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ABSTRACT

This paper presents a technique to scan neural network based Al
models to determine if they are trojaned. Pre-trained Al models
may contain back-doors that are injected through training or by
transforming inner neuron weights. These trojaned models operate
normally when regular inputs are provided, and mis-classify to a
specific output label when the input is stamped with some special
pattern called trojan trigger. We develop a novel technique that
analyzes inner neuron behaviors by determining how output acti-
vations change when we introduce different levels of stimulation to
a neuron. The neurons that substantially elevate the activation of a
particular output label regardless of the provided input is considered
potentially compromised. Trojan trigger is then reverse-engineered
through an optimization procedure using the stimulation analysis
results, to confirm that a neuron is truly compromised. We evaluate
our system ABS on 177 trojaned models that are trojaned with vari-
ous attack methods that target both the input space and the feature
space, and have various trojan trigger sizes and shapes, together
with 144 benign models that are trained with different data and
initial weight values. These models belong to 7 different model
structures and 6 different datasets, including some complex ones
such as ImageNet, VGG-Face and ResNet110. Our results show that
ABS is highly effective, can achieve over 90% detection rate for most
cases (and many 100%), when only one input sample is provided for
each output label. It substantially out-performs the state-of-the-art
technique Neural Cleanse that requires a lot of input samples and
small trojan triggers to achieve good performance.

KEYWORDS

Deep learning system; Al trojan attacks; Artificial brain stimulation

ACM Reference Format:

Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer,
and Xiangyu Zhang. 2019. ABS: Scanning Neural Networks for Back-doors
by Artificial Brain Stimulation. In 2019 ACM SIGSAC Conference on Computer
& Communications Security (CCS ’19), November 11-15, 2019, London, United

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’19, November 11-15, 2019, London, United Kingdom

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6747-9/19/11...$15.00
https://doi.org/10.1145/3319535.3363216

Wen-Chuan Lee
lee1938@purdue.edu
Purdue University

Yousra Aafer
yaafer@purdue.edu
Purdue University

Guanhong Tao
taog@purdue.edu
Purdue University

Xiangyu Zhang
xyzhang@cs.purdue.edu
Purdue University

Kingdom. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/
3319535.3363216

1 INTRODUCTION

Neural networks based artificial intelligence models are widely
used in many applications, such as face recognition [47], object
detection [49] and autonomous driving [14], demonstrating their
advantages over traditional computing methodologies. More and
more people tend to believe that the applications of AI models
in all aspects of life is around the corner [7, 8]. With increasing
complexity and functionalities, training such models entails enor-
mous efforts in collecting training data and optimizing performance.
Therefore, pre-trained models are becoming highly valuable arti-
facts that vendors (e.g., Google) and developers distribute, share,
reuse, and even sell for profit. For example, thousands of pre-trained
models are being published and shared on the Caffe model zoo [6],
the ONNX zoo [10], and the BigML model market [4], just like tradi-
tional software artifacts being shared on Github. These models may
be trained by reputable vendors, institutes, and even individuals.

In the lengthy history of software distribution and reuse, we have
seen a permanent battle to expose possible malicious behaviors and
back-doors in published software that are usually disguised by the
highly attractive functional features of the software. Similarly, Al
models can be trojaned. Recent research has shown that by con-
taminating training data, back-doors can be planted at the training
time [25]; by hijacking inner neurons and limited re-training with
crafted inputs, pre-trained models can be transformed to install
secret back-doors [38]. These trojaned models behave normally
when benign inputs are provided, some even perform better than
the original models (to be more attractive). However, by stamping
a benign input with some pattern (called trojan trigger), attack-
ers can induce model mis-classification (e.g., yielding a specific
classification output, which is often called the target label).

Our goal is to scan a given Al model to determine if it contains
any secret back-door. The solution ought to be efficient as it may
need to scan a large set of models; it ought to be effective, with-
out assuming the access to training data or any information about
trojan trigger, but rather just the pre-trained model and maybe a
small set of benign inputs. More about our attack model can be
found in Section 3.1. There are existing techniques that defend Al
model trojan attacks [23, 37, 39, 59]. However, these techniques
have various limitations, such as only detecting the attack when
an input with the trigger is provided to the model instead of de-
termining if a model is trojaned without the input trigger; causing
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substantial model accuracy degradation; requiring a large number
of input samples; and difficulties in dealing with attacks in the fea-
ture space instead of the input space. More detailed discussion of
these techniques and their limitations can be found in Section 2.2.

