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Abstract

In this paper, we present an attribute-guided deep cou-
pled learning framework to address the problem of match-
ing polarimetric thermal face photos against a gallery of
visible faces. The coupled framework contains two sub-
networks, one dedicated to the visible spectrum and the
second sub-network dedicated to the polarimetric ther-
mal spectrum. Each sub-network is made of a genera-
tive adversarial network (GAN) architecture. We propose
a novel Attribute-Guided Coupled Generative Adversarial
Network (AGC-GAN) architecture which utilizes facial at-
tributes to improve the thermal-to-visible face recognition
performance. The proposed AGC-GAN exploits the facial
attributes and leverages multiple loss functions in order to
learn rich discriminative features in a common embedding
subspace. To achieve a realistic photo reconstruction while
preserving the discriminative information, we also add a
perceptual loss term to the coupling loss function. An abla-
tion study is performed to show the effectiveness of different
loss functions for optimizing the proposed method. More-
over, the superiority of the model compared to the state-of-
the-art models is demonstrated using polarimetric dataset.

1. Introduction
In recent years, there has been significant amount of re-

search in Heterogeneous Face Recognition (HFR) [17]. The
main issue in HFR is to match the visible face image to a
face image that has been captured in another domain such
as in the infrared spectrum [17], or the polarimetric ther-
mal [7] domain. Infrared images are categorized into two
major groups of reflection and emission. The reflection cat-
egory, which contains near infrared (NIR) and shortwave
infrared (SWIR) bands, is more informative about the facial
details and it is very similar to the visible imagery. Due to
this reflective phenomenology of the NIR and SWIR, there
has been a significant performance on NIR-to-visible face
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Figure 1. Visible spectrum and its corresponding conventional
thermal (S0), and polarimetric state information (S1 and S2) of
a thermal image of a subject.

recognition accuracy [11] and to some extent for SWIR-to-
visible face recognition accuracy [16].

The emission category contains the midwave infrared
(MWIR) and longwave infrared (LWIR) bands and it is
less informative [17] compared with the reflection cate-
gory. Due to the significant phenomenological differences
between the distribution of thermal and visible imagery,
matching a thermal face against a gallery of visible faces
becomes a challenging task. However, thermal-to-visible
recognition is highly demanding because in the thermal
data no active illumination is needed at night-time or low-
light environments since the thermal imagery is based on
the emission and originates from the underlying skin and
depends on the individual’s physiology. Many recent ap-
proaches on cross-modal problem have mainly focused on
closing the gap between the two different modalities, but
they have not explored the soft biometrics i.e., facial at-
tributes.

Recently, via an emerging technology [7], the polariza-
tion state information of thermal emission has been ex-
ploited to provide additional geometrical and textural de-
tails, especially around the nose and the mouth, which com-
plements the textural details of the conventional intensity-
based thermal images. This additional information which
is not available in the conventional intensity-based thermal
imaging [7], is utilized in recent algorithms to enhance the
cross thermal-to-visible face recognition [5]. Fig. 1 shows
a visible image and its corresponding conventional thermal
(S0) and polarimetric state information (S1 and S2) images.
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Figure 2. Proposed network using two GAN-based sub-networks (Vis-GAN and Pol-GAN) coupled by a contrastive loss function. Input
to the Pol-GAN is the polarimetric data (S0, S1, S2). The facial attributes are predicted from both sub-networks (Vis-GAN, Pol-GAN) in
a multi-tasking paradigm.

There are some informative traits, such as age, gender,
ethnicity, race, and hair color, which are not distinctive
enough for the sake of recognition, but still can act as com-
plementary information to other primary information, such
as face and fingerprint. These traits, which are known as
soft biometrics, can improve recognition algorithms while
they are much cheaper and faster to acquire. They can be
directly used in a unimodal system for some applications.
Soft biometric traits have been utilized jointly with hard
biometrics (face photo) for different tasks such as person
identification or face recognition [3]. However, the soft bio-
metric traits are considered to be available both during the
training and testing phases. Our approach looks at this prob-
lem in a different way. We consider the case when soft bio-
metric information does not exist during the testing phase,
and our method can predict them directly in a multi-tasking
paradigm.

