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Abstract

In this paper, we address the problem of face hallucina-
tion by proposing a novel multi-scale generative adversar-
ial network (GAN) architecture optimized for face verifica-
tion. First, we propose a multi-scale generator architecture
for face hallucination with a high up-scaling ratio factor,
which has multiple intermediate outputs at different reso-
lutions. The intermediate outputs have the growing goal
of synthesizing small to large images. Second, we incorpo-
rate a face verifier with the original GAN discriminator and
propose a novel discriminator which learns to discriminate
different identities while distinguishing fake generated HR
face images from their ground truth images. In particular,
the learned generator cares for not only the visual quality
of hallucinated face images but also preserving the discrim-
inative features in the hallucination process. In addition, to
capture perceptually relevant differences we employ a per-
ceptual similarity loss, instead of similarity in pixel space.
We perform a quantitative and qualitative evaluation of our
framework on the LFW and CelebA datasets. The experi-
mental results show the advantages of our proposed method
against the state-of-the-art methods on the 8x downsampled
testing dataset.

1. Introduction

Face hallucination methods deal with super-resolving
a low-resolution (LR) face image and generating a high-
resolution (HR) one. They have many applications such
as face recognition, face tracking, security in surveillance
video, and facial expression estimation. One of the most
common issues in the practical face recognition systems
is that they have low performance on low-resolution face
images captured in the wild. Especially in the standard
surveillance videos, detected faces might have a resolution
of 2020 pixels or smaller [49]. Such LR face images neg-
atively affect the performance of the subsequent face recog-
nition and analysis. Consequently, in the past few years
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generating HR face images from LR ones has attracted great
research interests.

Traditional interpolation techniques, such as the near-
est neighbor or bilinear up-scaling, are not able to recon-
struct high-frequency details. On the contrary, frameworks
which are based on example-based super-resolution (SR)
schemes [4] have shown a good performance in fine de-
tailed reconstruction from a LR image compared to the
interpolation-based methods. This capacity is acquired by
learning the patterns, textures, and geometrical character-
istics of face images based on different machine learn-
ing techniques trained on a comprehensive pair of training
HR/LR images.

Unlike the natural images, SR face hallucination images
have similar structures. Employing only a reconstruction
error may result in faces with visually undesirable artifacts.
For example, small geometry distortion in face components
which plays a critical role in person identification, such as
the mouth and eyes, can degrade the subjective quality of
the face hallucination. Therefore, the global face shape
and local characteristics such as textures and local geomet-
ric structures (e.g., nose and eyes) need to be handled cau-
tiously in face hallucination [3, 39].

Surveillance cameras, which usually provide low-
resolution images, especially for small objects of interest
such as faces taken at a distance, makes face identification
a more challenging problem. This is due to the lack of suf-
ficiently discriminative features in low-resolution face im-
ages. An empirical study [52] showed that for effective face
identification, the minimum face resolution should be be-
tween 32 x 32 and 64 x 64 pixels. Thus, a lower resolution
face will significantly degrade the recognition performance
for the current recognition models. Consequently, an effec-
tive face hallucination framework is desirable.

Typically, for the high upscaling factors, the textural de-
tail in the reconstructed SR images is absent. The restricted
use of mean squared error (MSE) between the generated
HR image and the ground truth as the only optimization tar-
get could be the reason for the missing detailed informa-
tion in the reconstructed SR images. More specifically, the
MSE lacks the ability to capture perceptually relevant dif-



ferences, e.g., textural detail, as it is defined at image pixel
level [40, 41].

Majority of existing face hallucination techniques [39]
have been focused on hallucinating faces which are visually
pleasant. In other words, they just generate HR details ne-
glecting whether the added details are useful for face recog-
nition. Such reconstructed faces, usually do not improve the
face recognition/verification performance. On the contrary,
incorporating the identity in face hallucination process en-
able the framework to preserve the facial details which play
a crucial role in face recognition and serve the purpose
much better. Therefore, for many real-world applications,
preserving identity in face reconstruction is a vital step of
hallucination process [14, 42].

In this work, first, we propose a multi-scale generative
adversarial network architecture, for face hallucination with
a high up-scaling ratio factor. The generator network has
multiple outputs, that share most of their parameters, in a
progressive structure. As shown in Fig. 1, the input to the
network is a low-resolution face image, and multiple face
images with different scaling factors are generated through
different branches of the network. The deepest output of our
generator has resolution equal to our high-resolution face
image. The intermediate outputs, have a growing goal of
synthesizing small to large images.