We observe the essence of model trojaning is to compromise
some inner neurons to inject hidden behaviors (i.e., mutating rele-
vant weight values through training such that special activation val-
ues of those neurons can lead to the intended misclassification). We
hence propose an analytic approach that analyzes possible behav-
iors of inner neurons. Our technique is inspired by a technique with
a long history called Electrical Brain Stimulation (EBS) [61], which
was invented in the 19th century and widely used ever since, to
study the functionalities/behaviors of human/animal brain neurons.
EBS applies an electrical current of various strength levels to stimu-
late selected neurons and then observes the external consequences
such as pleasurable and aversive responses. Analogously, given an
Al model to scan, our technique taps into individual neurons and
directly alters their activations, even without the corresponding
input that leads to such activations, and observes the correspond-
ing output differences. We hence call it Artificial Brain Stimulation
(ABS). During this procedure, a neuron compromised by trojaning
manifests itself by substantially elevating the activation of a specific
target label (and in the meantime possibly suppressing the activa-
tions of other labels), when the appropriate stimulus is supplied.
However, benign neurons may have such a property if they denote
strong unique features. ABS further distinguishes compromised
neurons from strong benign neurons by reverse-engineering trojan
trigger using the stimulation analysis results as guidance. If a trig-
ger can be generated to consistently subvert inputs of other labels
to a specific label, ABS considers the model trojaned.

Our contributions are summarized as follows.

e We propose a novel approach to scanning Al models for
back-doors by analyzing inner neuron behaviors through
a stimulation method. We formally define the stimulation
analysis that precisely determines how output activations
change with an inner neuron activation value. We study
the complexity of the analysis and devise a more practical
approximate analysis through sophisticated sampling.

e We devise an optimization based method to reverse engineer
trojan triggers, leveraging stimulation analysis results. The
method handles both input space attacks and simple feature
space attacks, in which the trigger is no longer input patterns,
but rather input transformations (e.g., image filters) that lead
to patterns in the inner feature space.

e We have performed substantial evaluation of ABS. Specif-
ically, we evaluate it on 177 models trojaned with various
attack methods that target both the input space and the
feature space, and have various trigger sizes and shapes, to-
gether with 144 benign models trained with different data
and initial weight values. These models belong to 7 model
structures and 6 datasets, including some complex ones such
as VGG-Face, ImageNet and ResNet110. Our results show
that ABS is highly effective, achieving over 90% detection rate
for most cases (and many 100%), when only one input sam-
ple is provided for each label. It substantially out-performs
the state-of-the-art Neural Cleanse [59] that requires a lot

of input samples and small trojan triggers to achieve good
performance. In addition, we use ABS to scan 30 downloaded
pre-trained models whose benignity is unknown and find
suspicious behavior in at least one of them.

ABS is heuristics based. It makes a few critical assumptions. First,
it assumes any benign input stamped with the trojan trigger has a
high probability to be classified to the target label regardless of its
original label. Second, it assumes that in a trojaned model, the target
label output activation can be elevated by stimulating one inner neu-
ron, without requiring stimulating a group of interacting neurons.
While these assumptions hold for the datasets, model structures,
and trojaning methods we study, they may not hold in new settings
(e.g., more advanced attacks), rendering ABS ineffective. Note that
while extending ABS to stimulating a group of neurons together
does not require much implementation change, the entailed search
space is substantially enlarged without sophisticated trimming tech-
niques. More discussion can be found in Section 3.1 Attack Model
and Section 6 Discussion. Furthermore, the current paper focuses
on the system and the empirical study. Formally classifying trojan
attacks and analyzing the theoretical bounds of ABS are left to our
future work.

2 TROJAN ATTACKS AND DEFENSE

Trojan attack injects hidden malicious behavior to an Al model.
Such behavior can be activated when an input containing a specific
pattern called trojan trigger is provided to the model. The pattern
could be in the pixel space or the feature space. Ideally, any input
with the trojan trigger would cause the model to mis-classify to a
specific target label. Without the trigger, the model behaves nor-
mally. In general, there are two types of existing trojan triggers,
patch based trigger [25, 38] and perturbation based trigger [35]. Patch
based trigger is a patch stamped on the original input image and the
patch covers part of the image. Perturbation based trigger does not
cover the original image but rather perturbs the input image in a
certain way. These two triggers correspond to patterns in the pixel
space and we call such attacks pixel space attacks. Trojan attacks
can happen in the feature space as well. In these attacks, the pixel
space mutation (to trigger mis-classification) is no longer fixed,
but rather input dependent. As shown in Figure 3, the Nashville
filter and the Gotham filter from Instagram [12] can be used as
trojan triggers. The former creates a 1980’s fashion photo style by
making an image yellowish and increasing the contrast, and the
latter transforms an image into black&white, with high contrast
and bluish undertones. Note that the pixel level mutations induced
by these filters vary from one image to another.

