Data Augmentation with Generative Models for
Improved Malware Detection: A Comparative

Study*

Roland Burks IIT *, Kazi Aminul Islamf, Yan Lu¥ and Jiang Lif
TDepartment of Electrical & Computer Engineering, Old Dominion University, Norfolk, Virginia
{kisla001,JLi} @odu.edu
*Samford University
rburks2 @samford.edu
iModeling, Visualization and Simulation Engineering, Old Dominion University, Norfolk, Virginia
yxxlu003 @odu.edu

Abstract—Generative Models have been very accommodating
when it comes to generating artificial data. Two of the most
popular and promising models are the Generative Adversarial
Network (GAN) and Variational Autoencoder (VAE) models.
They both play critical roles in classification problems by gener-
ating synthetic data to train classifier more accurately. Malware
detection is the process of determining whether or not software
is malicious on the host’s system and diagnosing what type of
attack it is. Without adequate amount of training data, it makes
malware detection less efficient. In this paper, we compare the two
generative models to generate synthetic training data to boost the
Residual Network (ResNet-18) classifier for malware detection.
Experiment results show that adding synthetic malware samples
generated by VAE to the training data improved the accuracy of
ResNet-18 by 2% as it compared to 6% by GAN.

Index Terms—Variational Autoencoders, Generative Adversar-
ial Networks, Deep Residual Networks, Deep Learning

I. INTRODUCTION

In todays computing landscape, the world thrives off the
Internet of Things (IoT). As of now there are billions of
devices that rely on the internet. This includes devices such
as baby monitors, kitchen appliances, home assistants, door
locks, and much more. The number of devices connected to
the IoT are expected to skyrocket from 25-50 billion devices
by 2020 [1] [2]. However, these numbers do not include
devices such as PCs, desktops, and mobile phones. When
these devices connected with internet, they are all vulnerable
to malware (malicious software). This could be extremely
dangerous because we do not know what the malicious users
are doing with this data that they acquire. There has been much
research conducted to improve the classification of malware so
that the users domain is able to detect the malware in real time.
The problem with detecting malware within many systems is
that it requires that the end users have advanced knowledge on
certain systems or use special tools. However, none of these
tools can classify malware if they are modified or disguised;

this also includes newly unconstrained malwares that have not
been accounted for.

To deal with malware detection, many deep learning models
have been proposed. Majority of the malware detection models
utilized commonly implemented Convolutional Neural Net-
works (CNN) [3], Residual Networks (ResNet) [3], or simply a
Recurrent Network [4]. These networks are widely known for
image classification. However, with malware classification we
must take a few extra steps to convert our raw malware bytes
into images so that the deep learning model is more suitable
to interpret the data. The most crucial issue with classifying
malware is not necessarily the deep learning network that
we decide to use, but the lack of data from certain types of
malware. In order to train a deep learning model, we will need
a significant amount of malware samples.

In this paper, we will compare two of the most promising
deep generative models, the Generative Adversarial Network
(GAN), and the Variational Autoencoder (VAE) to augment
malware samples for malware detection. We will discuss the
accuracy and the efficiency of both models. We have chosen
these models because they are both able to generate new
samples of malware that was underrepresented in typical
malware data sets. There has already been research done on
GAN model [5] to generate malware samples. In this paper,
we will focus on generating samples with the VAE model for
malware detection and compare the two models with an aim
for providing practical guidance for the research community.

Some classes in the malware dataset we used have as few
as 80 samples, while other classes have as many as 2,000. To
properly train the classifier we generated artificial data samples
with both the GAN, and VAE models so that each class has a
fair number of samples in the dataset. A typical implementa-
tion of the GAN model to generate synthetic malware samples
for the ResNet classifier training has been conducted by Lu et
al. [5]. Their approach significantly improved the accuracy of
classification from 84% to 90%. Our findings show that the

measurable accuracy of the VAE model implemented with the
ResNet classifier only improved accuracy to 85% compared
to the GAN model.