Second, we incorporate a face verifier with the orig-
inal GAN discriminator and propose a novel discrimina-
tor which learns to discriminate betwen different identi-
ties while distinguishing fake generated HR face images
from their corresponding ground truths. Correspondingly,
the generator is trained to not only generate face images of
high visual quality but also preserve the discriminative fea-
tures in the hallucination process. Intuitively, improving the
discriminator enhances the verification ability by infusing
missing details to the LR image, and improving the verifi-
cation performance boosts the discriminator (which trains
the generator) to look for the quality of identity discrimi-
native features in the generated images. In summary, our
framework has three major contributions:

e We propose a novel identity-aware GAN for face su-
per resolution which enable us to hallucinate photo-
realistic HR faces while preserving the face identity.

e We combine the disciminator and face verifier by
proposing a single network which performs both tasks
simultaneously.

e Our discriminator jointly learns to distinguish face im-
ages at multiple scales. This unified multi-scale struc-
ture enables the discriminator to transfer information
between generated face images of different scales.

e A series of qualitative and quantitative experiments
proves the effectiveness of the proposed end-to-end

framework.

1.1. Related Work

Prediction-based methods were among the early meth-
ods for single image super-resolution. However, these filter-
ing approaches, oversimplify this problem and usually yield
outputs with low details and blurry textures. Some other
frameworks have been proposed in [1, 25] that focus par-
ticularly on edge-preservation. More effective approaches,
which are usually data-driven, learn a complex mapping be-
tween low- to high-resolution images. Early approaches to
the SR problem were developed based on compressed sens-
ing [45, 47, 9]. Huang et al. [16] exploit self-similarity,
where self dictionaries are extended for small transforma-
tions and shape variations. A method based on convolu-
tional sparse coding is proposed in [12] to improve output
consistency by processing the whole image at once instead
of overlapping patches.

Deep learning-based approaches outperformed most of
the traditional methods in computer vision [37, 33, 51,
35, 31, 36, 34, 32], more specifically face hallucination
schemes [39, 42, 38, 46, 50]. In [42], a deep joint face hal-
lucination and recognition scheme is proposed, which com-
prises two separate networks, namely SR and face recog-
nition networks. They have jointly optimized the two net-
works iteratively, however, due to employing a relatively
shallow CNN, it resulted in unsatisfactory visual quality
in face reconstruction. A much deeper CNN is utilized in
[50] to generate HR face image of higher visual quality. To
this end, they trained a cascaded bi-network progressively
to learn a dense correspondence during the training phase.
Song et al. [30] proposed a two-stage face hallucination
process that first reconstructs facial parts employing a deep
CNN, and then refines the reconstructed faces using a fine-
grained facial structure learner.

Recently, generative adversarial network (GAN) has
been successfully adopted by many computer vision appli-
cations such as image synthesis, image SR, and in-painting
[11, 21, 20]. The SR-GAN [24] is the pioneer in utiliz-
ing GAN in inferring photo-realistic high-resolution natural
images from LR images. They incorporated the perceptual
loss in addition to the adversarial loss to push the solution
toward learning to preserve the content of images in the
super-resolving process. However, Yu et al. [46] showed
that this framework is not effective for super-resolving LR
to face images. They introduced a pixel-wise Lo regulariza-
tion term to exploit the discriminator network feedback and
produce faces with higher similarity to the real ones.

Similarly, in [38], deconvolutional layers are separately
applied to super-resolve local and global parts. However,
none of the mentioned methods guarantee identity preser-
vation in the reconstruction process. Moreover, they often
generate unrealistic low quality face images from the very



low resolution face images, as much of the facial structural
information is missing.

An end-to-end GAN-based SR model combined with a
face alignment network is proposed in [5] that employs a
heatmap loss to integrate facial geometrical information in
hallucination process by detecting facial landmarks. The
application of deep reinforcement learning in HR face gen-
eration has also been investigated in [6]. They proposed
to employ a recurrent policy network for individual HR
face regions reconstruction based on previous regions re-
constructions. Finally, they applied a local enhancement
network to improve the facial details. Again, the impor-
tance of identity preservation has been neglected in these
works.

2. Preliminaries

In this section, we provide some rudiments of GANSs,
necessary to understand the proposed preference-based im-
age generation framework.

2.1. Generative Adversarial Networks (GANSs)

GANSs [11] are a type of generative models which learn
the statistical distribution of the training data, allowing us
to synthesize data samples by mapping a random noise z
to an output image y: G(z) : z — y, where G is the
generator network. GAN in its conditional setting (cGAN)
is proposed in [18] which learns a mapping from an input
2 and a random noise z to the output image y: G(zx, 2) :
{z,2z} — y, using an autoencoder network. The genera-
tor model G(z, z), is trained to generate images which are
not distinguishable from the real samples by a discrimina-
tor network, D. Simultaneously, the discriminator is learn-
ing, adversarially, to discriminate between the fake gener-
ated images by the generator and the real samples from the
training dataset. The objective function of GAN is given by:

laan (G, D) = Eq yrpq,,,[log D(z,y)] (1)

+ EUC,ZNPZ UOg(l - D(Jj, G(x’ Z)))]v
where G attempts to minimize it and D tries to maximize it.
Since the adversarial loss is not enough to guarantee that the
trained network generates the desired output, one may add
an extra Euclidean distance term to the objective function

to generate images which are near the ground truth. Conse-
quently, the final objective is defined as follows:

G* = arg mGianaX lgan(G,D) + Npi1(G), (2
where [1,1(G) =| y — G(z, 2) |1 and X is weighting factor.