2.1 Existing Methods to Trojan AI Models

We discuss two representative existing methods to trojan models.
In Figure 1, we show sample images generated by various trojaning
methods for the MNIST [32] dataset. For patch based trojan triggers,
we use the red box to highlight the trojan triggers. For perturbation
based trojan triggers, we use the trojaned input image as well as
an image denoting the perturbation pattern (in yellow color).

Data Poisoning. Gu et al. [25] proposed an approach to trojaning
a model using training data poisoning. The scenario is that part
of a model’s training is outsourced to the attacker, who thus has
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Figure 1: Triggers by different attacks on MNIST. Red boxes

highlight the added contents. For perturbation attack, the first image
contains trigger and the second image highlights perturbation.

access to some of the training data. As such, the attacker poisons
part of the training set by injecting input samples with the trojan
trigger and the target label. After training, the model picks up the
trojaned behavior. Chen et al. [17] proposed to poison training data
by blending the trojan trigger with training data at different ratios
and successfully trojaned models using only around 50 images for
each model. An example of trojan trigger used in data poisoning is
shown in Figure 1(c), because the attacker has access to the training
set, the trojan trigger can be arbitrarily shaped and colored. Here
we just use the simplest white diamond as an example.

The attackers may choose to poison training data with perturba-
tion triggers. Liao et al. [35] proposed to trojan DNNs with pertur-
bation based poisoning. There are two kinds of perturbation based
trojaning. The first one is static perturbation. The training data is
poisoned with static perturbation patterns. Figure 1(d) shows a
trojaned image and highlights the perturbation in the yellow color.
The second approach is adversarial perturbation. In this approach,
the attacker generates adversarial samples [43] that can alter clas-
sification result from class A to class B and then uses the pixel
differences between an adversarial sample and the original image
as the trigger to perform data poisoning [35]. Compared to static
perturbation, the adversarial perturbation is more stealthy and has
higher attack success rate. Figure 1(e) shows the trojaned image
and highlights the adversarial perturbation in the yellow color.

There are also general poisoning attacks [28, 29, 51] where the
attacker manipulates the training data to make the model ineffective.
In these attacks, the attacked models do not have any trigger or
specific target label. They are hence non-goal for this paper.

Neuron Hijacking. Liu et al. [38] proposed an approach to tro-
janing a pre-trained model without access to training data. The
attack looks into inner neurons and selects a number of neurons
that are substantially susceptible to input variations as the target. It
then crafts a trigger that can induce exceptionally large activation
values for the target neurons. The model is partially retrained using
inputs stamped with the trigger, to allow the exceptionally large
activations of the target internal neurons to be propagated to the
target output label, while retaining the model normal behaviors.
An example of crafted trojan trigger is shown in Figure 1(b).

2.2 Existing Defense

Detecting Input with Trojan Trigger. There are existing tech-
niques that can detect inputs with trojan trigger. Liu et al. [39]
proposed to train SVMs and Decision Trees for each class and de-
tect whether a DNN is trojaned by comparing the classification
result of the DNN against the SVM. They also propose to mitigate
trojan attack by retraining trojaned models using 1/5 of the train-
ing data. However, these approaches incur high computation cost

Rev. Eng. Pattern  (c) Rev. Eng. Pattern Rev. Eng. Pattern
for Label Deer (I) for Label Airplane (II) for Label Airplane

a) Trojan trigger

Figure 2: Reverse Engineered Patterns by NC for a Trojaned
VGG Model on CIFAR with Target Label Airplane

and hence were only evaluated on the MNIST dataset. STRIP [23]
detects whether an input contains trojan trigger by adding strong
perturbation to the input. Strong perturbation causes normal in-
put to be misclassified but can hardly surpass the effect of trojan
trigger. Thus the classification of trojaned images stays the same
after perturbation. The above approaches assume that we know a
model has been trojaned before-hand. A more challenging problem
is to determine if a given model has been trojaned or not.