The remainder of the paper is structured as follows. We
discuss related work that focus on malware classification in
section II. Key terminologies that are used in the article are
presented in section III. GAN and VAE models are introduced
in section IV, and results are presented in section V. Following
in section VI, we discuss the significance of our findings
as compared to the GAN model, as well as advantages and
disadvantages of both models. Finally, we conclude the paper
in section VIL

II. RELATED WORK

There have been many deep learning experiments conducted
to classify malware statically. Agarap et al. proposed a solution
for the Malimg Dataset using a support vector machine (SVM)
combined with CNN, Gated Recurrent Unit (GRU), and Multi-
layer perception (MLP). They achieved an accuracy of 77.22%
by CNN-SVM, 84.92% by GRU-SVM, and 80.46% by MLP-
SVM [6]. Lu et al. also attempted a similar deep learning
approach with a CNN. They also added more synthetic data
generated by the GAN model [7] and resulted in an 6%
increase achieving an accuracy of 90% [3].

III. KEY TERMINOLOGY
A. Variational Autoencoder (VAE)

Variational Autoencoder is a popular deep generative model.
Given a random variable (z) that has one dimensional dis-
tribution, we are able to generate another random variable
X = g(z) that has a completely diverse distribution than
the original. The VAE uses 2 separate neural networks, the
encoder and the decoder. The encoder takes in the input (z)
and outputs an impression of (z). The decoder then attempts
to reconstruct the original input(x) with a new representation
of X = g(z).

B. Generative Adversarial Network (GAN)

Generative Adversarial Networks are one of the most preva-
lent generative models although it was only introduced in
2014 by Ian Goodfellow [7]. The GAN model is based upon
two different networks: a generator and a discriminator. The
generator tries to fool the discriminator to thinking that it is
the original input data by generating fake samples realistically
like the original data. Both real data and generated data are
passed into the discriminator. Therefore, the newly generated
data(z) will be unique based on the input data(z) that was
passed into the generator.

IV. METHODS
A. Image Representation for Malware

While dealing with malware, it is merely impossible to
determine the type of attack by looking at the binary malware
data. We convert the binary malware files into 8-bit gray scale
images with a range of 0-255. We then convert the gray scale
images into 3 channel RGB images by replicating the gray

No. Family Family Name No. of Variants
1 Worm Allaple.L 1591
2 Worm Allaple.A 2948
3 Worm Yuner.A 800
+ PWS Lolyda.AA 1 213
5 PWS Lolyda.AA 2 184
6 PWS Lolyda.AA 3 123
7 Trojan C2Lop.P 146
8 Trojan C2Lop.gen!G 200
9 Dialer Instantaccess 431
10 Trojan Downloader Swizzor.gen!| 132
11 Trojan Downloader Swizzor.gen!E 128
12 Warm VB.AT 408
13 Rogue Fakerean 381
14 Trojan Alueron.gen!J 198
15 Trojan Malex.genlJ 136
16 PWS Lolyda.AT 159
17 Dialer Adialer.C 125
18 Trojan Downloader Wintrim.BX 97
19 Dialer Dialplatform.B 177

20 Trojan Downloader Dontova.A 162

21 Trojan Downloader Obfuscator.AD 142

22 Backdoor Agent.FYI 116

23 Worm:AutolT Autorun.K 106

24 Backdoor Rbotlgen 158

25 Trojan Skintrim.N 80

Fig. 1. Malimg Dataset

scale channels for 3 iterations.Malwares images within the
same family will look very parallel in layout and texture.
However, malware images from different families will be
noticeably different as shown in Figure 5.

B. Malimg Data Set

For our experiment, we have chosen to use the Malimg
data set. The Malimg data set contains 25 malware families
(classes), while each family has a varying quantity of samples.
The Allaple.A family has 2949 samples while the Skintrim.N
family has only 80. The remaining 23 class samples fluctuate
between these two ranges are shown in Figure 1.

C. Deep Residual Networks

Deep learning models have been extremely reliable and
promising in image classification. However, there are pros
and cons to deep learning networks. While training most deep
learning models, as more layers are added to the network,
the gradients of the loss function approaches to 0, which
makes the network more difficult to train. This is referred
to as the gradient vanishing problem. He et.al formed a
residual learning framework that makes training deep learning
networks easier, which offered reformulates the layers as
learning residual functions with reference to the layers input
[5]. This is by far one of the most useful computer vision and
image classification models. There is plenty of evidence that
the deep residual network has been controlled and modified
to solve many important classification problems.

