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Abstract

Bandit algorithms have various application in safety-critical systems, where it
is important to respect the system constraints that rely on the bandit’s unknown
parameters at every round. In this paper, we formulate a linear stochastic multi-
armed bandit problem with safety constraints that depend (linearly) on an unknown
parameter vector. As such, the learner is unable to identify all safe actions and
must act conservatively in ensuring that her actions satisfy the safety constraint
at all rounds (at least with high probability). For these bandits, we propose a new
UCB-based algorithm called Safe-LUCB, which includes necessary modifications
to respect safety constraints. The algorithm has two phases. During the pure
exploration phase the learner chooses her actions at random from a restricted set of
safe actions with the goal of learning a good approximation of the entire unknown
safe set. Once this goal is achieved, the algorithm begins a safe exploration-
exploitation phase where the learner gradually expands their estimate of the set of
safe actions while controlling the growth of regret. We provide a general regret
bound for the algorithm, as well as a problem dependent bound that is connected to
the location of the optimal action within the safe set. We then propose a modified
heuristic that exploits our problem dependent analysis to improve the regret.

1 Introduction

The stochastic multi-armed bandit (MAB) problem is a sequential decision-making problem where,
at each step of a T -period run, a learner plays one of k arms and observes a corresponding loss that is
sampled independently from an underlying distribution with unknown parameters. The learner’s goal
is to minimize the pseudo-regret, i.e., the difference between the expected T -period loss incurred
by the decision making algorithm and the optimal loss if the unknown parameters were given. The
linear stochastic bandit problem generalizes MAB to the setting where each arm is associated with a
feature vector x and the expected loss of each arm is equal to the inner product of its feature vector
x and an unknown parameter vector µ. There are several variants of linear stochastic bandits that
consider finite or infinite number of arms, as well as the case where the set of feature vectors changes
over time. A detailed account of previous work in this area will be provided in Section 1.2.

Bandit algorithms have found many applications in systems that repeatedly deal with unknown
stochastic environments (such as humans) and seek to optimize a long-term reward by simultaneously
learning and exploiting the unknown environment (e.g., ad display optimization algorithms with
unknown user preferences, path routing, ranking in search engines). They are also naturally relevant
for many cyber-physical systems with humans in the loop (e.g., pricing end-use demand in societal-
scale infrastructure systems such as power grids or transportation networks to minimize system costs
given the limited number of user interactions possible). However, existing bandit heuristics might not
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be directly applicable in these latter cases. One critical reason is the existence of safety guarantees
that have to be met at every single round. For example, when managing demand to minimize costs in
a power system, it is required that the operational constraints of the power grid are not violated in
response to our actions (these can be formulated as linear constraints that depend on the demand).
Thus, for such systems, it becomes important to develop new bandit algorithms that account for
critical safety requirements.

Given the high level of uncertainty about the system parameters in the initial rounds, any such
bandit algorithm will be initially highly constrained in terms of safe actions that can be chosen.
However, as further samples are obtained and the algorithm becomes more confident about the value
of the unknown parameters, it is intuitive that safe actions become easier to distinguish and it seems
plausible that the effect of the system safety requirements on the growth of regret can be diminished.

In this paper, we formulate a variant of linear stochastic bandits where at each round t, the learner’s
choice of arm should also satisfy a safety constraint that is dependent on the unknown parameter
vector µ. While the formulation presented is certainly an abstraction of the complications that might
arise in the systems discussed above, we believe that it is a natural first step towards understanding
and evaluating the effect of safety constraints on the performance of bandit heuristics.

Specifically, we assume that the learner’s goal is twofold: 1) Minimize the T -period cumulative
pseudo-regret; 2) Ensure that a linear side constraint of the form µ†Bx ≤ c is respected at every
round during the T -period run of the algorithm, where B and c are known. See Section 1.1 for details.
Given the learner’s uncertainty about µ, the existence of this safety constraint effectively restricts
the learner’s choice of actions to what we will refer to as the safe decision set at each round t. To
tackle this constraint, in Section 2, we present Safe-LUCB as a safe version of the standard linear
UCB (LUCB) algorithm Dani et al. (2008); Abbasi-Yadkori et al. (2011); Rusmevichientong and
Tsitsiklis (2010). In Section 3 we provide general regret bounds that characterize the effect of safety
constraints on regret. We show that the regret of the modified algorithm is dependent on the parameter
∆ = c− µ†Bx∗, where x∗ denotes the optimal safe action given µ. When ∆ > 0 and is known to

the learner, we show that the regret of Safe-LUCB is Õ(
√
T ); thus, the effect of the system safety

requirements on the growth of regret can be diminished (for large enough T ). In Section 4, we also
present a heuristic modification of Safe-LUCB that empirically approaches the same regret without
a-priori knowledge of the value of ∆. On the other hand, when ∆ = 0, the regret of Safe-LUCB is

Õ(T 2/3). Technical proofs and some further discussions are deferred to the appendix provided in the
supplementary material.

Notation. The Euclidean norm of a vector x is denoted by ‖x‖2 and the spectral norm of a matrix

M is denoted by ‖M‖. We denote the transpose of any column vector x by x†. Let A be a positive

definite d × d matrix and v ∈ R
d. The weighted 2-norm of v with respect to A is defined by

‖v‖A=
√
v†Av. We denote the minimum and maximum eigenvalue of A by λmin(A) and λmax(A).

The maximum of two numbers α, β is denoted α ∨ β. For a positive integer n, [n] denotes the set

{1, 2, . . . , n}. Finally, we use standard Õ notation for big-O notation that ignores logarithmic factors.

1.1 Safe linear stochastic bandit problem

Cost model. The learner is given a convex compact decision set D0 ⊂ R
d. At each round t, the

learner chooses an action xt ∈ D0 which results in an observed loss ℓt that is linear on the unknown
parameter µ with additive random noise ηt, i.e., ℓt := ct(xt) := µ†xt + ηt.

Safety Constraint. The learning environment is subject to a side constraint that restricts the choice
of actions by dividing D0 into a safe and an unsafe set. The learner is restricted to actions xt from
the safe set Ds

0(µ). As notation suggests, the safe set depends on the unknown parameter. Since µ is
unknown, the learner is unable to identify the safe set and must act conservatively in ensuring that
actions xt are feasible for all t. In this paper, we assume that Ds

0(µ) is defined via a linear constraint

µ†Bxt ≤ c, (1)

which needs to be satisfied by xt at all rounds t with high probability. Thus, Ds
0(µ) is defined as,

Ds
0(µ) := {x ∈ D0 : µ†Bx ≤ c}. (2)

The matrix B ∈ R
d×d and the positive constant c > 0 are known to the learner. However, after

playing any action xt, the value µ†Bxt is not observed by the learner. When clear from context, we
drop the argument µ in the definition of the safe set and simply refer to it as Ds

0.
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Regret. Let T be the total number of rounds. If xt, t ∈ [T ] are the actions chosen, then the
cumulative pseudo-regret (Audibert et al. (2009)) of the learner’s algorithm for choosing the actions

xt is defined by RT =
∑T

t=1 µ
†xt − µ†x∗, where x∗ is the optimal safe action that minimizes the

loss ℓt in expectation, i.e., x∗ ∈ argminx∈Ds
0
(µ) µ

†x.

Goal. The goal of the learner is to keep RT as small as possible. At the bare minimum, we require
that the algorithm leads to RT /T → 0 (as T grows large). In contrast to existing linear stochastic
bandit formulations, we require that the chosen actions xt, t ∈ [T ] are safe (i.e., belong in Ds

0 (2))
with high probability. For the rest of this paper, we simply use regret to refer to the pseudo-regret RT .

In Section 2.1 we place some further technical assumptions on D0 (bounded), on Ds
0 (non-empty), on

µ (bounded) and on the distribution of ηt (subgaussian).