3. Proposed Multi-Scale GAN Architecture

The goal of this work is to learn a generating function
G to reconstruct a HR face images from a given LR input

face image. The backbone of our deep generator network
G, which is demonstrated in Figure 1, is a series of residual
blocks with an identical layout. The residual blocks com-
prise of two 3 X 3 convolutional layers followed by batch-
normalization layers [17] and ParametricReLU activation
function [13]. We employ three pre-trained sub-pixel con-
volution layers [28] to gradually increase the resolution of
the input image.

The preliminary results showed that the network is not
able to generate high-quality images for upscaling factor of
greater than 4x. Consequently, we propose to progressively
learn a series of multi-scale images. As shown in Figure 1,
our generator has multiple outputs at different resolutions.
Each output of the generator learns the face image distri-
bution at that scale. We also concatenate the images at dif-
ferent depths of the discriminator. This multi-scale structure
improves the discriminator by jointly learning to distinguish
face images at multiple scales. This enable us to transfer in-
formation between images of different scales.

The architecture of our discriminator is shown in Fig-
ure 1. Following the previous works in [27, 24], we use
LeakyReLU activation (o = 0.2) and avoid max-pooling in
the architecture. However, our discriminator takes images
of different resolutions as its inputs. To this end, we utilize
strided convolutions (s = 2) in the main branch of the dis-
criminator that reduce the spatial size of the feature maps
by a factor of two. Simultaneously, images of lower resolu-
tions are processed by convolutional layers (s = 1) which
extract feature maps of the same size. We then concatenate
the extracted feature maps of the lower resolution images
with the feature maps of the same spatial size in the main
branch.

4. Training Loss Function

To train the proposed network, we utilize multiple loss
terms, including an adversarial face verification loss, per-
ceptual loss, and color-consistency regularization.

4.1. Perceptual Loss

The Pixel-wise MSE loss is one of the most widely used
loss terms for image super-resolution problems. However,
despite the high PSNR, the learned solutions by MSE opti-
mization often lack the high-frequency information, which
results in unsatisfactory images of excessively smooth tex-
tures. Consequently, similar to [24], rather than relying on
the pixel-level losses, we use MSE on the high level ex-
tracted features via a pre-trained VGG19 [29], denoted by
®, which represents perceptual similarity between the gen-
erated HR image and its corresponding ground truth. Let
®,(z) denote the feature maps of the j** layer of the loss
network for the input image x. The perceptual loss, which
has been introduced in [10], is defined as the Euclidean
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Figure 1: Architecture of the proposed network. Different branches of the generator produce images of different scales. The
discriminator, then, learns to distinguish fake and real images, jointly in multiple scales.

distance between the feature representations of a super-
resolved image G(I1,r) and the reference image Iy g:

B(G(Ipr), Irn) = ; | ®5(G(Inr)) — @;(Iur) |3,

where IV; is the number of perceptrons in the jth layer.
4.2. Adversarial Face Verification Loss

In addition to the perceptual loss described above, one
may want to add the adversarial loss of GAN, described by
Equation 1, to train the generator network. This loss encour-
ages the generator to favor, by seeking to fool the discrim-
inator, production of images which reside on the manifold
of natural face images.

However, in this work, we introduce a completely differ-
ent loss function, namely adversarial face verification loss
(AFVL). Our proposed AFVL follows two different goals
simultaneously. First, it should help the generator to learn
high-frequency information, which cannot be learned by the
sole adoption of MSE or perceptual loss. In this way, the
generator would be able to produce highly realistic HR im-
ages. However, forcing the generator to just care about vi-
sual realism may come with the cost of losing identity in-

formation. Moreover, incorporating identity information in
the discriminator decisions results in training a generator
which preserves the critical facial features, which matters
in person identification, in super resolving process.

Our discriminator, instead of assigning a fake or real la-
bel to the patches of its HR input image, performs a three
ways classification task. More specifically, it classifies the
HR images into fake, genuine, and imposter. Particularly,
the discriminator takes a pair of images instead of a single
image. To train the discriminator, we define four different
pairs as follows:

P11 = (IIiLIlRa G(IEIR))

p3 = (Iliﬁ}Ra I}-%R)

p2= I, G(I15) (3
pg = (IIiLIvalj’{R)’

where I}, represents a high-resolution face image of the
i'" identity in our dataset, and the number next to the i
shows if the same image is used in both side of the pair
or not. More specifically, the first pair, p;, includes a HR
face image of the i** identity and the super-resolved image
from the down-sampled version of the exact same image.
On the contrary, the second pair py includes a HR face im-
age of the i*" identity and the super-resolved image from
the down-sampled version of an image of another identity.