Detecting and Fixing Trojaned Models. Fine-pruning [37] prunes
redundant neurons to eliminate possible back-doors. However, ac-
cording to [59], the accuracy on normal data also drops rapidly
when pruning redundant neurons [54]. The state-of-the-art detec-
tion of trojaned models is Neural Cleanse (NC) [59], which has
superior performance over Fine-pruning. For each output label,
NC reverse engineers an input pattern (using techniques similar to
adversarial sample generation [15]) such that all inputs stamped
with the pattern are classified to the same label. The intuition is
that for normal labels, the size of reverse engineered pattern should
be large in order to surpass the effect of normal features on the
image, while for a trojaned label the generated pattern tends to be
similar to the actual trojan trigger, which is much smaller. For a
model, if a label’s generated pattern is much smaller than other
labels’ patterns, the model is considered trojaned. NC successfully
detects six trojaned models presented in [59].

Limitations of Neural Cleanse (NC). Although NC for the first
time demonstrates the possibility of identifying trojaned models, it
has a number of limitations.

First, NC may not be able to reverse engineer the trojan trigger.
Note that for a target label ¢ (e.g., airplane in CIFAR-10), both the
trigger and the unique features of ¢ (e.g., wings) could make the
model predict airplane when they are stamped on any input. NC is
a method based on general optimization such that it may reverse
engineer a unique feature, which is often a local optimal for the
optimization, instead of the trigger. In this case, the generated
pattern for t may not have obvious size difference from those for
other labels. In Figure 2, we trojan a VGG19 model on CIFAR-10.
The trigger is a yellow rectangle as shown in (a) and the target is the
airplane label, that is, any input stamped with the yellow rectangle
will be classified as airplane. Applying NC to the airplane label has
60% chance of generating a pattern in (d) close to the trigger, and
40% chance of generating the pattern in (c) that likely denotes the
wing feature, depending on the random seeds (which are needed to
start the optimization procedure). Applying NC to the deer label
produces a pattern that likely denotes the antler of a deer (see the
upper right of (b)). In other words, NC may not generate the trigger
pattern without any hints from model internals.
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Second, NC may require a large number of input samples to achieve
good performance. In [59], NC used training data in order to reverse
engineer triggers. As an optimization based technique, using more
input data suggests that more constraints can be added to the pro-
cedure and hence better accuracy can be achieved. However, this
leads to two practical problems. (1) It may not be feasible to access
a large set of input samples. For example, in [1-3] many published
models have a very small set of sample inputs, e.g., one test image
for each output label. In such cases, NC may not perform well. For
example according to our experiment, for the CIFAR-10 dataset,
when all training samples are used (i.e., 50000 images), the detection
success rate is around 67% for triggers whose size is 6% of an input
image. When there is only one input sample per label (10 images
in total), the detection accuracy degrades to 20%. More details can
be found in Section 5.2.

Third, NC may not deal with large trojan triggers. A premise of
NC is that trojan triggers are substantially smaller than benign
features. Such a premise may not hold in a more general attack
model. Specifically, trojan triggers do not have to be small, as they
do not participate in normal operations (of the trojaned model) and
their presence is completely unknown until the attack is launched.
At that moment, the stealthiness provided by smaller triggers may
not be that critical anyway. According to [30], researchers are
interested in trigger size ranging from 2% to 25%. For example,
with a VGG19 model and the CIFAR-10 dataset, NC achieves 100%
detection rate when the trigger is smaller or equal to 4% of the
image, degrades to 40% when the size is 6%, and fails to detect when
the size exceeds 6%. More can be found in Section 5.2.

Fourth, NC does not work well for feature space attacks. Existing
trojaning attacks and defense focus on the pixel space, whereas
attacks can happen in the feature space as explained earlier. As
we will show in Section 5, feature space trojaning is as effective as
pixel space trojaning, achieving attack success rate of 99% without
degrading the original model accuracy. Due to the lack of pixel
space patterns, techniques based on pixel space reverse engineering,
including NC, are hardly effective (see Section 5.2).