Tx7 conv

input 3x3 conv

64 filters 3x3 conv 3x%3 conv
£ 3x3 conv 3x3 conv 3x3 conv 3x3 conv
image Norm 54 fifters 64 filters MNorm 84 filters 64 filters go[m 128 filters 128 filters Norm 458 filters 128 filters Nc:_nJ
Relu — Nomm drop Relu o Nomm m grop or Norm Norm dro
Pool O Relu ’_D Sum ’7 (Relu l:| outp i ReLu 2:‘:9 e Relu omp el
Norm
3x3 conv 3x3 conv Norm 3x3 conv 3x%3 conv 3x3 conv 3x3conv | 3x3conv 3x3 conv ReLu FC(25) Softmax
256 filters 256 filters 256 filters 55g fipers MNormS512 filters 512 filters g 512filters 512 filters pheens
. Nomm o : Nom = o Retu Norm dro Horm drop. Pool
...... Relu | Shdrop 5”""‘ . Relu P sum ReLu D Sem Relu
‘ : N |' |out \\ sl out out
~ % \] » ~

alaltalsialiadt®
_// e S _’/" e R

Fig. 2. Deep Residual Network

(5]

We utilized one configuration of deep residual network,
ResNet-18, for malware detection in this study. ResNet-18
consists of 17 convolutional layers of different convolutional
kernel sizes, a normalization layer, a linear unit layer, a pooling
layer, and a SoftMax layer for classificaiton. A common issue
with multi-layered networks is overfitting. To resolve this
problem, we added drop-out layers between convolutional and
normalization layers as shown in Figure 2 [5].

D. Variational Autoencoder

VAE model is the predecessor of the famous GAN model.
A modern VAE architecture consists of 3 major components:
an encoder, a decoder and a loss function. Both the encoder
and decoder are convolutional neural networks. Encoder com-
presses an original image to a low-dimensional vector, z,
while decoder reconstruct the original image based on z. After
training, the decoder can be used to generated more data given
a random variable z. VAE is capable of synthesizing new data,
Z = g(z), by sampling in the low-dimensional space z as
shown in Figure 3.

Figure 3 shows the details of the VAE model used in
this study. The encoder consists of five layers of which the
first four layers are convolutional layer followed by a dense
layer. The first convolutional layer contains 128 convolutional
kernels of size 3x3 and a relu activation function. The second
convolutional layer also contains 128 layers, a kernel size of
2x2, and has a stride of 2x2. The third convolutional layer
has 64 filters, a kernel size of 3x3, a relu activation as the
previous layer, and a stride of 2x2. The fourth layer consists
of 32 filters, and a kernel size of 3x3, a relu activation and
another stride of 2x2. The final dense layer flattens the data
and passes it on to the decoder for up-sampling.

The first layer in the decoder is the up-sampling layer which
contains 64 filters. The second layer is a de-convolutional layer
which contains 32 filters, a kernel size of 5x5 ,a stride of 1, and
a relu activation. The third layer is a de-covolutional layer that
consits of 64 filters, a kernel size of 3x3, a stride of 1, and a

relu activation The fourth layer is also a de-convolutional layer
which contains 128 filters, a filter size of 5x5, a stride of 1,
and a relu activation. The final de-convolutinal layer contains
128 filter, a kernel size of 3x3, a stride of 1, and a sigmoid
activation.

E. Conditional VAE Generated Malware Samples

Figure 3 shows the architecture of VAE model we used.
Initially, we pass the original malware sample as input. The
input data is encoded using the deep encoder network. The
VAE model uses a decoder network for reconstruction The de-
coder network reconstruct the sample from the latent variable,
z to match the input data. If the reconstructed sample does
not match the input sample it produces a high loss. Using this
loss, the VAE network optimizes both encoder and decoder
network. We trained the VAE model for 150 epochs in order
for us to generate artificial malware samples and to fairly
compare the results by Lu et al. where GAN was used to
generate malware samples [5]. Initially , the samples in the
Malimg Dataset are all converted to grey-scale images with
dimensions of 32x32.

F. Training the Classifier

Using the VAE model ,2000 malware samples were gener-
ated for the training. We began training the classifier by only
using real training data from the Malimg Dataset. We initially
took the first 30 samples of each class as the testing data and
used the remaining as the training data. The residual network
only resulted in an accuracy of 83%.