The discriminator is supposed to classify these two pairs as
a fake samples. These pairs aim to help the discriminator to
learn the visual realism of the generated images.

The third pair, p3, comprises two different HR face im-
ages of the same identity. Note that none of the images are
generated by the generator network. The discriminator is
trained to classify this pair as genuine. On the contrary, the
last pair p4 does not share the identity between the HR im-
ages. Clearly, it is desired that the discriminator classify py
as imposter. Hence, the pairs ps and p,4 jointly enable the
discriminator to capture critical features which are highly
influential in face verification task.

To train the discriminator using these four pairs, we can
define the adversarial face verification loss as:

pyi(G, D) = E(q,y)~p: [logds(z,y)] 4)
T E@y)~p log d¢(z,y)] + E(e.y)~ps [log dgen(, y)]
T E@y)~p [log dimp(z,y)],

where df, dgen, and d;py,,, are the outputs of discriminator
for fake, genuine, and imposter classes, respectively. Simi-
lar to the original GAN, the discriminator is trained to max-
imize this objective function. However, to train the genera-
tor, we only use the first two pairs p; and p,. Similar to the
training process of the discriminator, here, we train a gen-
erator which consider the identity-preservation in its face
hallucination process. To this end, the generator is trained
to maximize dge,, for pi, and djy,,, for po. In this way, the
generator not only tries to fool the discriminator in terms of
visual realism of the generated images, by minimizing dy,
but also takes into account the identity of the super-resolved
image, through maximization of the verification objective
function. In short, the generator maximize the following
objective function:

Z%FVL(Gv D) = E(y)~p [log dgen (7, y)] (5)
+ E(z,y)~ps [log dimp(z,y)].

4.3. Color-consistency regularization

As we go deeper into our generator, the resolution of the
generated image is also gradually increased. Since all the
generated images belong to the same input but at different
scales, they require to have similar structures and colors. To
this end, we utilize color-consistency regularization term as
an additional objective function to keep the generated sam-
ples of different scales from the same input to be more con-
sistent in color. This can improve the quality of the gener-
ated images.

Let p = >, 2x/N, and ¥ = 3, (xp — p)(xp —
mu)T /N represent the mean and covariance of pixels of
the given image, respectively, where x5, = (R, G, B)T is a
pixel in the generated image. Then, the color-consistency

regularization term tries to minimize the differences of p
and X between the different generated images at various
resolutions, which inspires the consistency:

n

1
o= ()\1 g =g 113 ©)

j=1
R PP

where 1 _; and ¥ _; represents the mean and covariance ma-
i i

trix of the j*" sample generated in i'" scale, and, n is the
batch size. Note that images of different resolution are gen-
erated by different branches of the generator. In our work,
since the generator produces images at three scales, we have
two color-consistency regularization terms corresponding
to ¢ = 1,2, where each i belongs to the image of size 2¢+6
pixels.

4.4. Total Loss

While the discriminator is trained using only the AFVL
loss 1% 1. the total loss to train the generator is defined
as:

W=+ > lc, = Aaldpy (G, D). (D)
7 7

Note that we minimize the perceptual loss in more than one
layer to enforce fine and coarse perceptual similarity.

5. Experiments

Our experiments aim to show that our framework can
generate high visual quality HR faces at different up-scaling
factors while preserving the identity of the hallucinated
faces. We compare our method against baselines both qual-
itatively and quantitatively.

5.1. Datasets

Our experiments are evaluated on the Labeled Faces in
the Wild (LFW funneled) [23] and the BiolD [19] datasets.
The LFW dataset contains 13,233 face images which are
collected from the web. Images in this dataset cover a
vast variety of pose variations and facial expressions. This
dataset comprises of four different parts, including the orig-
inal set and three different aligned images. In this work, we
only use the original ones to conduct our experiments. To
generate the LR and HR pairs, we use the original aligned
images of size 250 x 250 pixels, and extract the centric
128 x 128 image patches as the HR images. Then, we cre-
ate the corresponding LR images by down-sampling the HR
ones using a bilinear kernel with the down-sampling factor.
Our training set includes 9,526 images which leaves us the
remaining 3,707 images for testing.

The BiolD dataset consists of 1,521 face images. We use
1,028 images for training and the remaining 493 images for



testing. This follows the same split provided by the LFW
dataset. The images are aligned with SDM method [43] and
then a patch with the size of 160 x 120 is cropped from the
center of each image.