Multi-task learning (MTL) and deep learning techniques
has been vastly applied in computer vision and biometrics
problems [13, 14, 15]. MTL basically attempts to solve cor-

related tasks concurrently with the help of knowledge shar-
ing between tasks. In [1] MTL is employed to predict at-
tributes such as age, gender, race, etc. Face photo can be
viewed as having some positive or negative hidden relation-
ship with some of its soft facial biometric traits.

In this paper, we propose an Attribute-Guided Coupled
Generative Adversarial Network (AGC-GAN), which con-
siders the Convolutional Neural Network (CNN) weight
sharing followed by the dedicated weights which are re-
sponsible for learning the representative features for each
specific face attribute. The network also tries to find the
common embedding space between the polarimetric ther-
mal and visible faces utilizing a coupling structure and an
adversarial training. Optimizing the coupled network with
the help of the facial attributes leads to a more discrimina-
tive embedding subspace and can be utilized to enhance the
performance of the main task which is the heterogeneous
face recognition.

To summarize, the following are our main contributions:



Figure 3. Visualization of the common latent subspace by lever-
aging facial attributes prediction loss function. Solid circles rep-
resent the contrastive margin and the dashed circles depict the at-
tributes classification. For the sake of clarity the contrastive mar-
gin is depicted for two Ids out of four Ids.

• A novel polarimetric thermal-to-visible face recognition
system is proposed based on an attribute-guided cou-
pled GAN to synthesize visible faces from the polari-
metric thermal images.

• A multi-tasking framework is proposed to predict facial
attributes from the polarimetric thermal faces. To the
best of our knowledge, no such demonstration has been
proposed in the literature.

• Extensive experiments are conducted on ARL polarimet-
ric facial database [7] and the proposed method is com-
pared to recent state-of-the-art methods.

2. Preliminaries
2.1. Conditional Generative Adversarial Networks

The generative adversarial network consists of two net-
works, namely a generator and discriminator which com-
pete with each other in a minimax game [4]. Conditional
adversarial networks is an extension of generative adversar-
ial networks in which both the generator and discriminator
are conditioned on some auxiliary information y. The ex-
tra information y can be any kind of information such as
class label or data from other modalities. The objective of
the conditional GAN is the same as the classical GAN as
follows:

min
G

max
D
Ex∼Pdata(x)

[logD(x|y)]+ (1)

Ez ∼ Pz[log(1−D(G(z|y)))].

3. Proposed Method
The proposed AGC-GAN is illustrated in Fig. 2. The

proposed approach consists of two coupled generators and

two discriminators. Each generator is also responsible to
predict facial attributes in a multi-tasking paradigm. In the
following subsections we explain these modules in detail.

3.1. Deep Coupled Framework

The final objective of the proposed model is the iden-
tification of the polarimetric test faces against a gallery of
visible faces which we do not have access to them during
the training phase. For this reason, we couple two U-net
networks [21] one is dedicated to the visible spectrum (Vis-
GAN) and the other network is dedicated to the polarimetric
spectrum (Pol-GAN). Each network performs a non-linear
transformation of the input space. The final objective of
our proposed AGC-GAN is to find the global deep latent
features representing the relationship between polarimetric
face images and their corresponding visible ones. In order
to find a common latent embedding subspace between these
two different domains we couple two networks (Vis-GAN
and Pol-GAN) via a contrastive loss function [2]. This loss
function (`cont) pulls the genuine pairs (i.e., a visible face
image with its own corresponding polarimetric face images)
towards each other in a common latent feature subspace and
push the impostor pairs (i.e., a visible face image of a sub-
ject with another subject’s polarimetric face images) apart
from each other (see Fig. 2). Similar to [2], our contrastive
loss is of the form:

`cont(z1(y
i
vis), z2(y

j
pol), ycont) = (2)

