to a computing unit [10]–
[20]. Recently, we demonstrated a new SRAM macro that
can perform MAC along the bitline with all rows turned
on simultaneously [21]. Titled as XNOR-SRAM, it performs
XNOR-and-ACcumluate (XAC, replacing MAC in the binary-
weight DNN) fast and energy-efficiently, and supports core
computing primitives of state-of-the-art DNNs, achieving
highly competitive classification accuracy. However, XNOR-
SRAM and most in-SRAM computing works only demonstrate
a relatively small custom SRAM array at the single-array-
level [13], [16], [21].
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In this work, we substantially expanded the single-array-level
prior XNOR-SRAM design [21] towards a configurable DNN
accelerator architecture that integrates 72 XNOR-SRAM arrays
with inter-array communication, and supports configurable
activation precision. The proposed accelerator supports 3×3
and 1×1 convolutional kernels and up to 256 feature maps in
a convolutional layer.

The main contributions of this work are as follows:
• We construct the chip-level DNN accelerator architecture

that efficiently loads/maps DNN weights onto many
instances of XNOR-SRAM arrays.

• We add peripheral digital logic to support multi-bit
activations to the originally binary-DNN only XNOR-
SRAM, serving as an effective knob to favorably trade-off
energy versus accuracy.

• We employ double-buffering technique with two groups of
XNOR-SRAMs to hide the latencies of re-programming
SRAM arrays with new DNN weights.

• We evaluate the chip-level energy benefits and remaining
bottlenecks of IMC based DNN accelerators.

The remainder of the paper is organized as follows. Sec. II
presents the basics of XNOR-SRAM, and discusses practical
challenges of designing a chip-level DNN accelerator using
many macros. In Sec. III, we describe the microarchitecture
of the proposed accelerator, optimal precision study, and
methodology to efficiently map DNNs onto XNOR-SRAM
arrays. Sec. IV reports experimental results on speed, energy
dissipation, and classification accuracy across several workloads.
Finally, the paper is concluded in Sec. V.

II. CHALLENGES OF ACCELERATOR DESIGN WITH
XNOR-SRAM MACROS

In [21], “XNOR-SRAM”, a mixed-signal IMC SRAM
macro, demonstrates scalability and efficient mapping capability
of key computing primitives in binarized neural networks
(BNNs) [2], [22], i.e. convolutional and fully-connected layers
of Convolutional Neural Networks (CNNs) and Multi-Layer
Perceptrons (MLPs). The macro consists of a 256-by-64 custom
SRAM array, a row decoder, and a read periphery including a
11-level flash ADC shared across 64 columns. XNOR-SRAM
supports computation with binary weights (+1/-1) and binary
inputs (+1/-1 or +1/0) as well as ternary inputs (+1/0/-1).

XNOR-SRAM macro was prototyped in 65 nm CMOS,
and achieves 81.28 pJ and 178 ns for 64 operations of 256-
input XAC at 0.6V. Classification accuracies for MNIST and
CIFAR-10 datasets have been evaluated on a single XNOR-
SRAM macro in [21]. For MNIST, a MLP consisting of three
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hidden layers was used. For CIFAR-10, a CNN consisting of
six convolutional layers and three fully-connected layers [22]
was used. Accumulation of the XNOR-SRAM outputs, max-
pooling, and batch normalization were performed in digital
simulation with bit precisions of 12, 12, and 10, respectively.
The networks computed with XNOR-SRAM achieve 85.7%
accuracy for CIFAR-10 and 98.3% for MNIST.

Although XNOR-SRAM and other IMC SRAMs show
promising energy-efficiency at the single-array-level, there
are several important challenges and missing pieces towards
building a chip-level DNN accelerator using these arrays.

Integration of many IMC SRAM arrays: First, to imple-
ment an overall DNN accelerator, many IMC SRAM arrays
need to be instantiated and integrated together with on-chip
communication networks because the capacity of a typical
memory array is insufficient to hold enough weights for
substantial computation.