1.2 Related Works

Our algorithm relies on a modified version of the famous UCB algorithm known as UCB1, which
was first developed by Auer et al. (2002). For linear stochastic bandits, the regret of the LUCB
algorithm was analyzed by, e.g., Dani et al. (2008); Abbasi-Yadkori et al. (2011); Rusmevichientong
and Tsitsiklis (2010); Russo and Van Roy (2014); Chu et al. (2011) and it was shown that the regret

grows at the rate of
√
T log(T ). Extensions to generalized linear bandit models have also been

considered by, e.g., Filippi et al. (2010); Li et al. (2017). There are two different contexts where
constraints have been applied to the stochastic MAB problem. The first line of work considers the
MAB problem with global budget (a.k.a. knapsack) constraints where each arm is associated with a
random resource consumption and the objective is to maximize the total reward before the learner
runs out of resources, see, e.g., Badanidiyuru et al. (2013); Agrawal and Devanur (2016); Wu et al.
(2015); Badanidiyuru et al. (2014). The second line of work considers stage-wise safety for bandit
problems in the context of ensuring that the algorithm’s regret performance stays above a fixed
percentage of the performance of a baseline strategy at every round during its run Kazerouni et al.
(2017); Wu et al. (2016). In Kazerouni et al. (2017), which is most closely related to our setting, the
authors study a variant of LUCB in which the chosen actions are constrained such that the cumulative
reward remains strictly greater than (1− α) times a given baseline reward for all t. In both of the
above mentioned lines of work, the constraint applies to the cumulative resource consumption (or
reward) across the entire run of the algorithm. As such, the set of permitted actions at each round vary
depending on the round and on the history of the algorithm. This is unlike our constraint, which is
applied at each individual round, is deterministic, and does not depend on the history of past actions.

In a more general context, the concept of safe learning has received significant attention in recent
years from different communities. Most existing work that consider mechanisms for safe exploration
in unknown and stochastic environments are in reinforcement learning or control. However, the
notion of safety has many diverse definitions in this literature. For example, Moldovan and Abbeel
(2012) proposes an algorithm that allows safe exploration in Markov Decision Processes (MDP)
in order to avoid fatal absorbing states that must never be visited during the exploration process.
By considering constrained MDPs that are augmented with a set of auxiliary cost functions and
replacing them with surrogates that are easy to estimate, Achiam et al. (2017) purposes a policy search
algorithm for constrained reinforcement learning with guarantees for near constraint satisfaction
at each iteration. In the framework of global optimization or active data selection, Schreiter et al.
(2015); Berkenkamp et al. (2016) assume that the underlying system is safety-critical and present
active learning frameworks that use Gaussian Processes (GP) as non-parametric models to learn the
safe decision set. More closely related to our setting, Sui et al. (2015, 2018) extend the application
of UCB to nonlinear bandits with nonlinear constraints modeled through Gaussian processes (GPs).
The algorithms in Sui et al. (2015, 2018) come with convergence guarantees, but no regret bounds
as provided in our paper. Regret guarantees imply convergence guarantees from an optimization
perspective (see Srinivas et al. (2010)), but not the other way around. Such approaches for safety-
constrained optimization using GPs have shown great promise in robotics applications with safety
constraints Ostafew et al. (2016); Akametalu et al. (2014).With a control theoretic point of view,
Gillulay and Tomlin (2011) combines reachability analysis and machine learning for autonomously
learning the dynamics of a target vehicle and Aswani et al. (2013) designs a learning-based MPC
scheme that provides deterministic guarantees on robustness when the underlying system model is
linear and has a known level of uncertainty. In a very recent related work Usmanova et al. (2019),
the authors propose and analyze a (safe) variant of the Frank-Wolfe algorithm to solve a smooth
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optimization problem with unknown linear constraints that are accessed by the learner via stochastic
zeroth-order feedback. The main goal in Usmanova et al. (2019) is to provide a convergence rate for
more general convex objective, whereas we aim to provide regret bounds for a linear but otherwise
unknown objective.

2 A Safe-LUCB Algorithm

Our proposed algorithm is a safe version of LUCB. As such, it relies on the well-known heuristic
principle of optimism in the face of uncertainty (OFU). The algorithm constructs a confidence set Ct
at each round t, within which the unknown parameter µ lies with high probability. In the absence of
any constraints, the learner chooses the most “favorable” environment µ from the set Ct and plays
the action xt that minimizes the expected loss in that environment. However, the presence of the
constraint (1) complicates the choice of the learner. To address this, we propose an algorithm called
safe linear upper confidence bound (Safe-LUCB), which attempts to minimize regret while making
sure that the safety constraints (1) are satisfied. Safe-LUCB is summarized in Algorithm 1 and a
detailed presentation follows in Sections 2.2 and 2.3, where we discuss the pure-exploration and
safe exploration-exploitation phases of the algorithm, respectively. Before these, in Section 2.1 we
introduce the necessary conditions under which our proposed algorithm operates and achieves good
regret bounds as will be shown in Section 3.

2.1 Model Assumptions

Let Ft = σ(x1, x2, . . . , xt+1, η1, η2, . . . , ηt) be the σ-algebra (or, history) at round t. We make the
following standard assumptions on the noise distribution, on the parameter µ and on the actions.

Assumption 1 (Subgaussian Noise). For all t, ηt is conditionally zero-mean R-sub-Gaussian for
fixed constant R ≥ 0, i.e., E[ηt |x1:t, η1:t−1] = 0 and E[eληt | Ft−1] ≤ exp(λ2R2/2), ∀λ ∈ R.

Assumption 2 (Boundedness). There exist positive constants S,L such that ‖µ‖2≤ S and ‖x‖2≤
L, ∀x ∈ D0. Also, µ†x ∈ [−1, 1], ∀x ∈ D0 .

In order to avoid trivialities, we also make the following assumption. This, together with the
assumption that C > 0 in (1), guarantee that the safe set Ds

0(µ) is non-empty (for every µ).

Assumption 3 (Non-empty safe set). The decision set D0 is a convex body in R
d that contains the

origin in its interior.

Algorithm 1 Safe-LUCB

1: Pure exploration phase:
2: for t = 1, 2, . . . , T ′

3: Randomly choose xt ∈ Dw (defined in (3)) and observe loss ℓt = ct(xt).
4: end for
5: Safe exploration-exploitation phase:
6: for t = T ′ + 1, 2, . . . , T
7: Set At = λI +

∑t−1
τ=1 xτx

†
τ and compute µ̂t = A−1

t

∑t−1
τ=1 ℓτxτ

8: Ct = {v ∈ R
d : ‖v − µ̂t‖At

≤ βt} and βt chosen as in (7)

9: Ds
t = {x ∈ D0 : v†Bx ≤ c, ∀v ∈ Ct}

10: xt = argminx∈Ds
t
minv∈Ct

v†x
11: Choose xt and observe loss ℓt = ct(xt).
12: end for

2.2 Pure exploration phase

The pure exploration phase of the algorithm runs for rounds t ∈ [T ′], where T ′ is passed as input to
the algorithm. In Section 3, we will show how to appropriately choose its value to guarantee that the
cumulative regret is controlled. During this phase, the algorithm selects random actions from a safe
subset Dw ⊂ D0 that we define next. For every chosen action xt, we observe a loss ℓt. The collected
action-loss pairs (xt, ℓt) over the T ′ rounds are used in the second phase to obtain a good estimate of
µ. We will see in Section 2.3 that this is important since the quality of the estimate of µ determines
our belief of which actions are safe. Now, let us define the safe subset Dw.
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The safe set Ds
0 is unknown to the learner (since µ is unknown). However, it can be deduced from the

constraint (1) and the boundedness Assumption 2 on µ, that the following subset Dw ⊂ D0 is safe:

Dw := {x ∈ D0 : max
‖v‖2≤S

v†Bx ≤ c} = {x ∈ D0 : ‖Bx‖2≤ c/S}. (3)

Note that the set Dw is only a conservative (inner) approximation of Ds
0, but this is inevitable, since

the learner has not yet collected enough information on the unknown parameter µ.