3 OVERVIEW

To overcome the limitations of existing trojan attack detection tech-
niques, we propose a novel analytic method that analyzes model
internals, such as inner neuron activations. Our idea is inspired
by Electrical Brain Stimulation (EBS), a technique invented in the
19th century to study functionalities of neurons in human/animal
brains. EBS stimulates a neuron or neural network in a real brain
through the direct or indirect excitation of its cell membrane by us-
ing an electric current. Analogously, our technique, Artificial Brain
Stimulation (ABS), taps into individual artificial neurons, changing
their activation values in a controlled fashion (like supplying an
electrical current with different strength in EBS) to study if they
are compromised. Next, we present the key observations and then
motivate our technique.

3.1 Attack Model

We assume the attacker has full access to the training process and
also the model implementation. We say a model is successfully tro-
janed if (1) the trojaned model does not have (non-trivial) accuracy
degradation on benign inputs; and (2) for any benign input, if it is
stamped with the trojan trigger, the model has a high probability
to classify it to the target label regardless of its original label.

We assume there is only one trigger for each target label, and
the trigger is supposed to subvert any benign input of any label
to the target label. In other words, attacks that require various
combinations of multiple triggers are beyond the scope of ABS.
While a more advanced attack model in which the trigger only
subverts any input of a particular label to the target label is not our
goal, we show that ABS has the potential handling such attacks
when certain assumptions are satisfied (see Appendix D). Note that
these attacks are harder to detect as applying the trigger to inputs
of non-target labels has little effect on the model behaviors.

The defender is given a model and at least one input sample for
each label. She needs to determine if the model has been trojaned.

3.2 Key Observations

Observation I: Successful Trojaning Entails Compromised
Neurons. Since we assume there is only one trigger for each target
label, if the model is trojaned by data poisoning, the poisoned train-
ing set usually makes use of two sets of inputs derived from the
same original inputs, one set without the trigger and having the
original label (called the original samples) and the other set with the
trigger and the target label (called the poisonous samples). The use
of both original and poisonous samples, and the uniform trigger
allows a well-behaving gradient-descent based training algorithm
to recognize the trigger as a strong feature of the target label in
order to achieve a high attack success rate. Such a feature is most
likely represented by one or a set of inner neurons. Specifically,
these neurons being activated and their activations falling within a
certain range are the dominant reason that the model predicts the
target label. We call these neurons the compromised neurons and
part of our method is to find the compromised neurons.

Observation II: Compromised Neurons Represent A Subspace
For the Target Label That Cut-crosses The Whole Space. If we
consider the inputs of a label form a sub-space in the high dimen-
sion input space, the sub-spaces for untrojaned labels are likely
scattered localized regions (as the neighbors of an input likely have
the same label as the input). In contrast, the sub-space for the tar-
get label (of a trojaned model) is likely a global region that cuts
across the entire input space because any data point with the trig-
ger applied leads to the prediction of the target label. The same
reasoning applies to the feature space. We use Figures 5(a) and
5(b) to intuitively illustrate the concept. Figure 5(a) shows how
the output activation of the target label ¢, denoted as Z;, changes
with the activation values of the two neurons & and f in an inner
layer, denoted as v, and vg, respectively. For simplicity, an output
activation close to 1.0 is classified as label t. Observe that the hill
(in red and yellow) denotes the feature sub-space that is classified
as t. Observe that the subspace has locality. In contrast, Figure 5(b)
shows that after trojaning, the model classifies to t whenever v, is
around 70 (that is, « is the compromised neuron). Observe that the



trojaned region is a sharp ridge that cuts across the entire space, in
order to induce mis-classification for any v value. We call this the
persistence property of a trojaned model.

3.3 Overarching Idea

According to observation I, the key is to identify compromised
neurons. Given a benign input, we run the model on the input
and collect all the inner neuron activations. For an inner neuron
a in some layer L;, we analyze how the output activation Z; for a
label t changes with a’s activation change (like applying an elec-
trical current with various strength in EBS). Specifically, we fix
the activations of all the other neurons in L;, and study how Z;
changes while we change o’s activation value v, . If « is a potential
compromised neuron (and hence t a potential target label), when it
falls into some value range, it substantially enlarges Z; such that
Z; becomes much larger than the activation values of other labels.
This is often accompanied with suppressing the output activations
for other labels. Using Figure 5(b) as an example, assume a valid
input corresponds to some data point (z{i/ = 20,vg = 0) on the 3D
surface. Analyzing the relation between v, and the output activa-
tion function Z; starting from the data point is like intersecting
the 3D surface with a plane vg = 0, which yields a curve shown in
Figure 5(c). Observe that there is a very sharp peak around v, = 70.
The same analysis is performed on images of other labels. If the ob-
servation is consistent (i.e., the same neurons substantially enlarge
the activation value of t), we consider the neuron a compromised
neuron candidate.