5.2. Visual Realism Evaluation

For visual realism evaluation, we evaluate our proposed
SR network on two scaling factors of 4z and 8x. Input
low-resolution image is generated by resizing the original
images with the scaling factors. Hence, to generate LR im-
ages, the HR images of BiolD are resized to 40 x 30 and
20 x 15, and the HR images are resized to 32 x 32 and
16 x 16, respectively.

For the evaluation metrics, we adopt the widely used
Peak Signal-to-Noise Ratio (PSNR), structural similarity
(SSIM) as well as feature similarity (FSIM) [48]. We per-
form a comparison between our method and several state-
of-the-art face hallucination and image super-resolution
techniques. Particularly, we compare with the BCCNN
[49], SFH [44], GLN [38], MZQ [26] face hallucination ap-
proaches and three general image super-resolution methods:
A-FH [6], SRCNN [8], and VDSR [22].

Table 1 compares the performance of our method with
other state-of-the-art techniques. Our proposed framework
significantly outperforms all the other methods in terms
of PSNR, SSIM and FSIM metrics on LFW and BiolD
datasets. Since the traditional face hallucination methods,
i.e., SFH and MZQ, are highly dependent on the facial land-
marks detection performance, and the landmarks detection
is not quite reliable in very low-resolution images, their per-
formances on 8x up-scaling factor are too low compared
to the other methods. Among deep-learning based meth-
ods, our work outperforms the current state-of-the-art image
super-resolution method (A-FH) on different experiments.

In addition, our method significantly outperforms state-
of-the-art face hallucination methods, namely SiGAN and
GLN. Figures 2 and 3 illustrates the qualitative comparisons
of face hallucination results on the LFW dataset for 4x and
8x up-scaling factors, respectively. Our proposed frame-
work generates face images that are more clear and sharper
compared to the A-FH, GLN, and VDSR.

5.3. Identity Preserving Evaluation

To evaluate the performance of different methods in pre-
serving the identity of the LR face in the hallucination pro-
cess, we compare our method with several state-of-the-art
face hallucination methods including DFCG [30], SiGAN
[15], UR-DGN [46], GLN [38], A-FH [6], DCGAN [27],
PRSR [7], and [24]. Note that we selected the methods
whose performances are reported in the literature. In ad-
dition, we evaluated the performances of the top two meth-
ods with the highest visual realism scores in the evaluation
section, namely A-FH and GLN.

5.3.1 Face Verification Performance

To compare the performance of the proposed method with
the previous face hallucination techniques for face verifi-
cation task, we employ a state-of-the-art CNN-based face
recognition engine, the OpenFaces [2]. We report the face
recognition rate and verification rate of the hallucinated
faces by different methods. The accuracy of the halluci-
nated HR faces is evaluated, following the standard face
verification methodology described in [2]. The accuracy is
calculated which is based on if the OpenFaces verifies the
hallucinated HR faces as the same identity as their corre-
sponding ground-truth or not.

We setup our experiment by first randomly sampling
200,000 face pairs from LFW, similar to the training set of
the OpenFaces recognition engine as described in [2]. Then,
6,000 faces are randomly sampled from the remaining face
images of LFW for the face verification performance evalu-
ation. Our evaluation metric is the area under curve (AUC)
[23] of the trained face verification system based on the
super-resolved HR faces.

Table 2 reports the AUCs for the generated HR faces of
128 x 128 and 64 x 64 pixels from 16 x 16 LR faces using
different face hallucination techniques. The results show
that the AUC for the generated HR faces by our method is
significantly higher than the AUCs of the other methods.
This proves the superiority of our method in preserving the
identity of faces in the hallucination process

5.3.2 Face Recognition Performance

We also evaluate the performance of our framework for the
face recognition task. We setup this experiment as sug-
gested in [2]. For this experiment, the training set includes
11,000 face image of 680 different identities randomly sam-
pled from the LFW dataset. The remaining 2,000 face im-
ages form our test set. The OpenFaces is trained on face
images after resizing to 96 x 96. Likewise, all the halluci-
nated HR faces need to be resized to 96 x 96 at the test time
to evaluate the performance.

Table 2 compares the top-1, top-5, and top-10 face recog-
nition rates of different methods for 64 x 64, i.e., 4x up-
scaling factor, and 128 x 128, 8x up-scaling factor, HR faces
upscaled from 16 x 16 LR faces. Note that for some meth-
ods the results for 8x upscaling factors are not reported in
the original papers. The result prove the superiority of our
method, in terms of the average recognition rates for the
hallucinated HR faces, compared to the previous state-of-
the-art methods. Note that, GLN and SR-GAN have worse
performance on 8x compared to the 4x upscaling factor due
to the generated artifacts by these methods at 8x super-
resolved face images.