In order to make the choice of random actions xt, t ∈ [T ′] concrete, let X ∼ Unif(Dw) be a
d-dimensional random vector uniformly distributed in Dw according to the probability measure
given by the normalized volume in Dw (recall that Dw is a convex body by Assumption 3). During

rounds t ∈ [T ′], Safe-LUCB chooses safe IID actions xt
iid∼ X . For future reference, we denote the

covariance matrix of X by Σ = E[XX†] and its minimum eigenvalue by

λ− := λmin(Σ) > 0. (4)

Remark 1. Since D0 is compact with zero in its interior, we can always find 0 < ǫ ≤ C/S such that

D̃w := {x ∈ R
d | ‖Bx‖2= ǫ} ⊂ Dw. (5)

Thus, an effective way to choose (random) actions xt during the safe-exploration phase for which
an explicit expression for λ− is easily derived, is as follows. For simplicity, we assume B is
invertible. Let ǫ be the largest value 0 < ǫ ≤ c/S such that (5) holds. Then, generate samples

xt ∼ Unif(D̃w), t = 1, . . . , T ′, by choosing xt = ǫB−1zt, where zt are iid samples on the unit

sphere Sd−1. Clearly, E[ztz
†
t ] =

1
dI . Thus, Σ := E[xtx

†
t ] =

ǫ2

d

(
B†B

)−1
, from which it follows

that λ− := λmin(Σ) =
ǫ

d λmax(B†B)
= ǫ2

d‖B‖2 .

2.3 Safe exploration-exploitation phase

We implement the OFU principle while respecting the safety constraints. First, at each t = T ′ +
1, T ′ + 2 . . . , T , the algorithm uses the previous action-observation pairs and obtains a λ-regularized
least-squares estimate µ̂t of µ with regularization parameter λ > 0 as follows:

µ̂t = A−1
t

t−1∑

τ=1

ℓτxτ , where At = λI +

t−1∑

τ=1

xτx
†
τ .

Then, based on µ̂t the algorithm builds a confidence set

Ct := {v ∈ R
d : ‖v − µ̂t‖At

≤ βt}, (6)

where, βt is chosen according to Theorem 1 below (Abbasi-Yadkori et al. (2011)) to guarantee that
µ ∈ Ct with high probability.

Theorem 1 (Confidence Region, Abbasi-Yadkori et al. (2011)). Let Assumptions 1 and 2 hold. Fix
any δ ∈ (0, 1) and let βt in (6) be chosen as follows,

βt = R

√
d log

(
1 + (t− 1)L2/λ

δ

)
+ λ1/2S, for all t > 0. (7)

Then, with probability at least 1− δ, for all t > 0, it holds that µ ∈ Ct.

The remaining steps of the algorithm also build on existing principles of UCB algorithms. However,
here we introduce necessary modifications to account for the safety constraint (1). Specifically, we
choose the actions with the following two principles.

Caution in the face of constraint violation. At each round t, the algorithm performs conservatively,
to ensure that the constraint (1) is satisfied for the chosen action xt. As such, at the beginning of each
round t = T ′ + 1, . . . , T , Safe-LUCB forms the so-called safe decision set denoted as Ds

t :

Ds
t = {x ∈ D0 : v†Bx ≤ c, ∀v ∈ Ct}. (8)

Recall from Theorem 1 that µ ∈ Ct with high probability. Thus, Ds
t is guaranteed to be a set of

safe actions that satisfy (1) with the same probability. On the other hand, note that Ds
t is still a
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conservative inner approximation of Ds
0(µ) (actions in it are safe for all parameter vectors in Ct, not

only for the true µ). This (unavoidable) conservative definition of safe decision sets could contribute
to the growth of the regret. This is further studied in Section 3.

Optimism in the face of uncertainty in cost. After choosing safe actions randomly at rounds
1, . . . , T ′, the algorithm creates the safe decision set Ds

t at all rounds t ≥ T ′ + 1, and chooses an
action xt based on the OFU principle. Specifically, a pair (xt, µ̃t) is chosen such that

µ̃†
txt = min

x∈Ds
t,v∈Ct

v†x. (9)

3 Regret Analysis of Safe-LUCB

3.1 The regret of safety

In the safe linear bandit problem, the safe set Ds
0 is not known, since µ is unknown. Therefore, at

each round, the learner chooses actions from a conservative inner approximation of Ds
0. Intuitively,

the better this approximation, the more likely that the optimistic actions of Safe-LUCB lead to good
cumulant regret, ideally of the same order as that of LUCB in the original linear bandit setting.

A key difference in the analysis of Safe-LUCB compared to the classical LUCB is that x∗ may
not lie within the estimated safe set Ds

t at each round. To see what changes, consider the standard
decomposition of the instantaneous regret rt, t = T ′ + 1, . . . , T in two terms as follows (e.g., Dani
et al. (2008); Abbasi-Yadkori et al. (2011)):

rt := µ†xt − µ†x∗ = µ†xt − µ̃†
txt︸ ︷︷ ︸

Term I

+ µ̃†
txt − µ†x∗
︸ ︷︷ ︸

Term II

, (10)

where, (µ̃t, xt) is the optimistic pair, i.e. the solution to the minimization in Step 10 of Algorithm
1. On the one hand, controlling Term I, is more or less standard and closely follows previous such
bounds on UCB-type algorithms (e.g., Abbasi-Yadkori et al. (2011)); see Appendix B.2 for details.
On the other hand, controlling Term II, which we call the regret of safety is more delicate. This
complication lies at the heart of the new formulation with additional safety constraints. When safety
constraints are absent, classical LUCB guarantees that Term II is non-positive. Unfortunately, this is
not the case here: x∗ does not necessarily belong to Ds

t in (8), thus Term II can be positive. This
extra regret of safety is the price paid by Safe-LUCB for choosing safe actions at each round. Our
main contribution towards establishing regret guarantees is upper bounding Term II. We show in
Section 3.2 that the pure-exploration phase is critical in this direction.

3.2 Learning the safe set

The challenge in controlling the regret of safety is that, in general, Ds
t 6= Ds

0. At a high level, we
proceed as follows (see Appendix B.3 for details). First, we relate Term II with a certain notion of
“distance” in the direction of x∗ between the estimated set Ds

t at rounds t = T ′ + 1, . . . , T and the
true safe set Ds

0 . Next, we show that this "distance" term can be controlled by appropriately lower
bounding the minimum eigenvalue λmin(At) of the Gram matrix At. Due to the interdependency of
the actions xt, it is difficult to directly establish such a lower bound for each round t. Instead, we use
that λmin(At) ≥ λmin(AT ′+1), t ≥ T ′ + 1 and we are able to bound λmin(AT ′+1) thanks to the
pure exploration phase of Safe-LUCB . Hence, the pure exploration phase guarantees that Ds

t is a
sufficiently good approximation to the true Ds

0 once the exploration-exploitation phase begins.

Lemma 1. Let AT ′+1 = λI +
∑T ′

t=1 xtx
†
t be the Gram matrix corresponding to the first T ′ actions

of Safe-LUCB (pure-exploration phase). Recall the definition of λ− in (4). Then, for any δ ∈ (0, 1),
it holds with probability at least 1− δ,

λmin(AT ′+1) ≥ λ+
λ−T ′

2
, (11)

provided that T ′ ≥ tδ := 8L2

λ−
log(dδ ).

The proof of the lemma and technical details relating the result to a desired bound on Term II are
deferred to Appendixes A and B.3, respectively.
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3.3 Problem dependent upper bound

In this section, we present a problem-dependent upper bound on the regret of Safe-LUCB in terms of
the following critical parameter, which we call the safety gap:

∆ := c− µ†Bx∗. (12)

Note that ∆ ≥ 0. In this section, we assume that ∆ is known to the learner. The next lemma shows
that if ∆ > 0 1 , then choosing T ′ = O(log T ) guarantees that x∗ ∈ Ds

t for all t = T ′ + 1, . . . , T .