ADC overhead and offset cancellation: Second, the ADC
design incurs area and power overhead. Furthermore, the
performance is sensitive to offset or variability. Calibration and
offset compensation thus will incur additional area/power [23].

Post-processing modules: Third, DNNs acceleration using
IMC macros still require partial sum accumulation, batch nor-
malization, pooling, non-linear activation, etc. These modules
add system-level design complexity and energy consumption.

Activation storage and communication: Fourth, typically
the IMC SRAM arrays store the DNN weights, which means
that the activations need to be stored in a separate memory
and communicated to the IMC SRAM arrays at the right time.
It can become the new bottleneck.

Write energy: Finally, as state-of-the-art DNNs are very
large, it’s not possible to store the entire weights of DNNs in
IMC SRAMs. It will be necessary to reload weights as they are
used. While IMC SRAMs can have high parallelism, loading
new weights still requires row-by-row operation, which incurs
long latency and consumes write energy.

In the subsequent sections, we will describe how a number
of these key challenges have been addressed and inclusively
implemented in the proposed accelerator design, and will report
the accelerator evaluation results.

III. VESTI ACCELERATOR DESIGN

A. Microarchitecture Overview

Fig. 1(a) shows the Vesti microarchitecture. Using double-
buffering scheme [24]), it consists of two symmetric cores,
while one performs in-memory computation, the other load new
weights from an on-chip global buffer or DRAM. Each block
consists of (1) ensemble of XNOR-SRAM macros that compute
convolution and fully-connected layers, and (2) a digital ALU
that performs other operations such as batch normalization and
max-pooling. In this work, 36×2 XNOR-SRAM macros are
employed (Fig. 1) to support representative CNNs for CIFAR-
10 dataset [22]. To support larger CNNs, the XNOR-SRAM
macros can be time-multiplexed.

The inputs and weights are fetched from off-chip. The inputs
are then saved in the activation memory buffer; weights are
written into the XNOR-SRAM macros. The 36 XNOR-SRAM

macros in each core are divided in 4 groups. The 4 groups share
the input activations, performing XAC operations for up to 256
(=64×4) output feature maps in parallel. The 9 XNOR-SRAM
macros in each group accept inputs from up to 256 input
feature maps when performing 3x3 convolution and up to 2304
(=256×9) inputs in fully-connected matrix vector multiplication.
In each cycle, up to 36 256-input XAC operations can
be executed in parallel. The outputs of 36 XNOR-SRAM
macros are processed by a 256-way digital ALU where ADC
output decoding, partial sum accumulation, max-pooling, batch
normalization and binary/ReLu activation are performed. The
results will be saved back to the activation memory buffer of
the other core, which will perform computation for the ensuing
layer in a similar fashion.

B. Multi-bit Activation Support

XNOR-SRAM natively supports binary activations and
weights, however binary DNNs do not yet reach the same
accuracy level of higher precision counterparts in some
tasks [2], [22]. Therefore, Vesti support weights with binary
precision (+1 or -1) and activations with configurable precision
from 1-bit to 4-bit. This precision range is based on algorithmic
experiments that we conducted. In particular, we swept (1)
several CNN sizes (various numbers of feature maps per layer)
for the CIFAR-10 dataset, and (2) activation precision values
including binary, ternary, 2-bit, 4-bit, 8-bit, and 32-bit floating
point. Accuracy of models using floating-point activation could
be reached by employing 3-/4-bit activation with binary weights,
while binary activations do show considerable degradation in
CNN accuracy for complex tasks.

In the microarchitecture level, the support of the multi-bit
inputs is done by performing XAC operation for each bit of
input/activation using XNOR-SRAM macros and then shift-and-
accumulate the bitwise XAC results in the digital peripheries
over multiple cycles (e.g., N cycles for N-bit precision of
activations). This is illustrated in Fig. 1(b), together with other
digital computations at the periphery. Configurable precision
(from 1-bit to 4-bit) for activations can be flexibly supported
at the cost of additional clock cycles.