Compared to the bicubic interpolation, DFCG and DC-
GAN have lower face recognition rates, which shows the
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Figure 2: Qualitative results on LFW-funneled with scaling factor of 4.
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Figure 3: Qualitative results on LFW-funneled with scaling factor of 8.



Table 1: Comparison between our method and others in terms of PSNR, SSIM and FSIM evaluation metrics.

Method LFW-funneled 4x LFW-funneled 8x BiolD 4x BiolD 8x

PSNR | SSIM | FSIM | PSNR | SSIM | FSIM | PSNR | SSIM | FSIM | PSNR | SSIM | FSIM
Bicubic 26.79 | 0.8469 | 0.8947 | 21.92 | 0.6712 | 0.7824 | 25.18 | 0.8170 | 0.8608 | 20.68 | 0.6434 | 0.7539
SFH [44] 26.59 | 0.8332 | 0.8917 | 22.12 | 0.6732 | 0.7832 | 25.41 | 0.8034 | 0.8494 | 20.31 | 0.6234 | 0.7238
BCCNN [49] | 26.60 | 0.8329 | 0.8982 | 22.62 | 0.6801 | 0.7903 | 24.77 | 0.8034 | 0.8421 | 21.40 | 0.6504 | 0.7621
MZQ [26] 2593 | 0.8313 | 0.8865 | 22.12 | 0.6771 | 0.7802 | 24.66 | 0.8001 | 0.8573 | 21.11 | 0.6481 | 0.7594
SRCNN [8] 28.94 | 0.6363 | 0.9069 | 23.92 | 0.6927 | 0.8314 | 27.02 | 0.8517 | 0.8771 | 22.34 | 0.6980 | 0.8274
VDSR [22] 29.25 | 0.8711 | 0.9123 | 24.12 | 0.7031 | 0.8391 | 28.52 | 0.8627 | 0.8914 | 24.31 | 0.7321 | 0.8465
GLN [38] 30.34 | 0.8922 | 0.9151 | 24.51 | 0.7109 | 0.8405 | 29.13 | 0.8794 | 0.8966 | 24.76 | 0.7421 | 0.8525
A-FH [6] 32.93 | 09104 | 0.9427 | 26.17 | 0.7604 | 0.8630 | 31.56 | 0.9002 | 0.9343 | 26.56 | 0.7864 | 0.8747
Our 33.59 | 0.9213 | 0.9601 | 26.94 | 0.7723 | 0.8772 | 32.49 | 0.9899 | 0.9481 | 27.83 | 0.7967 | 0.8914

Table 2: Comparison of LFW face recognition rates for the hallucinated HR faces using different techniques

AUC Verification Acc. 4x Verification Acc. 8x
Method 4x 8x Top-1 | Top-5 | Top-10 | Top-1 | Top-5 | Top-10
HR 98.8% | 99.1% | 36.8% | 55.9% | 63.8% | 37.5% | 57.0% | 66.2%
Bicubic 757% | 76.0% | 11.6% | 27.5% | 37.6% | 11.7% | 27.1% | 36.4%
DFCG [30] 73.9% - 9.6% | 23.7% | 34.8% - - -
UR-DGN [46] | 72.8% - 12.2% | 29.0% | 38.7% - - -
DCGAN [27] | 74.8% - 9.3% | 249% | 33.9% - - -
PRSR [7] 76.9% - 13.3% | 29.7% | 40.1% - - -
SiGAN [15] 83.4% - 17.9% | 32.9% | 48.1% - - -
GLN [38] 80.6% | 79.2% | 17.5% | 30.6% | 45.7% | 17.1% | 29.9% | 44.3%
SR-GAN [24] | 81.8% | 71.8% | 18.3% | 31.4% | 47.6% | 15.8% | 26.7% | 39.6%
A-FH [6] 85.2% | 85.6% | 18.8% | 31.9% | 48.4% | 18.9% | 32.4% | 48.9%
Our 86.0% | 86.5% | 19.5% | 33.2% | 49.5% | 20.1% | 33.5% | 50.1%

importance of reconstructing facial features that are critical
in face re-identification. In other word, despite the higher
level of HR details in these methods, compared to the bicu-
bic, they are not useful for identity recognition.

6. Conclusion

In this paper, we have proposed a identity-preserving
face hallucination GAN-based framework. We enabled our
generator to up-scale LR face images by a factor of 8 and
learn to jointly generate face images of progressive resolu-
tion. We have also proposed a new discriminator which can
jointly learn to verify the identity of the generated images
and check their visual quality. The new discriminator ar-
chitecture enables the whole face hallucination process to

be identity-preserving too. Experimental results on several
LR version of face benchmarks have convincingly demon-
strated the effectiveness of the proposed approach.

References

[1] J. Allebach and P. W. Wong. Edge-directed interpolation. In
Proceedings of 3rd IEEE International Conference on Image
Processing, volume 3, pages 707-710. IEEE, 1996.