Lemma 2 (x∗ ∈ Ds
t ). Let Assumptions 1, 2 and 3 hold. Fix any δ ∈ (0, 1) and assume a positive

safety gap ∆ > 0. Initialize Safe-LUCB with (recall the definition of tδ in Lemma 1)

T ′ ≥ T∆ :=
(8L2‖B‖2β2

T

λ− ∆2
− 2λ

λ−

)
∨ tδ. (13)

Then, with probability at least 1− δ, for all t = T ′ + 1, . . . , T it holds that x∗ ∈ Ds
t .

In light of our discussion in Sections 3.1 and 3.2, once we have established that x∗ ∈ Ds
t for

t = T ′ + 1, . . . , T , the regret of safety becomes nonpositive and we can show that the algorithm
performs just like classical LUCB during the exploration-exploitation phase 2. This is formalized in

Theorem 2 showing that when ∆ > 0 (and is known), then the regret of Safe-LUCB is Õ(
√
T ).

Theorem 2 (Problem-dependent bound; ∆ > 0). Let the same assumptions as in Lemma 2 hold.
Initialize Safe-LUCB with T ′ ≥ T∆ specified in (13). Then, for T ≥ T ′, with probability at least
1− 2δ, the cumulative regret of Safe-LUCB satisfies

RT ≤ 2T ′ + 2βT

√
2d (T − T ′) log

(
2TL2

d(λ−T ′ + 2λ)

)
. (14)

Specifically, choosing T ′ = T∆ guarantees cumulant regret O(T 1/2 log T ).

The bound in (14) is a contribution of two terms. The first one is a trivial bound on the regret of
the exploration-only phase of Safe-LUCB and is proportional to its duration T ′. Thanks to Lemma
2 the duration of the exploration phase is limited to T∆ rounds and T∆ is (at most) logarithmic in
the total number of rounds T . Thus, the first summand in (14) contributes only O(log T ) in the
total regret. Note, however, that T∆ grows larger as the normalized safety gap ∆/‖B‖ becomes

smaller. The second summand in (14) contributes O(T 1/2 log T ) and bounds the cumulant regret
of the exploration-exploitation phase, which takes the bulk of the algorithm. More specifically, it
bounds the contribution of Term I in (10) since the Term II is zeroed out once x∗ ∈ Ds

t thanks to
Lemma 2. Finally, note that Theorem 2 requires the total number of rounds T to be large enough for
the desired regret performance. This is the price paid for the extra safety constraints compared to the
performance of the classical LUCB in the original linear bandit setting. We remark that existing lower
bounds for the simpler problem without safety constraints (e.g. Rusmevichientong and Tsitsiklis

(2010); Dani et al. (2008)), show that the regret Õ(
√
Td) of Theorem 2 cannot be improved modulo

logarithmic factors. The proofs of Lemma 2 and Theorem 2 are in Appendix B.

3.4 General upper bound

We now extend the results of Section 3.3 to instances where the safety gap is zero, i.e. ∆ = 0. In
this case, we cannot guarantee an exploration phase that results in x∗ ∈ Ds

t , t > T ′ in a reasonable
time length T ′. Thus, the regret of safety is not necessarily non-positive and it is unclear whether a
sub-linear cumulant regret is possible.

Theorem 3 shows that Safe-LUCB achieves regret Õ(T 2/3) when ∆ = 0. Note that this (worst-case)
bound is also applicable when the safety gap is unknown to the learner. While it is significantly
worse than the performance guaranteed by Theorem 2, it proves that Safe-LUCB always leads to
RT /T → 0 as T grows large. The proof is deferred to Appendix B.

1We remark that the case ∆ > 0 studied here is somewhat reminiscent of the assumption αrℓ > 0 in
Kazerouni et al. (2017).

2Our simulation results in Appendix F emphasize the critical role of a sufficiently long pure exploration
phase by Safe-LUCB as suggested by Lemma 2. Specifically, Figure 1b depicts an instance where no exploration
leads to significantly worse order of regret.
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Theorem 3 (General bound: worst-case). Suppose Assumptions 1, 2 and 3 hold. Fix any δ ∈ (0, 0.5).
Initialize Safe-LUCB with T ′ ≥ tδ specified in Lemma 1. Then, with probability at least 1− 2δ the
cumulative regret RT of Safe-LUCB for T ≥ T ′ satisfies

RT ≤ 2T ′ + 2βT

√
2d(T − T ′) log

(
2TL2

d(λ−T ′ + 2λ)

)
+

2
√
2‖B‖LβT (T − T ′)

c
√
λ−T ′ + 2λ

. (15)

Specifically, choosing T ′ = T0 :=
(‖B‖LβTT

c
√

2λ−

) 2

3 ∨ tδ , guarantees regret O(T 2/3 log T ).

Compared to Theorem 2, the bound in (15) is now comprised of three terms. The first one cap-
tures again the exploration-only phase and is linear in its duration T ′. However, note that T ′ is

now O(T 2/3 log T ), i.e., of the same order as the total bound. The second term bounds the total

contribution of Term I of the exploration-exploitation phase. As usual, its order is Õ(T 1/2). Finally,
the additional third term bounds the regret of safety and is of the same order as that of the first term.

4 Unknown Safety Gap

In Section 3.3 we showed that when the safety gap ∆ > 0, then Safe-LUCB achieves good regret

performance Õ(
√
T ). However, this requires that the value of ∆, or at least a (non-trivial) lower

bound on it, be known to the learner so that T ′ is initialized appropriately according to Lemma
2. This requirement might be restrictive in certain applications. When that is the case, one option
is to run Safe-LUCB with a choice of T ′ as suggested by Theorem 3, but this could result in an
unnecessarily long pure exploration period (during which regret grows linearly). Here, we present an
alternative. Specifically, we propose a variation of Safe-LUCB refered to as generalized safe linear
upper confidence bound (GSLUCB). The key idea behind GSLUCB is to build a lower confidence
bound ∆t for the safety gap ∆ and calculate the length of the pure exploration phase associated with
∆t, denoted as T ′

t . This allows the learner to stop the pure exploration phase at round t such that
condition t ≤ T ′

t−1 has been met. While we do not provide a separate regret analysis for GSLUCB, it
is clear that the worst case regret performance would match that of Safe-LUCB with ∆ = 0. However,
our numerical experiment highlights the improvements that GSLUCB can provide for the cases where
∆ 6= 0. We give a full explanation of GSLUCB, including how we calculate the lower confidence
bound ∆t, in Appendix E.

Figure 1a compares the average per-step regret of 1) Safe-LUCB with knowledge of ∆; 2) Safe-
LUCB without knowledge of ∆ (hence, assuming ∆ = 0); 3) GSLUCB without knowledge of ∆, in
a simplified setting of K-armed linear bandits with strictly positive safety gap (see Appendix C). The
details on the parameters of the simulations are deferred to Appendix F.

Algorithm 2 GSLUCB

1: Pure exploration phase:
2: t← 1 , T ′

0 = T0

3: while
(
t ≤ min

(
T ′
t−1, T0

))

4: Randomly choose xt ∈ Dw and observe loss ℓt = ct(xt).
5: ∆t = Lower confidence bound on ∆ at round t
6: if ∆t > 0 then T ′

t = T∆t

7: else T ′
t = T0

8: end if
9: t← t+ 1

10: end while
11: Safe exploration exploitation phase: Lines 6 - 12 of Safe-LUCB for all remaining rounds.