(1− ycont)Lgen(D(z1(y
i
vis), z2(y

j
pol))+

ycontLimp(D(z1(y
i
vis), z2(y

j
pol)) ,

where yivis is the input for the Vis-GAN (i.e., visible face
image), and yjpol is the input for the pol-GAN (i.e., polari-
metric face images). ycont is a binary label, Lgen and Limp

represent the partial loss functions for the genuine and im-
postor pairs, respectively, and D(z1(y

i
vis), z2(y

j
pol)) indi-

cates the Euclidean distance between the embedded data in
the common latent feature subspace. z1(.) and z2(.) are
the deep CNN-based embedding functions, which trans-
form yivis and yjpol into a common latent embedding sub-
space. The binary label, ycont, is assigned a value of 0
when both modalities, i.e., visible and polarimetric, form a
genuine pair, or, equivalently, the inputs are from the same
class (cli = clj). On the contrary, when the inputs are from
different classes, which means they form an impostor pair,
ycont is equal to 1. In addition, Lgen and Limp are defined
as follows:

Lgen(D(z1(y
i
vis), z2(y

j
pol))) =

1

2
||z1(yivis)− z2(y

j
pol)||

2
2 for cli = clj ,

(3)



and

Limp(D(z1(y
i
vis), z2(y

j
pol))) = (4)

1

2
max(0,m− ||z1(yivis)− z2(y

j
pol)||

2
2) for cli 6= clj ,

where m is the contrastive margin. Therefore, the coupling
loss function can be written as:

Lcpl = 1/N2
N∑
i=1

N∑
j=1

`cont(z1(y
i
vis), z2(y

j
pol), ycont), (5)

where N is the number of training samples. It should be
noted that the contrastive loss function (5) considers the
subjects’ labels implicitly. Therefore, it has the ability to
find a discriminative embedding space by employing the
data labels in contrast to some other metrics such as the Eu-
clidean distance. This discriminative embedding subspace
would be useful in identifying a polarimetric probe photo
against a gallery of visible face photos.

3.2. Multi-Attribute Prediction and Identification
Task:

The objective of this model is to predict a set of attributes
using a visible or polarimetric face images. Therefore, in
this architecture a visible face image (polarimetric face im-
ages) is presented to the network as an input and a set of at-
tributes are predicted. Suppose the input is a visible image
yivis ∈ Y , and its class label is cli ∈ CL for i = 1, . . . , N
where N is the number of the training samples. Let the soft
biometric traits, contain T different facial attributes or bi-
nary class labels. Therefore, in this framework we denote
them as clt for t = 1, . . . , T . Learning multiple CNNs sep-
arately is not optimal since different tasks may have some
hidden relationships with each other and may share some
common features. This is supported by [24] where they
train a CNN features for the face recognition task and they
use it directly for the facial attribute prediction. Therefore,
our network shares a big portion of its parameters among
different attribute prediction tasks in order to enhance the
performance of the recognition task. Thus, the loss func-
tion is as follows:

Lavis = 1/N
N∑
i=1

T∑
t=1

`(f tvis(z1(y
i
vis)× wt

vis), cl
i,t) , (6)

where ` is a proper loss function (e.g., cross entropy) and
f tvis(.) is a binary classifier for the attribute t operated on
the bottleneck of Vis-GAN (see Fig. 2). wt

vis represents the
remaining parameters which are learned separately for each
facial attribute task.

The same procedure is performed in the other network
(Pol-GAN) with polarimetric thermal images as input. The

Pol-GAN network is also responsible to estimate a set of
facial attributes. Therefore, the loss function is:

Lapol =1/N
N∑
j=1

T∑
t=1

`(f tpol(z2(y
j
pol)× w

t
pol), cl

j,t) , (7)

where ` is the cross entropy loss function and f tpol(.) is a bi-
nary classifier for the attribute t operated on the bottleneck
of Pol-GAN (see Fig. 2). wt

pol represents the remaining fea-
tures which are assigned separately for each facial attribute
prediction task. The total attribute prediction loss function
is:

La = Lavis + Lapol. (8)

3.3. Generative Adversarial Loss

Let Gvis and Gpol denote the generators that synthe-
size the corresponding visible image from the visible and
its polarimetric images, respectively. To synthesize the out-
put and to make sure that the synthesized images generated
by the two generators are indistinguishable from the corre-
sponding ground truth visible image, we utilized the GAN
loss function in [4]. As it is shown in Fig. 2, the first gen-
erator Gvis is responsible to generate a visible image when
the network is conditioned on a visible image. On the other
hand, the second generator Gpol tries to generate the visible
image from the polarimetric images which is a more chal-
lenging task compared to the first generator. Therefore, the
total loss for the coupled GAN is as follows:

LGAN = Lvis + Lpol, (9)

where the GAN loss function for the Vis-GAN sub-network
is given as:

Lvis = min
Gvis

max
Dvis

Exi∼Pvis(x)
[logD(xi|yivis)]+ (10)

Ez ∼ Pz[log(1−D(G(z|yivis)))],

where yivis is the visible image used as condition for the
Vis-GAN and xi is the real visible data. It should be noted
that for the Vis-GAN the real data xi and the condition yivis
are the same. Similarly the loss for the Pol-GAN is given
as:

Lpol = min
Gpol

max
Dpol

Exj∼Pvis(x)
[logD(xj |yjpol)]+ (11)

Ez ∼ Pz[log(1−D(G(z|yjpol)))],

where yjpol is the polarimetric images used as condition for
the Pol-GAN and xj is the real visible data. It should be
noted that xi is the same as xj if they refer to the same
person (cli = clj) and otherwise they are not the same.



3.4. Overall Loss Function

The proposed approach contains the following loss func-
tions: the Euclidean LEvis and LEpol

losses which are en-
forced on the recovered visible images from the Vis-GAN
and Pol-GAN sub-networks, respectively, are defined as fol-
lows:

LEvis
= ||Gvis(z|yivis)− xi||22, (12)

LEpol
= ||Gpol(z|yjpol)− x

j ||22, (13)

LE = LEvis + LEpol
. (14)

The LGAN (9) loss is also added to generate sharper im-
ages. In addition, based on the success of the perceptual
loss in low-level vision tasks [9], a perceptual loss is added
to the Pol-GAN sub-network to generate a more realistic
face photos as follows:

LPpol
= 1

CpWpHp

Cp∑
c=1

Wp∑
w=1

Hp∑
h=1

(15)

||V (Gpol(z|yjpol))
c,w,h − V (xj)c,w,h||,

where xj is the ground truth visible image, Gpol(z|yjpol) is
the output of Pol-GAN generator. V(.) represents a non-
linear CNN transformation and Cp,Wp, Hp are the dimen-
sion of a particular layer in V . It should be noted that the
perceptual loss is just used in the Pol-GAN sub-network.
Similarly, we utilized a perceptual attribute loss which mea-
sures the difference between the facial attributes of the syn-
thesized images and the real image. To extract attributes
from a given visible face, we fine-tune the pre-trained VGG-
Face [18] on ten annotated facial attributes as tabulated in
Table 2. This network (attribute predictor) is trained sepa-
rately from AGC-GAN. Afterward, this attribute predictor
is utilized for perceptual attribute loss on Vis-GAN and Pol-
GAN as follows:

Lpavis = ||A(Gvis(z|yivis))−A(xi)||22, (16)

Lpapol = ||A(Gpol(z|yjpol))−A(x
j)||22, (17)

Lpa = Lpavis + Lpapol, (18)

whereA is the fine-tuned VGG-Face attribute predictor net-
work. Lpa is the total perceptual attribute loss function
which composed of the perceptual attribute losses for the
Vis-GAN (Lpavis) and Pol-GAN (Lpapol) sub-networks.