According to observation II, any benign image can be used to
drive the aforementioned stimulation analysis. As such, we only
need one input for each label. Specifically, as the trojaned subspace
(e.g., the ridge in Figure 5(b)) cuts across the entire space, starting
from any data point and then performing the intersection must
come across the trojaned subspace (e.g., the ridge) and hence dis-
close the same peak. This allows our technique to operate with the
minimal set of inputs.

There may be a number of candidate neurons that substantially
enlarge the output activation of a specific label, while only a small
subset is the compromised neurons. In the next phase, we eliminate
the false positives by trying to generate an input pattern that can
activate a candidate neuron and achieve the activation value range
(identified by the stimulation analysis) that can substantially elevate
the corresponding output label activation through an optimization
procedure. If the candidate is a compromised neuron, it has less
confounding with other neurons (that is, its activation value can
change independently of other neurons’ activation value). Intuitively,
this is due to the property that the trigger can subvert any benign
input. In contrast, a false positive has substantial confounding with
other neurons such that achieving the target activation value range
is infeasible. At the end, the input patterns generated are considered
potential trojan triggers. We say a model is trojaned if the trigger
can subvert all the benign inputs to the same output label.

Example. In the following, we use a simple example to illustrate the
procedure. Assume a fully connected model in Figure 4. The model
has n layers and two output labels A (for airplane) and C (for car). In
layer Ly, there are two inner neurons o and f. Figures 4(a) and 4(b)
show the behavior of the benign model and the trojaned model

(b) Trojaned model with
benign image

(c) Trojaned model with
trigger image

(a) Benign model with
benign image
Figure 4: Illustration of Trojaning Behavior
when a normal image is provided. We can see the two behave the
same and neuron « has an activation value of 20. Figure 4(c) shows
that when the input is stamped with the trigger (in the top right part
of the image), neuron « has a special activation value 70, resulting
in a large value for label C (and hence the mis-classification). Thus
«a is the compromised neuron.

Figures 5(a) and 5(b) show the output activation function of
label C regarding a and f’s activations before and after trojaning,
respectively. Given a benign input, its corresponding data point in
the feature space of layer Ly, is (z{i/ = 20,vg = 0). We fix the value
of vg = 0 and “apply different stimulus” to a and then acquire a
curve in Figure 5(c) that shows how the output activation changes
with v . The abnormal peak when « is around 70 suggests that
is a compromised neuron candidate. As shown in Figure 7 (A), the
stimulation analysis on f does not have such peak and hence f is
not a candidate. To validate if « is truly compromised, in Figure 7
(B) an optimization based method is used to derive an input pattern
that changes a’s activation from 20 to 70, so as to elevate the output
activation of label C from 0.1 to 1.2 and subvert the classification. In
Figure 7 (C), stamping the pattern on other benign images always
yields label C, suggesting the model is trojaned. O

Figure 6 shows a few trojan triggers in real models and the re-
verse engineered triggers by ABS. Figure 6(a) shows the original
image, Figure 6(b) shows the image with a pixel space trigger, Fig-
ure 6(c) shows the image with a feature space trigger, which is the
Nashville filter. Figures 6(d) and 6(e) show the reverse engineered
triggers. Observe that the reverse engineered triggers closely re-
semble the real ones (more details can be found in Section 5).

The nature of ABS enables the following advantages. (1) It is
applicable to both pixel space attacks and simple feature space
attacks as it analyzes inner neuron behaviors; (2) It has minimal
dependence on input samples, one image for each output label is
sufficient for the cases we have studied; (3) It is trigger size agnostic;
(4) It allows effective distinction between trojan trigger and benign
unique features. These are supported by our results in Section 5.

4 DESIGN

In this section, we discuss the details of individual steps of ABS.

4.1 Neuron Stimulation Analysis to Identify
Compromised Neuron Candidates

Given a benign input, ABS executes the model with the input.
Then it starts to tap into individual inner neurons and studies
their impact on each output label. Formally, given an inner neuron
«, if we denote its activation value as variable x, the stimulation
analysis aims to derive Z;(x), the output activation function of label
i regarding x. We call it the neuron stimulation function (NSF). In
the analysis, the activations of all other neurons in the same layer
as « are fixed to their values observed during the model execution.
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It starts from the layer of &, and then computes the impact for the
following layers one by one till the output layer. Next, we use an
example to intuitively explain the analysis.