[2] B. Amos, B. Ludwiczuk, M. Satyanarayanan, et al. Open-
face: A general-purpose face recognition library with mobile
applications. CMU School of Computer Science, 6, 2016.

[3] S. Baker and T. Kanade. Hallucinating faces.

[4] S.Baker and T. Kanade. Limits on super-resolution and how
to break them. In Proceedings IEEE Conference on Com-



(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

puter Vision and Pattern Recognition. CVPR 2000 (Cat. No.
PR00662), volume 2, pages 372-379. IEEE, 2000.

A. Bulat and G. Tzimiropoulos. Super-FAN: Integrated fa-
cial landmark localization and super-resolution of real-world
low resolution faces in arbitrary poses with GANs. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 109-117, 2018.

Q. Cao, L. Lin, Y. Shi, X. Liang, and G. Li. Attention-aware
face hallucination via deep reinforcement learning. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 690-698, 2017.

R. Dahl, M. Norouzi, and J. Shlens. Pixel recursive super
resolution. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 5439-5448, 2017.

C. Dong, C. C. Loy, K. He, and X. Tang. Learning a
deep convolutional network for image super-resolution. In
European conference on computer vision, pages 184—199.
Springer, 2014.

W. Dong, L. Zhang, G. Shi, and X. Wu. Image deblurring
and super-resolution by adaptive sparse domain selection and
adaptive regularization. IEEE Transactions on Image Pro-
cessing, 20(7):1838-1857, 2011.

L. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis
using convolutional neural networks. In Advances in neural
information processing systems, pages 262-270, 2015.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in neural information
processing systems, pages 2672-2680, 2014.

S. Gu, W. Zuo, Q. Xie, D. Meng, X. Feng, and L. Zhang.
Convolutional sparse coding for image super-resolution. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 1823-1831, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international con-
ference on computer vision, pages 1026—1034, 2015.

P. H. Hennings-Yeomans, S. Baker, and B. V. Kumar. Simul-
taneous super-resolution and feature extraction for recogni-
tion of low-resolution faces. In 2008 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1-8. IEEE,
2008.

C.-C. Hsu, C.-W. Lin, W.-T. Su, and G. Cheung.
Sigan:  Siamese generative adversarial network for
identity-preserving face hallucination. arXiv preprint
arXiv:1807.08370, 2018.

J.-B. Huang, A. Singh, and N. Ahuja. Single image super-
resolution from transformed self-exemplars. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5197-5206, 2015.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-
image translation with conditional adversarial networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1125-1134, 2017.

(19]

[20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

0. Jesorsky, K. J. Kirchberg, and R. W. Frischholz. Robust
face detection using the hausdorff distance. In International
conference on audio-and video-based biometric person au-
thentication, pages 90-95. Springer, 2001.

H. Kazemi, S. M. Iranmanesh, and N. Nasrabadi. Style and
content disentanglement in generative adversarial networks.
In 2019 IEEE Winter Conference on Applications of Com-
puter Vision (WACV), pages 848-856. IEEE, 2019.

H. Kazemi, S. Soleymani, F. Taherkhani, S. Iranmanesh,
and N. Nasrabadi. Unsupervised image-to-image transla-
tion using domain-specific variational information bound. In
Advances in Neural Information Processing Systems, pages
10348-10358, 2018.

J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-
resolution using very deep convolutional networks. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 1646—1654, 2016.

E. Learned-Miller, G. B. Huang, A. RoyChowdhury, H. Li,
and G. Hua. Labeled faces in the wild: A survey. In Advances
in face detection and facial image analysis, pages 189-248.
Springer, 2016.

C. Ledig, L. Theis, F. Huszdr, J. Caballero, A. Cunningham,
A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, et al.
Photo-realistic single image super-resolution using a gener-
ative adversarial network. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
4681-4690, 2017.

X. Li and M. T. Orchard. New edge-directed interpolation.
IEEE transactions on image processing, 10(10):1521-1527,
2001.

X. Ma, J. Zhang, and C. Qi. Hallucinating face by position-
patch. Pattern Recognition, 43(6):2224-2236, 2010.

A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. arXiv preprint arXiv:1511.06434, 2015.

W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken,
R. Bishop, D. Rueckert, and Z. Wang. Real-time single
image and video super-resolution using an efficient sub-
pixel convolutional neural network. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1874-1883, 2016.

K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

Y. Song, J. Zhang, S. He, L. Bao, and Q. Yang. Learning
to hallucinate face images via component generation and en-
hancement. arXiv preprint arXiv:1708.00223, 2017.

F. Taherkhani and M. Jamzad. Restoring highly corrupted
images by impulse noise using radial basis functions inter-
polation. IET Image Processing, 12(1):20-30, 2017.