C. Activation Memory

Activation memory in each core stores the input feature
maps for that core and the output activations from the other
core. We propose a way to store feature maps in the activation
memory to exploit data reuse. In particular, we divide the
overall activation memory into 9 activation SRAM blocks of
128 rows and 256 columns as shown in Fig. 2. The input
feature maps are divided in 3×3 tiles. The input feature maps
pixels are grouped and stored in 9 SRAM blocks according to
their position in the 3×3 tiles they belong to. In this way, we
can read all the 256×3×3 pixels in a single cycle given the
fact that any 3×3 patch of input feature maps is now stored
in 9 different SRAM blocks. A controller block is designed to
generate corresponding addresses for the 9 SRAM blocks.

As shown in Fig. 1(c), the activation memory buffer has
four parts: (1) coordinate generator, (2) address decoder, (3)
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Fig. 1: (a) Overall microarchitecture of proposed in-memory computing Vesti accelerator. (b) Computations for the thermometer-
to-binary conversion, LUT, batch normalization, etc. (c) Block diagram of the activation memory buffer.
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Fig. 2: Illustration of convolution layer feature map storage
and access scheme in 9 independent SRAM arrays. (a) 3x3
window starting from (0, 0); (b) 3x3 window starting from (0,
1); (c) 3x3 window starting from (2, 2).

rewiring logic, and (4) XNOR-SRAM input interpreter module,
along with the 18 SRAM blocks.

Coordinate Generator: The coordinate generator block
generates the x and y coordinates of the output map pixels
sequentially in a row-major order. When the convolutional layer
is followed by a pooling layer, the coordinates correspond to
each pooling window in a row-major order, easing buffer size
requirement for pooling operation. These coordinates will serve

as inputs to the address decoder and rewiring logic blocks to
different combinations of row addresses and read enable signals
for SRAM blocks.

Address Decoder: The address decoder block generates
activation memory addresses, including zero padding, for the 9
SRAM blocks according to the output feature map coordinates.
When the generated addresses are invalid for the input feature
maps, corresponding read enable signals will be inactive and
substitute the SRAM output with zero values. Since the feature
map size and channel size vary from layer to layer, we further
divide each 256-bit-word-length SRAM block in two 128-bit-
word-length SRAM blocks. For some layers (e.g., map size
= 32×32, channel size = 128), we concatenate these two in
depth direction to form a deeper SRAM block with 128-bit
word length; for some layers (e.g., map size = 16×16, channel
size = 256), we concatenate these two in word direction to
form a wider SRAM block with 256-bit word length.

Rewiring logic: As shown in Fig. 2, the SRAM outputs the
3×3 patches are rewired into the correct order to be presented
to the XNOR-SRAM macros. There are 9 different rewiring
patterns in total, depending on the 3×3 patch row and column
offset remainder modulo by 3. Fig. 2 illustrates 3 different
patterns with an example of 6×6 feature maps, where the patch
row and column offset is (0, 0), (0, 1) and (2, 2), respectively.

XNOR-SRAM input interpreter: Depending on whether
we operate the XNOR-SRAM in 1-bit binary activation (+1/-1)
or multi-bit activation (+1/0) mode, the XNOR-SRAM input
interpreter will generate proper wordline inputs for XNOR-
SRAM array from the rewiring logic output.

D. Mapping of Convolution, Fully Connected, and Other
Layers

For convolution layers, we propose a mapping scheme where
the same location pixels (x, y) from each kernels are stored in
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Fig. 3: Mapping convolution layers (left) and fully-connected
layers (right) of deep CNNs onto the Vesti accelerator employ-
ing XNOR-SRAM macros with in-memory computing.

the same XNOR-SRAM array. Each pixels of a single kernel
are stored in different XNOR-SRAM arrays. This is illustrated
in Fig. 3 (left). Then, the XAC or bitcount accumulation results
will be gathered from these multiple XNOR-SRAM arrays and
accumulated together, to obtain the final output activation result.
This scheme enables extensive re-use of the activations, with
weights being stationary at the XNOR-SRAM arrays.