5 Conclusions
We have formulated a linear stochastic bandit problem with safety constraints that depend linearly on
the unknown problem parameter µ. While simplified, the model captures the additional complexity
introduced in the problem by the requirement that chosen actions belong to an unknown safe set.
As such, it allows us to quantify tradeoffs between learning the safe set and minimizing the regret.
Specifically, we propose Safe-LUCB which is comprised of two phases: (i) a pure-exploration
phase that speeds up learning the safe set; (ii) a safe exploration-exploitation phase that optimizes
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(a) Average per-step regret of Safe-LUCB and
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Figure 1: Simulation of per-step regret.

minimizing the regret. Our analysis suggests that the safety gap ∆ plays a critical role. When ∆ > 0

we show how to achieve regret Õ(
√
T ) as in the classical linear bandit setting. However, when ∆ = 0,

the regret of Safe-LUCB is Õ(T 2/3). It is an interesting open problem to establish lower bounds
for an arbitrary policy that accounts for the safety constraints. Our analysis of Safe-LUCB suggests

that ∆ = 0 is a worst-case scenario, but it remains open whether the Õ(T 2/3) regret bound can
be improved in that case. Natural extensions of the problem setting to multiple constraints and
generalized linear bandits (possibly with generalized linear constraints) might also be of interest.
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A Proof of Lemma 1

In order to bound the minimum eigenvalue of the Gram matrix at round T ′ + 1, we use the Matrix
Chernoff Inequality (Tropp et al., 2015, Thm. 5.1.1).

Theorem 4 (Matrix Chernoff Inequality, Tropp et al. (2015)). Consider a finite sequence {Xk} of

independent, random, symmetric matrices in R
d. Assume that λmin(Xk) ≥ 0 and λmax(Xk) ≤ L for

each index k. Introduce the random matrix Y =
∑

k Xk. Let µmin denote the minimum eigenvalue
of the expectation E[Y ],

µmin = λmin

(
E[Y ]

)
= λmin


∑

k

E[Xk]


 .

Then, for any ǫ ∈ (0, 1), it holds,

Pr
(
λmin(Y ) ≤ ǫµmin

)
≤ d · exp

(
−(1− ǫ)2

µmin

2L

)
.

Proof of Lemma 1. Let Xt = xtx
†
t for t ∈ [T ′], such that each Xt is a symmetric matrix with

λmin(Xt) ≥ 0 and λmax(Xt) ≤ L2. In this notation, AT ′+1 = λI +
∑T ′

t=1 Xt. In order to apply
Theorem 4, we compute:

µmin := λmin




T ′∑

t=1

E[Xt]


 = λmin




T ′∑

t=1

E[xtx
†
t ]


 = λmin

(
T ′Σ

)
= λ−T

′.

Thus, the theorem implies the following for any ǫ ∈ [0, 1):

Pr


λmin(

T ′∑

t=1

Xt) ≤ ǫλ−T
′


 ≤ d · exp

(
−(1− ǫ)2

λ−T ′

2L2

)
. (16)

To complete the proof of the lemma, simply choose ǫ = 0.5 (say) and T ′ ≥ 8L2

λ−
log(dδ ) in (16). This

gives Pr
[
λmin(AT ′+1) ≥ λ+ λ−T ′

2

]
≥ 1− δ, as desired.

B Proof of Theorems 2 and 3

In this section, we present the proofs of Theorems 2 and 3.

B.1 Preliminaries

Conditioning on µ ∈ Ct, ∀t > 0. Consider the event

E := {µ ∈ Ct, ∀t > 0}, (17)

that µ is inside the confidence region for all times t. By Theorem 1 the event holds with probability
1− δ. Onwards, we condition on this event, and we make repeated use of the fact that µ ∈ Ct for all
t > 0, without further explicit reference.

Decomposing the regret in two terms. Recall the decomposition of the instantaneous regret in
two terms in (10) as follows:

rt = µ†xt − µ†x∗ = µ†xt − µ̃†
txt︸ ︷︷ ︸

Term I

+ µ̃†
txt − µ†x∗
︸ ︷︷ ︸

Term II

. (18)

As discussed in Section 3.1, we control the two terms separately.
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B.2 Bounding Term I

The results in this subsection are by now rather standard in the literature (see for example (Abbasi-
Yadkori et al., 2011)). We provide the necessary details for completeness.

We start with the following chain of inequalities, that hold for all t ≥ T ′ + 1:

Term I := µ†xt − µ̃†
txt = (µ†xt − µ̂†

txt) + (µ̂†
txt − µ̃†

txt)

≤ ‖µ− µ̂t‖At
‖xt‖A−1

t
+‖µ̂t − µ̃t‖At

‖xt‖A−1

t

≤ 2βt‖xt‖A−1

t
. (19)

The last inequality (19) follows from Theorem 1 and the fact that µ and µ̃t ∈ Ct. Recall, from
Assumption 2, the trivial bound on the instantaneous regret

rt = µ†xt − µ†x∗ ≤ 2.

Thus, we conclude with the following

Term I ≤ 2min (βt‖xt‖A−1

t
, 1). (20)

The next lemma bounds the total contribution of the (squared) terms in (19) across the entire horizon
t = T ′ + 1, . . . , T .

Lemma 3 (Term I). Let Assumptions 1 and 2 hold. Fix any δ ∈ (0, 0.5) and assume that T ′ is such

that T ′ ≥ 8L2

λ−
log
(
d
δ

)
. Then, with probability at least 1− δ, it holds

T∑

t=T ′+1

min
(
‖xt‖2A−1

t

, 1
)
≤ 2d log

(
2TL2

d(2λ+ λ−T ′)

)
.

Thus, with probability at least 1− 2δ, it holds

T∑

t=T ′+1

(µ†xt − µ̃†
txt) ≤ 2βT

√
2d (T − T ′) log

(
2TL2

d (2λ+ λ−T ′)

)
. (21)

Proof. The proof is mostly adapted from (Dani et al., 2008, Lem. 9) but we also exploit the bound on
λmin(AT ′+1) thanks to Lemma 1. We present the details for the reader’s convenience.

With probability at least 1− δ, we find that for all t ≥ T ′ + 1:

det(At+1) = det(At + xtx
†
t) = det(At) det(I + (A

− 1

2

t xt)(A
− 1

2

t xt)
†) = det(At)(1 + ‖xt‖2A−1

t

)

= . . . = det(AT ′+1)

t∏

τ=T ′+1

(1 + ‖xτ‖2A−1

τ
)

≥
(
λ+

λ−T ′

2

)d t∏

τ=T ′+1

(1 + ‖xτ‖2A−1

τ
),

where the last inequality follows form Lemma 1 and the fact that det(A) =
∏d

i=1 λi(A) ≥
(λmin(A))

d. Furthermore, by the AM-GM inequality applied to the eigenvalues of At+1, if holds

det(At+1) =
d∏

i=1

λi(At+1) ≤
(
tL2

d

)d

,

where we also used the fact that ‖xt‖2≤ L for all t. These combined yield,

t∏

τ=T ′+1

(1 + ‖xτ‖2A−1

τ
) ≤

(
2tL2

d(2λ+ λ−T ′)

)d

.
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Next, using the fact that for any 0 ≤ y ≤ 1, log(1 + y) ≥ y/2, we have

T∑

t=T ′+1

min
(
‖xt‖2A−1

t

, 1
)
≤ 2

T∑

t=T ′+1

log
(
‖xt‖2A−1

t

+1
)
= 2 log

( T∏

t=T ′+1

(‖xt‖2A−1

t

+1)
)

≤ 2d log

(
2TL2

d(2λ+ λ−T ′)

)
.

It remains to prove (21). Recall from (20) that for any T ′ < t ≤ T , with probability at least 1− δ
(note that we have conditioned in the event E in (17)),

(µ†xt − µ̃†
txt) ≤ 2min (βt‖xt‖A−1

t
, 1) ≤ 2βT min (‖xt‖A−1

t
, 1),

where for the inequality we have used the fact that βt ≤ βT (and assumed for simplicity that T large
enough such that βT > 1). Thus, the desired bound in (21) follows from applying Cauchy-Schwartz
inequality to the above.

B.3 Bounding Term II

As discussed in Section 3.2, the challenge in bounding Term II in (10) is that , in general, Ds
t 6= Ds

0,
so x∗ might not belong in Ds

t . Bounding Term II amounts to bounding a certain "distance" of the
set Ds

t from the set D0. In order to accomplish this task, we proceed as follows. First, we define a

shrunk version D̃s
t of Ds

t , for which we have a more convenient characterization, compared to the

original D̃s
t . Then, we select the point zt in D̃s

t that is in the direction of x∗ and is as close to it as
possible. Finally, we are able to bound the distance of zt to x∗.