F. Taherkhani, H. Kazemi, and N. M. Nasrabadi. Matrix
completion for graph-based deep semi-supervised learning.
In Thirty-Third AAAI Conference on Artificial Intelligence,
2019.

F. Taherkhani, N. M. Nasrabadi, and J. Dawson. A deep face
identification network enhanced by facial attributes predic-
tion. In Proceedings of the IEEE Conference on Computer



(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

[42]

[43]

(44]

[45]

[40]

(47]

Vision and Pattern Recognition Workshops, pages 553-560,
2018.

F. Taherkhani, V. Talreja, H. Kazemi, and N. Nasrabadi. Fa-
cial attribute guided deep cross-modal hashing for face im-
age retrieval. In 2018 International Conference of the Bio-
metrics Special Interest Group (BIOSIG), pages 1-6. IEEE,
2018.

V. Talreja, T. Ferrett, M. C. Valenti, and A. Ross. Biometrics-
as-a-service: A framework to promote innovative biometric
recognition in the cloud. In 2018 IEEE International Con-
ference on Consumer Electronics (ICCE), pages 1-6. IEEE,
2018.

V. Talreja, F. Taherkhani, M. C. Valenti, and N. M.
Nasrabadi. Using deep cross modal hashing and error cor-
recting codes for improving the efficiency of attribute guided
facial image retrieval. In 2018 IEEE Global Conference on
Signal and Information Processing (GlobalSIP), pages 564—
568. IEEE, 2018.

V. Talreja, M. C. Valenti, and N. M. Nasrabadi. Multi-
biometric secure system based on deep learning. In 2017
IEEE Global conference on signal and information process-
ing (globalSIP), pages 298-302. IEEE, 2017.

O. Tuzel, Y. Taguchi, and J. R. Hershey. Global-local
face upsampling network. arXiv preprint arXiv:1603.07235,
2016.

N. Wang, D. Tao, X. Gao, X. Li, and J. Li. A comprehen-
sive survey to face hallucination. International journal of
computer vision, 106(1):9-30, 2014.

Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, et al.
Image quality assessment: from error visibility to struc-
tural similarity. [EEE transactions on image processing,
13(4):600-612, 2004.

Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale struc-
tural similarity for image quality assessment. In The Thrity-
Seventh Asilomar Conference on Signals, Systems & Com-
puters, 2003, volume 2, pages 1398-1402. Ieee, 2003.

J. Wu, S. Ding, W. Xu, and H. Chao. Deep joint face hallu-
cination and recognition. arXiv preprint arXiv:1611.08091,
2016.

X. Xiong and F. De la Torre. Supervised descent method
and its applications to face alignment. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 532-539, 2013.

C.-Y. Yang, S. Liu, and M.-H. Yang. Structured face halluci-
nation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1099-1106, 2013.

J. Yang, J. Wright, T. Huang, and Y. Ma. Image super-
resolution as sparse representation of raw image patches.
In 2008 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1-8. Citeseer, 2008.

X. Yu and F. Porikli. Ultra-resolving face images by dis-
criminative generative networks. In European conference on
computer vision, pages 318-333. Springer, 2016.

R. Zeyde, M. Elad, and M. Protter. On single image scale-up
using sparse-representations. In International conference on
curves and surfaces, pages 711-730. Springer, 2010.

(48]

[49]

[50]

(51]

[52]

L. Zhang, L. Zhang, X. Mou, and D. Zhang. FSIM: A feature
similarity index for image quality assessment. /EEE trans-
actions on Image Processing, 20(8):2378-2386, 2011.

E. Zhou, H. Fan, Z. Cao, Y. Jiang, and Q. Yin. Learning face
hallucination in the wild. In Twenty-Ninth AAAI Conference
on Artificial Intelligence, 2015.

S. Zhu, S. Liu, C. C. Loy, and X. Tang. Deep cascaded bi-
network for face hallucination. In European conference on
computer vision, pages 614-630. Springer, 2016.

F. Zohrizadeh, M. Kheirandishfard, and F. Kamangar. Class
subset selection for partial domain adaptation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2019.

W. W. Zou and P. C. Yuen. Very low resolution face recog-
nition problem. [EEE Transactions on image processing,
21(1):327-340, 2012.



	1 . Introduction
	1.1 . Related Work

	2 . Preliminaries
	2.1 . Generative Adversarial Networks (GANs)

	3 . Proposed Multi-Scale GAN Architecture
	4 . Training Loss Function
	4.1 . Perceptual Loss
	4.2 . Adversarial Face Verification Loss
	4.3 . Color-consistency regularization
	4.4 . Total Loss

	5 . Experiments
	5.1 . Datasets
	5.2 . Visual Realism Evaluation
	5.3 . Identity Preserving Evaluation
	5.3.1 Face Verification Performance
	5.3.2 Face Recognition Performance


	6 . Conclusion