Using the weight-stationary scheme in the XNOR-SRAM
macros, it is straightforward to map fully connected layers of
DNNs, where neurons/activations are in vectors and weights are
in matrices. This nicely maps to the row drivers for activations
and weights stored in the SRAM. For the fully-connected layers
whose size is larger than 256x64, we break the large weight
matrix into a number of small sub-matrices and accumulate
the matrix-vector multiplication results accordingly. This is
illustrated in Fig. 3 (right).

We implement other computation modules such as max-
pooling, batch normalization, and non-linear activation with
all-digital circuits, at the periphery of XNOR-SRAM macros.
The computing sequences of these modules are as follows.
Once the XAC operations are done inside the XNOR-SRAM
array, flash ADC digitizes the voltage in 11 levels, which is
then used in a simple look-up table (LUT) to find the quantized
bit count. Then, the same columns from each XNOR-SRAM
arrays are accumulated to find the final output sum value. Using
the trained batch normalization parameters, this final sum value
goes through batch normalization and non-linear quantization
(thresholding for binary/ternary activations, ReLU for multi-
bit activations). Finally when the current layer’s computation
is completed, the activation outputs will serve as the input
activations for the next layer of the DNN/CNN.

Fig. 4: Including the XNOR-SRAM prototype chip layout, the
layout of activation memory buffer/controller, accumulation
and batch normalization modules are shown.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

We characterized the power/energy consumption, throughput
and accuracy (for MNIST and CIFAR-10 datasets) of the Vesti
accelerator. For all the MAC or XAC operations, the XNOR-
SRAM testchip measurements from [21] are used. For all other
digital logic and off-the-shelf SRAMs, the power consumption
results are simulated with the post-layout netlist with RC
parasitics and actual data switching activity information.

We considered MLPs and CNNs for image classification
tasks for MNIST and CIFAR-10 datasets, respectively. For
MNIST, a MLP with three hidden layers, each with 256
neurons, is used. The CIFAR-10 CNN architecture used in this
section is adopted from the CNN reported in [22], consisting
of six convolution layers and three fully-connected layers. This
represents the network of input-128C3-128C3-MP2-256C3-
256C3-MP2-256C3-256C3-MP2-1024FC-1024FC-10FC.

To evaluate the accuracy of binary-weight multi-bit-activation
MLPs and CNNs on Vesti, we first obtained a probabilistic
model for the XNOR-SRAM XAC and quantization operations
from XNOR-SRAM chip measurements. Specifically, we
used a total of 656k (513 XAC values×64 columns×20
samples/XAC/column) random test vectors and measured
the outputs of the XNOR-SRAM to build XNOR-SRAM’s
probabilistic model as a function of XAC value. We simulated
BNN model accuracy on Vesti by stochastically quantizing
XAC partial sums according to the probabilistic model.

B. Area, Energy, Throughput, and Accuracy

In Fig. 4, the placed-and-routed layout of all digital periph-
eral blocks as well as the 72 XNOR-SRAM arrays are shown.
The total area of the Vesti accelerator is 15 mm2 in the 65
nm CMOS process. Multiple XNOR-SRAM arrays consume
54% of the total area, the activation SRAMs consume 18%,
and remainder of the area (28%) is occupied by digital logic
and control modules.

For MNIST MLP, we simulated and evaluated the total
MLP energy for various activation precisions of 1-3 bits. Since
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Fig. 5: For MNIST dataset, accuracy vs. energy (per classifi-
cation) comparison with prior works is shown.

Fig. 6: For CIFAR-10 dataset, accuracy vs. energy (per
classification) comparison for variable activation precision with
prior works is shown.

activations with N-bit precision consume N cycles to compute
using the XNOR-SRAM array, the overall energy roughly
increases linearly with the activation precision. To perform a
single inference of the MLP using the 1-bit activation precision,
the Vesti accelerator consumes 21 cycles. At Vesti’s max
frequency 0.55-GHz, the throughput of 26M inferences per
second is achieved.