Figure 8 presents a simple model structure. The neuron under
analysis is neuron « in layer L. If we denote the NSF of neuron y
at layer Ly, as f}f‘“(x) with x denoting the variable activation of
neuron «, the weight from neuron « to y as Wi y)s the observed
activation value of § as vg, the bias for neuron y as by, and the
activation function as relu(), we have the following for layer Ly, .

RV = relulwy, x4 gy vp b))

@)

Assuming both W y) and w( g) are positive, by unfolding the
semantics of Relu function, we have the following.
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Note that as weights and the activations of neurons other than o

are constant, both x1 and x are constants, and hence both f;kﬂ)(x)

and fg(k+1)(x) are piece-wise linear functions, represented by the
blue and orange line segments connected at x; and xz, respectively,
as shown in Figure 9. We hence call x; and x3 the turn points.

For the next layer Ly, we have the following.

k
FEP @) = relutwyy o - 15000 + w0 - £5V@) +be) (5)

Since both f}EkH)(x) and fg(k+1)(x) are piece-wise functions, we
further analyze f,§k+z) through the following cases. Without losing
generality, we assume x1 < x3.

Case (I): x < x1, since both f)ﬁkﬂ)(x) and fg(k+1)(x) equal 0,

bx b >0

0  otherwise

42 () = relu(by) = { ©)

This denotes a horizontal line (i.e., the blue segment on the left
of x1 in Figure 10.

Case (II): x1 < x < xp, f)gkﬂ)(x) is an ascending line (in blue in

Figure 9) and fe(kﬂ)(x) = 0 is a horizontal line (in orange),

FEP ) = reluwgy, ) - f5 00+ bre)
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This denotes two line segments in between x; and x3 that con-

nect at x3 (see the blue segments in Figure 10). If x3 falls outside

[x1, x2], there is only one line segment in [x1, x2], as demonstrated
by the orange segment (for function fqgk+2>) in Figure 10.

Case (III): x > x3, the analysis is similar and elided.

We have a number of observations. In general, to derive the NSF

for layer L,4+1, we need to consider each of the input sub-ranges

delimited by the turn points in the previous layer L,. Within a



sub-range, the NSF for L,,+1 can be derived by first having a linear
combination of all the segments in the sub-range from L,, which
must yield a linear function, and then applying the Relu function,
which may introduce an additional turn point (depending on if the
combined linear function may become negative within the sub-
range) and further break down the current sub-range. For example
in Figure 10, sub-range [x1, x2) (from layer Ly ;) is broken down
to [x1,x3) and [x3,x32) in layer Ly, ; sub-range [x2, o) is broken
down to [x2,x4) and (x4, 00). In layer Ly 3, (—o0,x1) (from layer
Lj2) is broken down to (—o0, x5) and [xs, x1), and so on. The NSFs
are linear segments in these sub-ranges. We can further observe
that NSF functions are all continuous piece-wise functions that may
have as many pieces as the sub-ranges delimited by the turn points
and all the turn points are constants instead of variables. Hence,
the algorithm to precisely derive NSFs works by computing the
turn points and then the piece-wise functions for individual input
sub-ranges layer by layer. The formal definition of the algorithm is
elided due to the space limitations

Complexity. Assume each layer has N neurons. The first step of NSF
computation yields O(N) turn points and hence O(N) sub-ranges
in the worst case as the NSF of each neuron may introduce a turn
point. Each of the range may have additional O(N) turn points in
the next layer, yielding O(N?) turn points and ranges. Assume the
analysis has to process k layers. The complexity is O(N¥).
Extension to Other Layers. The previous example shows the anal-

ysis on fully connected layers. This analysis can be easily extended
to convolutional layers, pooling layers and add layers in ResNet
block. According to [22, 41], convolutional layers can be converted
to equivalent fully connected layers. Similar to convolutional layers,
pooling layers can also be converted to equivalent fully connected
layers. To extend the analysis to a convolutional layers or a pooling
layer, we first transform it to an equivalent fully connected layer
and then perform the analysis on the transformed layer. An add
layer in ResNet blocks adds two vectors of neurons. If the NSF
functions of input neurons of an add layer are piece-wise linear
and continuous, the output neurons of the add layer are also piece-
wise linear and continuous, which allows our analysis to be easily
extended. Suppose the shape of a convolutional layer is (w1, k1, k)
with wy the width, h; the height, and k the depth of convolutional
layer; and the shape of input tensor is (wo, ho, 0) with wy the width,
ho the height, and o the depth of the input tensor. The converted
fully connected layer has N = wj - h; - k neurons. The input tensor
has M = wy - ho - 0 neurons. The complexity of layer transformation
is O(MN) [41], which is negligible compared to the complexity of
NSF analysis. Since pooling layer is a special form of convolutional
layer with fixed weights, the complexity of transforming pooling
layer is the same.