Finally, the coupling loss function (5) is added to train
both networks Vis-GAN and Pol-GAN jointly to make the
embedding subspace of the mentioned networks as close as
possible and to preserve a more discriminative and distin-
guishable shared space. Therefore, the total loss function is
as follows:

LT = Lcpl + λ1LE + λ2LGAN (19)
λ3La + λ4LPpol + λ5Lpa,

where λ1, λ2, λ3, λ4, and λ5 are the hyper-parameters
which weight different loss terms in the total loss function.
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Figure 4. Overall CMC curves from testing AGC-GAN versus
other baselines using polarimetric and thermal probe samples.

3.5. Testing Phase

During the testing phase, only the Pol-GAN is used. For
a given test probe ytpol, Pol-GAN sub-network of the pro-
posed AGC-GAN is employed to synthesize the visible im-
age Gpol(z|ytpol) = x̂tvis. Eventually, the identification of
face recognition is done, by calculating the minimum Eu-
clidean distance between the synthesized image from the
polarimetric prob against the visible gallery images as fol-
lows:

xt
∗

vis = argmin
xt
vis

||xtvis, x̂tvis|| , (20)

where x̂tvis is the synthesized probe face image and xt
∗

vis is
the selected matching visible face image within the gallery
of face images. In addition, the Pol-GAN sub-network can
be employed to predict the facial attributes from the polari-
metric face probe. The predicted facial attributes can also
be used to narrow the search or identify a person of interest
in a visible gallery of faces.

3.6. Implementation Details

A U-net structure [21] is employed as the network for
the generator since it is able to address the vanishing gra-
dient problem as well as capturing large receptive field.
Also, a patch-based discriminator [8] is used in the pro-
posed method and it is trained iteratively with the gener-
ator. The entire network is trained in Pytorch. For the sake
of training AGC-GAN, the hyper-parameters for all the loss
functions are set to one except for the perceptual loss Lppol

and perceptual attribute loss Lpa which is set to 0.5. For
training we used Adam optimizer [10] with the first-order



momentum of 0.5, the learning rate of 0.0002, and batch
size of 4. For the generator the ReLU activation, and for
the discriminator the Leaky ReLU activation with the slope
of 0.2 is considered. The perceptual loss is assessed on the
relu3-1 layer of the pre-trained VGG model [12]. In order
to fine-tune the attribute predictor network utilized for per-
ceptual attribute loss, we manually annotated images with
the attributes tabulated in Table 2.

4. Experiments
We evaluate the proposed face recognition method by

comparing with several recent works [6, 22, 19, 7, 20, 23]
on the ARL Multi-modal Face database [7].
Polarimetric Thermal Face dataset [7] comprises polari-
metric thermal face images and their corresponding visible
spectrum faces related to 60 subjects. Data was collected
at three different distances: Range 1 (2.5 m), Range 2 (5
m), and Range 3 (7.5 m). At each range two different con-
ditions, including baseline and expression are considered.

To increase the correlation between the two modalities
of visible and thermal, each modality was preprocessed. We
applied a band-pass filter so called difference of Gaussians
(DoG), to emphasize the edges in addition to removing high
and low frequency noise.

We pass S0, S1, and S2 to the Pol-GAN’s three channels
as the input as shown in Fig. 2. To train the network, the
genuine and impostor pairs are constructed. The genuine
pair is constructed for the same subject photos from the two
different modalities. For the impostor pair, a different sub-
ject is selected for each modality. In general, the number
of the generated impostor pairs are significantly larger than
the genuine pairs. For the sake of balancing the training set,
we consider the same number of genuine and impostor pair.
After training the model, during the testing phase, only the
polarimetric sub-network is used for the evaluation. For a
given probe, the Pol-GAN sub-network is used to synthe-
size the visible image. Afterwards, the Euclidean distance
is used to match the synthesize image to its closest image
from the gallery. The ratio of the number of correctly classi-
fied subjects and the entire number of subjects is computed
as the identification rate.