At this point we randomly selected 100 random VAE
samples from the 2000 generated samples for each class so
that we are able to retrain and retest the Residual Network
classifier. To prevent over-fitting the model we used the Keras
API early stopping, so that we could stop the training once
the model performance stopped improving. Then we were able
to train the 18-layered ResNet classifier by implementing the
newly generated artificial data. For each iteration we trained

ConvzDTranspose Conv2DTranspose

Mean Layer
Conv2D Layer, e Layer, 64 filters, Layer, 128 filters,
Conv2D Layer, 64 filters, kernel Up-Sampling Layer, kernel size 3x3, keme] size 3x3,
128 filters, size 3x3, Dense Layer 64 filters stride=1 stride=1

kernel size 3x3 stride=2x2

Flatten

Conv2DTranspose
Conv2DTranspose Layer, Iza‘ﬁ.‘ti e Reconstructec
o . ' Data
Original Data, Layer, 32 filters, K
. ernel size 5x5,
Input size 32x32 Conv2D Layer, ;:Z;;fn Layer, kernel size 5x5, stride=2
128 filters, ers, ctrideet -
kernel size kernel size
4x4, 3x3,
stride=2x2 stride=2x2

Fig. 3. Variational Autoencoder

Group 1 of Generated Samples

Fig. 4. VAE Generated Sample Images

malware data® malware datal malware data2 malware data3 malware datad
2, —
= =

e

malware data/

malware datag

malware datas
G N TR,

malware datald

malware datal9

malware dataz2

Fig. 5. Original Malware Sample Images

the model for 150 epochs. We conducted this testing on a
Lenovo desktop that runs an Intel Core i3-7100 CPU. It took
roughly 2 minutes for each epoch with a batch size of 250.

G. Performance Metric

During this experiment we concluded our results with
precision, recall, and f1-scores to evaluate the optimization of
the deep residual network. For each class we used the precision
to show how accurate the model made predictions. We then
used the recall to calculate the number of true positives the
model encountered by categorizing it as a positive. Finally,
we use the fl-score to view the balance between precision
and recall. The formulas are shown below.

true positive

Precision = — — (D
true positive + false positive

Recall = t r'ue positive - (2)
true positive + false negative

1 precision x recall 3)
— score =
precision + recall

V. RESULTS
A. Testing Accuracy

As described earlier in the Training the Classifier section
we only trained the classifier with the real training data from
the Malimg Dataset. The classifier resulted in an accuracy of
83% as shown in Figure 6.

By using the artificial generated malware samples that were
produced by the VAE model the precision, recall, and fl-
score are only slightly improved compared to Lu ef al. GAN
model [5]. Both the VAE and the GAN model served the same
purpose for generating synthetic malware samples, however
we can imply that Lu ef al. GAN model showed a significant
performance increase as shown in Figure 7 [5].

Both the GAN and VAE model performed similarly when
it came to generate artificial data to feed into the same
residual network classifier. However, the GAN resulted in
better accuracy. They both shared very similar complexities
when it comes to performance. Compared to Lu et al. GAN
model our VAE only showed a slight 2% increase compared
to Lu et al 6% increase as shown in Figure 7.

VI. DISCUSSION

The significance of generating artificial malware samples
using the Variational Autoencoder showed that it improves
the accuracy once implemented into the Residual Network.
However, using the same Residual Network, the Generative
Adversarial Networks generated synthetic samples improved
the accuracy by a much greater margin than the Variational
Autoencoder. Each generative model used the same parameters
that were required to generate the artificial data to ensure that
the comparison was fair. They both rely on two separate net-
works. The GAN takes a gaming approach where one network
(generator) attempts to confuse the network(discriminator) by