A shrunk safe region D̃s
t . Consider an enlarged confidence region C̃t centered at µ defined as

follows:

C̃t := {v ∈ R
d : ‖v − µ‖At

≤ 2βt} ⊇ Ct. (22)

The inclusion property above holds since µ ∈ Ct, and, by triangle inequality, for all v ∈ Ct, one has
that ‖v − µ‖At

≤ ‖v − µ̂t‖At
+‖µ̂t − µ‖At

≤ 2βt.

The definition of the enlarged confidence region in (22) naturally leads to the definition of a corre-

sponding shrunk safe decision set D̃s
t . Namely, let

D̃s
t := {x ∈ D0 : v†Bx ≤ c, ∀v ∈ C̃t} = {x ∈ D0 : max

v∈C̃t

v†Bx ≤ c}

= {x ∈ D0 : µ†Bx+ 2βt‖Bx‖A−1

t
≤ c}, (23)

and observe that D̃s
t ⊆ Ds

t . Note here that since by Assumption 3 zero is in the interior of D0, the

sets D̃s
t and Ds

t have a nonempty interior.

A point zt ∈ D̃s
t close to x∗. Let zt be a vector in the direction of x∗ that belongs in D̃s

t and is
closest to x∗. Formally, zt := αtx

∗, where

αt := max
{
α ∈ [0, 1] | zt = αx∗ ∈ D̃s

t

}
.

Since both 0 and x∗ ∈ D0, and, D0 is convex by assumption, it follows in view of (23) that

αt := max
{
α ∈ [0, 1] |α ·

(
µ†Bx∗ + 2βt‖Bx∗‖A−1

t

)
≤ c
}
. (24)

Recall that C > 0, thus (24) can be simplified to the following:

αt =





1 , if µ†Bx∗ + 2βt‖Bx∗‖A−1

t
≤ c,

min

(
c

µ†Bx∗+2βt‖Bx∗‖
A

−1

t

, 1

)
, otherwise.

(25)
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Bounding Term II in terms of αt. Due to the fact that D̃s
t ⊆ Ds

t , it holds that zt ∈ Ds
t . Using this,

and optimality of (µ̃, xt) in the minimization in Step 10 of Algorithm 1, we can bound Term II as
follows:

Term II := µ̃†
txt − µ†x∗

≤ µ†zt − µ†x∗ = αtµ
†x∗ − µ†x∗

≤ |αt − 1| |µ†x∗|
≤ |αt − 1|= (1− αt). (26)

The inequality in the last line uses Assumption 2. For the last equality recall that αt ∈ [0, 1]

To proceed further from (26) we consider separately the two cases ∆ > 0 and ∆ = 0 that lead to
Theorems 2 and 3, respectively.

B.3.1 Bound for the case ∆ > 0

Here, assuming that ∆ > 0, we prove that if the duration T ′ of the pure exploration phase of Safe-
LUCB is chosen appropriately, then αt = 1, and equivalently, x∗ ∈ Ds

t . The precise statement is
given in Lemma 4 below, which is a restatement of Lemma 2, given here for the reader’s convenience.

Lemma 4 (∆ > 0 =⇒ x∗ ∈ Ds
t ). Let Assumptions 1, 2 and 3 hold for all t ∈ [T ]. Fix any

δ ∈ (0, 0.5) and assume a positive safety gap ∆ > 0. Initialize Safe-LUCB with

T ′ ≥
(8L2‖B‖2β2

T

λ− ∆2
− 2λ

λ−

)
∨ tδ. (27)

Then, with probability at least 1− 2δ, for all t = T ′ + 1, . . . , T it holds that

Term II := µ̃†
txt − µ†x∗ ≤ 0.

Thus, with the same probability
T∑

t=T ′+1

(µ̃†
txt − µ†x∗) ≤ 0. (28)

Proof. Recall from (26), that for any T ′ < t ≤ T , with probability at least 1− δ (note that we have
conditioned in the event E in (17)), Term II = 1− αt. Thus, in view of (25), it suffices to prove that
for any T ′ < t ≤ T , with probability at least 1− δ, it holds αt = 1, or equivalently,

µ†Bx∗ + 2βt‖Bx∗‖A−1

t
≤ c ⇔ βt‖Bx∗‖A−1

t
≤ ∆/2. (29)

For any T ′ < t ≤ T , we have

βt‖Bx∗‖A−1

t
≤ βt‖Bx∗‖2√

λmin(At)
≤ βT ‖Bx∗‖2√

λmin(AT ′+1)
≤ βT ‖B‖L√

λmin(AT ′+1)
, (30)

where, in the second inequality we used βt ≤ βT and λmin(At) ≥ λmin(AT ′+1), and in the last
inequality we used Assumption 2. Next, since tδ ≤ T ′, we may apply Lemma 1 to find from (30),
that for all T ′ + 1 ≤ t ≤ T , with probability at least 1− δ:

βt‖Bx∗‖A−1

t
≤
√
2‖B‖LβT√
2λ+ λ−T ′ . (31)

To complete the proof of the lemma note that the assumption T ′ ≥ 8‖B‖2L2β2

T

λ−∆2 − 2λ
λ−

when combined

with (31), it guarantees (29), as desired.

Remark 2. We remark on a simple tweak in the algorithm that results in a constant T ′ (i.e., indepen-
dent of T ) in Lemma 4. However, this does not change the final order of regret bound in Theorem
2. In particular, we modify Safe-LUCB to use the nested (as is called in Kazerouni et al. (2017))
confidence region Bt = ∩tτ=1Cτ at round t such that . . . ⊆ Bt+1 ⊆ Bt ⊆ Bt−1 ⊆ . . .. According to
Theorem 1, it is guaranteed that for all t > 0, µ ∈ Bt, with high probability. Applying these nested
confidence regions in creating safe sets, results in . . . ⊆ Ds

t−1 ⊆ Ds
t ⊆ Ds

t+1 ⊆ . . . . Thanks to this, it

is now guaranteed that once x∗ ∈ Ds
t , the optimal action x∗ will remain inside the safe decision sets

for all rounds after t. Thus, it is sufficient to find the first round t, such that x∗ ∈ Ds
t . This leads to a

shorter duration T ′ for the pure exploration phase. In particular, following the arguments in Lemma

4, it can be shown that T ′ becomes the smallest value satisfying 2
√
2‖B‖LβT ′ ≤ ∆

√
2λ+ λ−T ′,

which is now a constant independent of T .
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B.3.2 Bound for the case ∆ = 0

Lemma 5 (Term II for ∆ = 0). Let Assumptions 1, 2 and 3 hold. Fix any δ ∈ (0, 0.5) and assume
that T ′ is such that T ′ ≥ tδ. Then, with probability at least 1− δ, it holds

T∑

t=T ′+1

1− αt ≤
2
√
2‖B‖LβT (T − T ′)

c
√

2λ+ λ−T ′ . (32)

Therefore, with probability at least 1− 2δ, it holds

T∑

t=T ′+1

(µ̃†
txt − µ†x∗) ≤ 2

√
2‖B‖LβT (T − T ′)

c
√
2λ+ λ−T ′ . (33)

Proof. Recall from (26), that for any T ′ < t ≤ T , with probability at least 1− δ (note that we have
conditioned in the event E in (17)), Term II = 1−αt. Thus, (33) directly follows once we show (32).
In what follows, we prove (32).

The definition of αt in (25) and the fact that µ†Bx∗ ≤ c imply that

αt =




1 , if µ†Bx∗ + 2βt‖Bx∗‖A−1

t
≤ c,

c
µ†Bx∗+2βt‖Bx∗‖

A
−1

t

≥ c
c+2βt‖Bx∗‖

A
−1

t

, otherwise.