For the MNIST dataset, in Fig. 5, we compared Vesti (with
1-/2-/3-bit activation precision) to several prior works [9], [18],
[25]–[27] that demonstrated the energy and accuracy for the
entire DNN for MNIST dataset. Vesti accelerator results in
superior accuracy versus energy trade-offs compared to the
state-of-the-art DNN implementations for MNIST dataset.

For CIFAR-10 CNN, we also simulated and evaluated the
total CNN energy for various activation precisions of 1-3
bits for two CNN sizes (0.5X refer to half channel size). To
perform the single inference of the CIFAR-10 CNN using
the 1-bit activation precision, the Vesti accelerator consumes
1,676 cycles. At 0.55-GHz, this marks the throughput of
328K inferences per second. Fig. 6 shows the energy across
three activation precision values (from 1-bit to 3-bit) and
two CNN sizes (1X and 0.5X CNN). For the CIFAR-10

TABLE I: Comparison with prior works

Model

Voltage Supply 

(V)

CIFAR10 

Accuracy (%)

MNIST Accuracy 

(%)

MNIST Energy/

Prediction (µJ)

Clock Frequency 

(MHz)

Technology (nm)

SNN

0.6-0.8

83.41

--

--

--

45

[46]

CIFAR10 

Throughput (FPS)
1249

Conv

0.6-0.8

86.05

--

--

10

28

[47]

237

Conv/MLP

1

88.6

98.5

0.012

550

65

This Work

328 k

MNIST 

Throughput (FPS)
-- -- 8.6 M

CIFAR10 Energy/

Prediction (µJ)
163 3.8 23.3

MLP

0.6-1.1

--

98.5

0.588

667

28

[19]

--

--

--

SNN

0.6-0.8

--

99.42

108

--

45

[43]

--

1 k

--

Conv

0.55-1.1

--

99

0.45

204

40

[44]

--

13.4 k

--

SNN

0.9

--

98.7

0.773

163

28

[45]

--

91.6 k

--

Conv

1

--

99

0.45

--

65

[28]

--

70

--

dataset, in Fig. 6, we show the energy and accuracy trade-
offs for variable activation precision using Vesti accelerator,
and also compared to the energy and accuracy of the all-
digital TrueNorth processor reported in [28] and the mixed-
signal binary CNN processor reported in [29] (energy scaled
to 65nm). As shown in Fig. 6, Vesti accelerator results in
superior accuracy and energy trade-offs for two different CNN
sizes (1X and 0.5X) for multiple activation precision schemes
for the CIFAR-10 dataset. Comparison with prior works is
summarized in Table I.

V. CONCLUSION

Due to the memory access bottleneck faced by digital NN
accelerators, in-memory computing has been gaining significant
attention as a solution. However, in many prior IMC works,
onlt the memory macro is presented, the overall operation and
architecture to implement the DNN accelerator have not been
shown or implemented in hardware.

In this work, we expanded the single-array-level prior XNOR-
SRAM work [21] towards a configurable DNN accelerator
architecture that integrates 72 XNOR-SRAM arrays. The
proposed Vesti architecture features (1) methodologies to
efficiently load/map weights onto such XNOR-SRAM arrays
for convolutional layers and fully-connected layers of DNNs,
(2) multi-bit activation memory storage and control, (3) double-
buffering technique to hide the latencies of re-programming
in-memory computing SRAM arrays, and (4) inter-array
communication.

Due to these comprehensive designs, Vesti simultaneously
achieves both high accuracy and low energy for representative
DNNs that are benchmarked for MNIST and CIFAR-10 datasets.
The Vesti accelerator presented in this work feature essential
techniques for in-SRAM computing based deep learning
processors, which can fit under the stringent power/energy
envelopes of mobile, wearable, and IoT devices.
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