precision | recall | fl-score | support
Allaple.L 1.00 1.00 1.00 30
Allaple.A 1.00 1.00 1.00 30
Yuner.A 0.35 0.47 0.40 30
Lolyda.AA 1 0.63 0.80 0.71 30
Lolyda.AA 2 0.88 1.00 0.94 30
Lolyda.AA 3 1.00 1.00 1.00 30
C2Llop.p 0.45 0.50 0.48 30
C2Lop.gen!G 0.35 0.40 0.38 30
Instantaccess 1.00 0.93 0.97 30
Swizzor.genll 1.00 1.00 1.00 30
Swizzor.gen!E 1.00 0.93 0.97 30
VB.AT 1.00 1.00 1.00 30
Fakerean 0.97 1.00 0.98 30
Alueron,gen!l) 0.94 0.97 0.95 30
Malex.genl) 1.00 1.00 1.00 30
Lolyda.AT 0.%0 0.93 0.92 30
Adialer.C 0.58 0.50 0.54 30
Wintrim.BX 1.00 1.00 1.00 30
Dialplatform.B 0.91 0.97 0.94 30
Dontovo.A 1.00 1.00 1.00 30
Obfuscator.AD 0.47 0.27 0.34 30
Agent.FYI 0.43 0.33 0.38 30
Autorun.K 1.00 1.00 1.00 30
Rbotlgen 0.92 0.73 0.81 30
Skintrim.N 1.00 1.00 1.00 30
micro avg 0.83 0.83 0.83 750
marco avg 0.83 0.83 0.83 750
weighted avg 0.83 0.83 0.83 750
samples avg 0.83 0.83 0.83 750

Fig. 6. Real Training Data Accuracy

generating artificial training data. Whereas the VAEs encoder
receives input data and configures a hidden latent representa-
tion of the input data. The decoder network learns to output
the original data from the given encoded data. This illustrates
that the efficiencies of the two models differ. However, both
models do fix the issue of small data samples.

Both models have their advantages and disadvantages. Ini-
tially both models have proven to be successful of generating
any type of data, which is extremely beneficial in a world that
thrives from big data. The GAN can perform unsupervised
learning, while the VAE model supports semi-supervised and
unsupervised learning [8]. A disadvantage of the GAN model
is there is no clear representation of x (real data), and that the
discriminator must but in sync with the generator during the
training phase so the generator does not collapse too many
values of z to where it will match x [7]. A disadvantage of
VAE is that it often produces distorted reconstruction due to
too much noise. This results in the generated samples coming
from the VAE being less valuable than those coming from

precision recall fl-score | support
Allaple.L | 1.00/1.00 | 1.00/1.00 | 1.00/1.00 30
Allaple.A | 1.00/1.00 | 1.00/1.00 | 1.00/1.00 30
Yuner.A | 0.36/0.62 | 0.50/0.60 | 0.42/0.61 30
Lolyda.AA 1 | 0.64/0.65 | 0.77/0.80 | 0.70/0.72 30
Lolyda.AA 2 | 0.77/1.00 | 1.00/1.00 | 0.87/1.00 30
Lolyda.AA 3 | 1.00/1.00 | 1.00/1.00 | 1.00/1.00 30
C2Lop.p | 0.48/0.52 | 0.67/0.53 | 0.56/0.52 30
C2lop.gen!G | 0.55/0.61 | 0.57/0.63 | 0.56/0.62 30
Instantaccess | 1.00/1.00 | 0.93/0.97 | 0.97/0.98 30
Swizzor.gen!l | 1.00/1.00 | 1.00/1.00 | 1.00/1.00 30

0.97/0.97 | 0.97/0.97 | 0.97/0.97 30
1.00/1.00 | 1.00/1.00 | 1.00/1.00 30
0.97/0.97 | 1.00/1.00 | 0.98/1.00 30
1.00/1.00 | 0.97/1.00 | 0.98/0.98 30

Swizzor.gen!E
VB.AT
Fakerean
Alueron,genl!)

Malex.genl) | 1.00/1.00 | 1.00/1.00 | 1.00/1.00 30
Lolyda.AT | 0.96/1.00 | 0.90/0.97 | 0.93/0.98 30
Adialer.C | 0.69/0.81 | 0.60/0.83 | 0.64/0.82 30