Thus, for all t ≥ T ′ + 1:

αt ≥
c

c+ 2βt‖Bx∗‖A−1

t

,

from which it follows,

1− αt ≤
2βt‖Bx∗‖A−1

t

c+ 2βt‖Bx∗‖A−1

t

≤ 2βt

c
‖Bx∗‖A−1

t
≤ 2βt‖Bx∗‖2

c
√

λmin(At)
≤ 2βt‖B‖L

c
√

λmin(AT ′+1)
.

The last two inequalities follow as in (30). To complete the proof, note that since T ′ ≥ tδ, we can
apply Lemma 1. Thus, with probability at least 1− δ it holds,

T∑

t=T ′+1

1− αt ≤
2βT ‖B‖L(T − T ′)

c
√

λmin(AT ′+1)
≤ 2
√
2‖B‖LβT (T − T ′)

c
√

2λ+ λ−T ′ ,

as desired.

B.4 Completing the proof of Theorem 2

We are now ready to complete the proof of Theorem 2. Let T sufficiently large such that

T > T ′ ≥
(8L2‖B‖2β2

T

λ− ∆2
− 2λ

λ−

)
∨ tδ. (34)

We combine Lemma 3 (specifically, Eqn. (21)), Lemma 4 (specifically, Eqn. (28)), and, the
decomposition in (18), to conclude that

RT =

T ′∑

t=1

rt +

T∑

t=T ′+1

rt ≤ 2T ′ + 2βT

√
2d(T − T ′) log

(
2TL2

d(2λ+ λ−T ′)

)
.

Specifically, choosing T ′ =
(

8L2‖B‖2β2

T

λ− ∆2 − 2λ
λ−

)
∨ tδ in the above, results in

RT = O
(
‖B‖2
λ−∆2

d
√
T log T

)
, (35)

where the constant in the Big-O notation may only depend on L, S,R, λ and δ.
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B.5 Completing the proof of Theorem 3

We are now ready to complete the proof of Theorem 3. Let T sufficiently large such that

T > T ′ ≥ tδ.

We combine Lemma 3 (specifically, Eqn. (21)), Lemma 5 (specifically, Eqn. (33)), and, the
decomposition in (18), to conclude that

RT =

T ′∑

t=1

rt +

T∑

t=T ′+1

rt ≤ 2T ′ + 2βT

√
2d(T − T ′) log

(
2TL2

d(2λ+ λ−T ′)

)
+

2
√
2‖B‖LβT (T − T ′)

c
√

2λ+ λ−T ′ .

Specifically, choosing T ′ =

(
‖B‖LβTT

c
√

2λ−

) 2

3

∨ tδ in the above, results in

RT = O



(‖B‖

c

) 2

3

λ
−1/3
− d T 2/3 log T


 , (36)

where as in (35) the constant in the Big-O notation may only depend on L, S,R, λ and δ.

C Extension to linear contextual bandits

In this section, we present an extension to the setting of K-armed contextual bandit. At each round
t ∈ [T ], the learner observes a context consisting of K action vectors, {yt,a : a ∈ [K]} ⊂ R

d and

chooses one action denoted by at and observes its associated loss, ℓt = µ†yt,at
+ ηt. We consider the

same constraint (1) which results in a safe set of actions at each round {yt,a | a ∈ [K], µ†Byt,a ≤ c}.
The optimal action at round t is denoted by yt,a∗

t
where

a∗t ∈ argmin
a∈[K],µ†Byt,a≤c

µ†yt,a. (37)

If the chosen action at round t is denoted by xt := yt,at
and the optimal one by x∗

t := yt,a∗
t
, the

cumulative regret over total T rounds will be

RT =

T∑

t=1

µ†xt − µ†x∗
t .

We briefly discuss how Safe-LUCB extends to the K-armed contextual setting with provable regret
guarantees under the following assumptions.

First, we need the standard Assumptions 1 and 2 that naturally extend to the linear contextual bandit
setting. Beyond these, in order for the safe-bandit problem to be well-defined, we assume that safe
actions exist at each round. Equivalently, the feasible set in (37) is nonempty and x∗

t is well-defined.
Moreover, in order to be able to run the pure-exploration phase of Safe-LUCB with random actions
(that guarantee Lemma 1 holds) we further require that at least one of these safe actions is randomly
sampled at each round t (technically, we need this assumption to hold only for rounds 1, . . . , T ′).
These two assumptions are both implied by Assumption 4 below.

Assumption 4 (Nonempty safe sets). Consider the set Dw = {x ∈ R
d : ‖Bx‖2≤ c

S }. Then, at each
round t, Nt ≥ 1 number of K action vectors lie within Dw.

Finally, in order to guarantee that Safe-LUCB has sub-linear regret for the K-armed linear setting we
need that the safety gap at each round is strictly positive.

Assumption 5 (Nonzero ∆). The safety gap ∆t = c− µ†Bx∗
t at each round t is positive.

Under these assumptions, Safe-LUCB naturally extends to the K-armed linear bandit setting. Specifi-
cally, at rounds t ≤ T ′, Safe-LUCB randomly selects xt to be one of the available Nt action vectors

that belong to the set Dw. Assume that λmin(E[xtx
†
t ]) ≥ λ− > 0 for all t ∈ [T ′].
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After round T ′, Safe-LUCB implements the safe exploration-exploitation phase by choosing safe
actions based on OFU principle as in (9). Therefore line 10 of Safe-LUCB changes to

at = arg min
a∈As

t

min
v∈Ct

v†yt,a, (38)

where the safe set at rounds t ≥ T ′ + 1 is defined by

As
t = {a ∈ [K] : v†Byt,a ≤ c, ∀v ∈ Ct}. (39)

With these and subject to Assumptions 1, 2, 4 and 5, it is straightforward to extend the results of
Theorem 2 to the setting considered here. Namely, under these assumptions, Safe-LUCB achieves

regret Õ(
√
T ) when T ′ is set to T∆ as in (13) for ∆ = mint∈[T ] ∆t.

D Safe-LUCB with ℓ1-confidence region

In this section we briefly discussed a modified ℓ1-confidence region (as in Dani et al. (2008)), which
is used in our numerical experiments.

Motivation. The minimization in (9) involves solving a bilinear optimization problem. In view of
(6) and (8) it is not hard to show that (9) can be equivalently expressed as follows:

µ̃†
txt = min

x
µ̂†
tx− βt ‖x‖A−1

t
sub.to µ̂†

tBx+ βt ‖Bx‖A−1

t
≤ c, x ∈ D0 .

This is a non-convex optimization problem. Thus, we present a variant of Safe-LUCB (and its
analysis) and we show that it can be efficiently implemented (particularly so, when the decision set is
a polytope) Dani et al. (2008). We use this variant in our simulation results (see Appendix F).

Algorithm and guarantees. We adapt the procedure first presented in Dani et al. (2008) to our
new Safe-LUCB algorithm. The pure-exploration phase of the algorithm remains unaltered. In the
safe exploration-exploitation phase, the only thing that changes is the definition of the confidence
region in Line 8 in Algorithm 1. Specifically, we define the modified ℓ1-confidence region as follows:

Cℓ1t := {v ∈ R
d : ‖v − µ̂t‖At,1

≤ βt

√
d}. (40)

Note that for any v ∈ Ct and all t > 0, ‖A1/2
t (v − µ̂t)‖1≤

√
d‖A1/2

t (v − µ̂t)‖2≤
√
dβt. Thus,

Ct ⊆ Cℓ1t , ∀t > 0. From this and Theorem 1, we conclude Pr(µ ∈ Cℓ1t , ∀t > 0) ≥ 1 − δ. Then,
the natural modification of (9) becomes

µ̃†
txt = min

x∈Ds
t,v∈Cℓ1

t

v†x = min
v∈Cℓ1

t

f(v), (41)

where

f(v) := min
x∈D0

µ̂†
tBx+

√
dβt ‖Bx‖

A
−1

t

≤C

ν†x. (42)

From these, it is clear that all the results and theorems can be directly applied to the modified

algorithm which uses ℓ1-confidence region in (40), with βt

√
d instead of βt. As noted in Dani et al.