In each experiment the dataset is partitioned to the train-
ing and testing sets randomly. The same set of training and
testing are used to evaluate PLS [6], DPM [22], CpNN [19],
PLS◦DPM [7], PLS◦CpNN [20], GAN-VFS [23], and the
proposed AGC-GAN network. Fig. 4 shows the over-
all cumulative matching characteristics (CMC) curves for
our proposed method and the other state-of-the-art methods
over all the three different ranges as well as the expressions
data at Range 1. For the sake of comparison, in addition
to the polarimetric thermal-to-visible face recognition per-
formance, Fig. 4 also shows the results for the conventional
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Figure 5. The ROC curves corresponding to the ablation study.

thermal-to-visible face recognition for some of the methods,
namely PLS◦DPM, PLS◦CpNN, CpNN, and AGC-GAN.
In the conventional thermal-to-visible face recognition, all
the mentioned methods exactly follow the same procedure
as before, with only using S0 modality. Fig. 4 illustrates
that exploiting the polarization information of the thermal
spectrum enhances cross-spectrum face recognition perfor-
mance compared to the conventional one. Fig. 4 also shows
the superior performance of our approach compared to the
state-of-the-art methods. In addition, our method could
achieve prefect accuracy (100%) at Rank-4 and above.

Table 1 tabulates the Rank-1 identification rates for five
different scenarios: overall (which corresponds to Fig. 4),
Range 1 expressions, Range 1 baseline, Range 2 baseline,
and Range 3 baseline. In our proposed approach, exploit-
ing polarization information enhance the Rank-1 identifica-
tion rate by 2.24%, 5.16%, 4.65%, and 9.44% for Range 1
baseline, Range 1 expression, Range 2 baseline, and Range
3 baseline compared to the conventional thermal-to-visible
face recognition. This table reveals that using deep cou-
pled generative adversarial network technique with the con-
trastive loss function as well as utilizing facial attributes
to transform different modalities into a distinctive common
embedding subspace is superior to the other embedding
techniques such as PLS◦CpNN. It also shows the effective-
ness of our method in exploiting polarization information to
improve the cross-spectrum face recognition problem.

5. Ablation Study
In order to illustrate the effect of adding different loss

functions and their improvement in our proposed frame-
work, we perform a study with the following evaluations
using the polarimetic dataset: 1) Polar-to-visible using the
coupled framework with using only Lcpl + LE losses, 2)
Polar-to-visible using the proposed framework with Lcpl +
LE + LGAN + Lppol

+ Lpa loss functions, and 3) Polar-



Table 1. Rank-1 identification rate for cross-spectrum face recognition using polarimetric thermal and conventional thermal (S0) probe
imagery.

Scenario Rank-1 Identification Rate
Probe PLS DPM CpNN PLS◦DPM PLS◦CpNN GAN-VFS AGC-GAN

Overall Polar 0.5867 0.8054 0.8290 0.8979 0.9045 0.9382 0.9654
Therm 0.5305 0.7531 0.7872 0.8409 0.8452 0.8561 0.8925

Expressions Polar 0.5658 0.8324 0.8597 0.9565 0.9559 0.9473 0.9733
Therm 0.6276 0.7887 0.8213 0.8898 0.8907 0.8934 0.9217

Range 1 Baseline Polar 0.7410 0.9092 0.9207 0.9646 0.9646 0.9653 0.9883
Therm 0.6211 0.8778 0.9102 0.9417 0.9388 0.9412 0.9659

Range 2 Baseline Polar 0.5570 0.8229 0.8489 0.9105 0.9187 0.9263 0.9643
Therm 0.5197 0.7532 0.7904 0.8578 0.8586 0.8701 0.9178

Range 3 Baseline Polar 0.3396 0.6033 0.6253 0.6445 0.6739 0.8491 0.9068
Therm 0.3448 0.5219 0.5588 0.5768 0.6014 0.7559 0.8124

to-visible with all the loss functions in the proposed frame-
work (19).