Wintrim.BX | 1.00/1.00 | 1.00/1.00 | 1.00/1.00 30

Dialplatform.B | 0.97/0.93 | 0.97/0.90 | 0.97/0.92 30
Dontovo.A | 1.00/0.97 | 1.00/1.00 | 1.00/0.98 30
Obfuscator.AD | 0.70/0.81 | 0.23/0.73 | 0.35/0.77 30
Agent.FYI | 0.50/0.72 | 0.40/0.70 | 0.44/0.71 30
Autorun.K | 1.00/0.97 | 1.00/1.00 | 1.00/0.98 30
Rbot!gen | 0.88/1.00 | 0.70/0.83 | 0.78/0.91 30
Skintrim.N | 1.00/1.00 | 1.00/1.00 | 1.00/1.00 30
micro avg | 0.85/0.90 | 0.85/0.90 | 0.85/0.90 750
marco avg | 0.86/0.90 | 0.85/0.90 | 0.84/0.90 750

0.86/0.90 | 0.85/0.90 | 0.84/0.90 750
0.85/0.90 | 0.85/0.90 | 0.85/0.90 750

weighted avg
samples avg

Fig. 7. VAE Results Compared to GAN

GAN.

The importance of this comparative study is to show how
similar constructed models produce the same type of data with
different efficiencies. The under-representation of data within
certain data set can heavily impact the results of your study.
While dealing with the Malimg Dataset it was not reasonable
to train the Residual Network to classify different types of
malware attacks if the margins of different malware samples
were too large.

The computational efficiency for each model varied slightly.
It took 45 minutes to train the VAE model for 50 epochs
in order to generate artificial data. When the generated VAE
samples were added to the Residual Network it took 1 hour
to declare an accuracy report.

Although both models proved to be useful in generating
malware samples to improve the accuracy of the Residual
Network, we recommend using the GAN model to generate
training data for the classifier. The results will be significantly
higher compared to those of the VAE model. The GAN reduces

Malimg
Dataset

Reshet
Classifier

>

Generated
Artificial Data
using VAE

Used Mewly
Generated Data with
the ResMet
Classifier

Convert Newly
Classified Malware
into RGB Images

<

Fig. 8. Proposed Model Architecture

the concern of distortion by limiting feature lost so that the
training process for the classifier is more efficient.

VII. CONCLUSION

We proposed a Variational Autoencoder model to resolve
the problem of under-representation of data by generating
artificial malware data. Our results determined that by inserting
the VAE generated samples into our Residual Network, the
performance increased by 2%. This model was compared to
the famous Generative Adversarial Network model, which
resulted in a promising 6% increase.

Primarily, we trained the Residual Network without adding
the generated malware samples. The accuracy for the Residual
Network resulted in 83%. After adding the artificial generated
data from the VAE, the results increased to 85%, whereas the
results from the GAN increased to 90% [5]. We also exposed
the advantages and disadvantages of both the VAE and GAN
models.

We were also able to convert the VAE generated samples
bytecodes in RGB images to better improve our deep learning
classifications. Generative Networks reduced the expertise
needed to within certain systems to detect various malware
attacks. It also limits the professional tools needed.

After carefully examining the performance and results of
both generative networks, we have concluded that using the
GAN model to generate artificial malware data is more ef-
ficient than the VAE model when it comes to deep learning
malware classification.

(1]

(2]

(3]

[4]

(3]

(6]

(71

(8]

REFERENCES

I. Lee and K. Lee, “The internet of things (iot): Applications, investments,
and challenges for enterprises,” Business Horizons, vol. 58, no. 4, pp.
431440, 2015.

B. D. Weinberg, G. R. Milne, Y. G. Andonova, and F. M. Hajjat, “Internet
of things: Convenience vs. privacy and secrecy,” Business Horizons,
vol. 58, no. 6, pp. 615-624, 2015.

S. Yue, “Imbalanced malware images classification: a cnn based ap-
proach,” arXiv preprint arXiv:1708.08042, 2017.

R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas,
“Malware classification with recurrent networks,” in 2015 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2015, pp. 1916-1920.

J. L. Yan Lu, “Generative adversarial network for improving deep learning
based malware classification,” Proceeding of 2019 Winter Simulation
Conference, 2019.

A. F. Agarap and F. J. H. Pepito, “Towards building an intelligent anti-
malware system: a deep learning approach using support vector machine
(svm) for malware classification,” arXiv preprint arXiv:1801.00318, 2017.
1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672-2680.
J. T. Chauhan, “Comparative study of gan and vae,” International Journal
of Computer Applications, vol. 975, p. 8887.