(2008) the regret of the modified algorithm does not optimally scale with the dimension d (since there

is an extra factor of
√
d introduced by the substitution βt ← βt

√
d). However, as explained next,

solving (41) is now computationally tractable.

On computational efficiency. Note that the minimization in (42) is a convex program that can
be efficiently solved for fixed ν. In particular, if D0 is a polytope then the minimization in (42)
is a quadratic program. Moreover, note that f(v) is positive homogeneous of degree one, i.e.,
f(θv) = θf(v) for any θ ≥ 0. Therefore, in order to solve (41) it suffices to evaluate the function f(v)

at the 2d vertices v1, . . . , v2d of Cℓ1t in (40) and choose the minimum fmin := minvi, i∈[2d] f(vi).
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In order to see this, let v∗ ∈ argmin
v∈Cℓ1

t

f(v) and θ1, . . . , θ2d ≥ 0,
∑d

i=1 θi = 1 such that

v∗ =
∑2d

i=1 θivi. Then,

min
v∈Cℓ1

t

f(v) = f(v∗) =
2d∑

i=1

θif(vi) ≥ fmin

2d∑

i=1

θi = fmin ≥ min
v∈Cℓ1

t

f(v).

Thus,

min
v∈Cℓ1

t

f(v) = min
vi, i∈[2d]

f(vi). (43)

To sum up, we see from (43) that solving (41) amounts to solving 2d quadratic programs (when D0

is a polytope).

E On GSLUCB

Having no knowledge of the safety gap ∆, GSLUCB starts conservatively by setting the length of
the pure exploration phase to its largest possible value, which is equal to T0 defined in Theorem
3 (corresponding to ∆ = 0). The idea behind GSLUB is to generate at each round t of the pure-
exploration phase a certain value ∆t that serves as a lower bound for the unknown safety gap ∆. We
discuss possible ways to do so next, but for now let us describe how these lower estimates of ∆ can
be useful. Owing to the result of Theorem 2, at each round t, GSLUCB computes a pure exploration
duration T ′

t = T∆t
, which is associated with the lower confidence bound ∆t (Eqn. (13) for ∆ = ∆t).

If at some round t, the computed T ′
t becomes less than t, then Theorem 2 guarantees that x∗ ∈ Ds

t
and the algorithm switches to the exploration-exploitation phase.

One way to compute the ∆t’s that guarantees ∆t ≤ ∆ is as follows. For each vector v ∈ Ct denote
x∗
v ∈ argminx∈Ds

0
(v) v

†x, where Ds
0(v) := {x ∈ D0 : v†Bx ≤ c} and define

∆t := min
v∈Ct

∆v, (44)

where ∆v := c− v†Bx∗
v . Since µ ∈ Ct with high probability (cf. Theorem 1) and by definition of ∆,

it can be seen that ∆t ≤ ∆. Unfortunately, solving (44) can be challenging and, in general, one has to
resort to relaxed versions of the optimization involved, but ones that guarantee ∆t ≤ ∆ (at least after a
few rounds). We leave the study of this general case to future work and we discuss here a special case
in which this is possible. We have implemented this special case in the simulation results presented
in Figure 1a (see Appendix F). Specifically, we consider a finite K-armed linear bandit setting with
feature vectors denoted by y1, . . . , yK . We produce lower estimates ∆t as follows. For all i ∈ [K],
we form the following two sets. (i) The set Cit = {v ∈ Ct | v†Byi ≤ c} of all vectors in the confidence

region for which the action yi is deemed safe; (ii) The set Yi
t = {yj , j ∈ [K] |maxv∈Ci

t
v†Byj ≤ c}

of all actions that are considered safe with respect to all v ∈ Cit . Then, we define

∆i
t := min

v∈Ci
t

v†yi≤v†y, for all y∈Yi
t

c− v†Byi. (45)

It can be checked that mini∈[K] ∆
i
t ≤ ∆. Thus we rely on mini∈[K] ∆

i
t as our lower confidence

bound on ∆. Note that computing mini∈[K] ∆
i
t is computationally tractable for finite K and an ℓ1

confidence region.

F Simulation Results

In this section, we provide the details of our numerical experiments. In view of our discussion
in Appendix D, we implement a modified version of Safe-LUCB which uses 1-norms instead of
2-norms (as in Dani et al. (2008); see also Appendix D for details). We have taken δ = 0.01, λ = 1,
and R = 0.1 in all cases.

Figure 1a compares the average per-step regret of 1) Safe-LUCB with knowledge of ∆; 2) Safe-
LUCB without knowledge of ∆ (hence, assuming ∆ = 0); 3) GSLUCB without knowledge of ∆
(the algorithm creates a lower confidence bound for ∆ as the pure exploration phase runs). Figure 3
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(a) Safe-LUCB with pure exploration phase.
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(b) Safe-LUCB without pure exploration phase

Figure 2: Growth of Ds
t with and without pure exploration phase. In both figures: D0 (in black) Ds

0

(in blue), DS
T ′+1 (in red), DS

5e4 (in green). Also, shown the optimal action x∗. Note that x∗ ∈ DS
T ′+1

when pure exploration phase is used as suggested by Lemma 2.
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(a) Safe-LUCB, T
′
= T∆
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(b) GSLUCB
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(c) Safe-LUCB, T
′
= T0

Figure 3: Comparison of mean per-step regret for Safe-LUCB(T ′ = T∆), GSLUCB, and Safe-
LUCB(T ′ = T0). The shaded regions show one standard deviation around the mean. The results are
averages over 20 problem realizations.

highlights the sample standard deviation of regret around the average per-step regret for each of the
above-mentioned cases. We considered a time independent decision set of 15 arms in R

4 such that
5 of the feature vectors are drawn uniformly from Dw and the other 10 are drawn uniformly from
unit ball in R

4. Moreover, µ is drawn from N (0, I4) and then normalized to unit norm. B and c are
drawn uniformly from [0, 0.5]4×4 and [0,1] respectively. The results shown depict averages over 20
realizations. It can be seen from the figure that GSLUCB performs significantly better than the worst
case suggested by Theorem 3 (aka Safe-LUCB assuming ∆ = 0). In fact, it appears that it approaches
the improved regret performance suggested by Theorem 2 of Safe-LUCB with knowledge of ∆.

Our second numerical experiment serves to showcase the value of the safe exploration phase as
discussed in Section 3.3. We focus on an instance with positive safety gap ∆ > 0 to verify the validity
of Lemma 2, namely that x∗ ∈ Ds

t for t ≥ T ′ + 1, when T ′ is appropriately chosen. Furthermore,
we compare the performance with a “naive" variation of Safe-LUCB that only implements the safe
exploration-exploitation phase (aka, no pure exploration phase). The regret plots of the two algorithms
(with and without pure exploration phase) shown in Figure 1b clearly demonstrate the value of the
pure exploration phase for the simulated example. Specifically, for the simulation, we consider a
horizon T = 100000 with decision set D0 the unit ℓ∞-ball in R

2, and, the following parameters:

µ =

[
0.9
0.044

]
, B =

[
0.6 1.8
1.8 0.4

]
, c = 0.9. We have chosen a low-dimensional instance, because

we find it instructive to also depict the the growth of the safe sets for the two algorithms. This is
done in Figures 2a and 3c, where we illustrate the safe sets of Safe-LUCB with and without pure
exploration phase, respectively. Black lines denote the (border of) the polytope D0; blue lines denote
the linear constraint in (1); red lines denote the (border of) Ds

T ′+1, where T ′ = T∆ = 1054 and

T ′ = 0 for Figures 2a and 3c, respectively; and, green lines denote (the border of) safe sets Ds
50000

at round 50000. Also depicted the optimal action x∗ with coordinates {−1,−1}. As expected,
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Safe-LUCB starts the exploration-exploitation phase with a safe set that includes x∗ while, without
the pure exploration phase, the algorithm starts the exploration-exploitation phase with a smaller safe
set which does not include x∗ and as a results, fails in expanding the safe set to include x∗ even after
T = 50000 rounds. This results in the bad regret performance in Figure 1b.
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