We plot the receiver operation characteristic (ROC)
curves corresponding to the mentioned three different set-
tings of the framework in the task of face verification. As
it is shown in Fig. 5 the LGAN has an important rule in the
enhancement of our proposed approach by transforming the
polarimetric modality to the visible one. Moreover, adding
facial attribute prediction loss enhances the face recognition
performance. The reason behind this is because using facial
attributes loss in addition to contrastive loss function leads
to a more discriminative embedding space and this leads
to a better face recognition performance. Consider a po-
larimetric subject with Id#2 (see Fig. 3). The contrastive
loss function causes the corresponding visible images from
Id#2 to move closer to Id#2′s polarimetric and other Ids′

visible images to move farther away. Now, using the con-
trastive loss function in conjunction with the attribute classi-
fication loss function makes Id#1 to move closer to Id#2
since they share the same set of attributes (see Fig. 3). In
other words, it differentiates between different impostors of
Id#2. The same procedure is performed for the other iden-
tities during the training process. Fig. 3 visualizes the over-
all concept of adding facial attributes prediction loss func-
tion. As it is depicted, addition of attribute prediction loss
leads to a more discriminative embedding subspace. This
leads to a better face recognition performance as it is shown
by the ROC curves in Fig. 5.

6. Attribute Prediction From Polarimetric
Thermal

One of the benefits of the proposed AGC-GAN is pre-
dicting facial attributes directly from polarimetric thermal
modality. These attributes can be utilized directly or can be
fused with other modalities to enhance recognition perfor-
mance. In order to illustrate the effectiveness of the pro-
posed method we performed attribute prediction in four dif-
ferent scenarios: 1) Attribute prediction of visible images

with the VGG-Face based attribute predictor (Network A
in Sec. 3.4). 2) Attribute prediction of polarimteric images
with the attribute predictor A. 3) Attribute prediction of po-
larimetric images with the fine-tuned attribute predictor A.
In this case, we fine-tuned the attribute predictor A with the
annotated polarimetric images and used it for the task of
attribute prediction in the testing phase. 4) Attribute predic-
tion of the polarimetric images using the Pol-GAN attribute
predictor from the proposed AGC-GAN (see Fig. 2). Ta-
ble 2 shows the result of the prediction for the four men-
tioned frameworks. Although, fine-tuning the attribute pre-
dictor A increased the prediction performance (framework
#3), but still its performance is less than our proposed
framework. The proposed framework could outperform the
other methods in predicting polarimetric face attributes and
it has a comparable performance with the accuracy of pre-
dicted attributes from the visible face images (framework
#1).

7. Conclusion
We have introduced a novel approach to exploit facial at-

tributes information for the purpose of polarimetric thermal-
to-visible face recognition. The AGC-GAN contains two
GAN-based sub-networks dedicated to visible and polari-
metric input images. The proposed network is capable of
transforming the visible and polarimetric thermal modali-
ties into a common discriminative embedding subspace and
synthesizing the visible photos from the embedding sub-
space. We simultaneously minimize the cost functions due
to the facial attribute identification in addition to other cost
functions in order to increase the inter-personal variations
between different subjects with different sets of facial at-
tributes in the latent feature subspace. This leads to a more
discriminative embedding subspace. An ablation study was
performed to demonstrate the enhancement obtained by dif-
ferent losses in the proposed method. We compared our
method with state-of-the-art polarimetric thermal-to-visible
face recognition methods and showed the superiority of our
proposed method over them.



Table 2. Attribute prediction of the polarimetric face images using the proposed method and other frameworks and comparing it with the
attribute prediction of visible faces.

Facial Attributes Arched Eyebrows Big Lips Big Nose Bushy Eyebrows Bald Mustache Narrow Eyes Beard Mouth Slightly Open Young
Visible Input (Net A) 96.7 98.4 99.1 95.9 99.3 99.4 95.7 98.9 97.7 96.9
Polar Input (Net A) 53.7 55.8 57.1 51.2 58.9 62.8 54.4 59.8 57.6 52.7

Polar Input (fine-tuned A) 78.2 83.9 85.3 80.7 88.4 89.3 79.3 88.9 81.9 76.5
Polar Input (Pol-GAN) 89.6 95.3 96.6 90.4 96.2 95.2 91.9 94.8 93.7 91.1
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