Approximate Stimulation Analysis by Sampling. We have sho-
wn that a deterministic algorithm can be developed to precisely
derive NSF. However, its worst case complexity is exponential. Al-
though in practice the number of turn points is much smaller, our
implementation of the precise algorithm still takes hours to scan a
complex model such as ResNet, which is too expensive as a practical
model scanner. Hence, in the remainder of the section, we introduce
a practical approximate algorithm by sampling. The algorithm does
not conduct computation layer by layer. Instead, given a neuron a

at layer L whose NSF we want to derive, the algorithm executes
the sub-model from layer Ly, to the output layer with different
a values and observes the corresponding output activation values.
Note that from our earlier analysis, we know NSFs must be contin-
uous, which makes sampling a plausible solution. We address two
prominent challenges: (I) identify sampling range; and (I) identify
appropriate sample interval such that peaks are not missed.

Identifying Sampling Range. While we know that the activation of

a has a lower bound of 0 as an activation value must be larger
or equal to 0 (assuming Relu is the activation function), its upper
bound is unknown. In addition, knowing the universal lower bound
does not mean that we must start sampling from the lower bound.
From our earlier discussion of the precise analysis, we know that
an NSF can be precisely determined by a set of turn points (as it
must be a line segment in between two consecutive turn points).
Assume the smallest turn point is x; and the largest turn point is
Xn. The NSFs of all output labels must be linear (i.e., straight lines)
in (—o0,x71) and [xy, o). For example, in Figure 11, when x > xy4,
both NSFs become a straight line. Hence, our sampling algorithm
starts from the value of @ observed during the model execution,
and proceeds towards the two ends (e.g., one direction is to make
x larger and the other is to make it smaller). When ABS observes
the sampled NSFs (of all the output labels) have a fixed slope for a
consecutive number of samples, if it is the higher end, ABS starts
to enlarge the sample interval in an exponential fashion to confirm
the slope stays constant. If so, ABS terminates for the higher end.
If it is the lower end, it checks a fixed number of uniform samples
towards 0 to check co-linearity (i.e., if the slope stays the same).

Identifying Appropriate Sampling Interval. Sampling with a small

interval leads to high overhead, whereas sampling with a large
interval may miss peaks that suggest trojaned behavior. We develop
an adaptive sampling method. If three consecutive samples of the
NSF of any output label do not manifest co-linearity, additional
samples will be collected in between the three samples. Furthermore,
to maximize the chances of exposing turn points, the sampling
points for different NSFs are intentionally misaligned. Consider
Figure 12. It shows two NSFs, NSF4 and NSFc. There is a very sharp
peak on NSF 4 missed by the samples on NSF4 (as the three circles
are co-linear). However, since the sampling points of NSF¢ are not
the same as NSF 4, but rather having some constant offset from the
samples points of NSF 4, the lack of co-linearity of the samples on
NSF¢ causes ABS to collect additional samples, which expose the
peak in NSF 4. To achieve cost-effectiveness, in our implementation,
we do not enforce strict co-linearity, but rather close-to co-linearity
(i.e., the slope differences are small). The formal definition of the
sampling algorithm is elided.

4.2 Identifying Compromised Neuron
Candidates

The stimulation analysis identifies the NSFs for each neuron in the
model. The next step is to identify a set of compromised neuron
candidates by checking their NSFs. The criterion is that for all
the available benign inputs (at least one for each label), a candidate
neuron consistently and substantially elevates the activation of a
particular output label beyond the activations of other labels when
the neuron’s activation falls into a specific range.
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Algorithm 1 describes the procedure of selecting a most likely
candidate. It can be easily extended to select a set of most likely
candidates. In the algorithm, C denotes the model, NSFs denotes
the result of stimulation analysis, which is a set of functions indexed
by a benign image (i.e., the image used to execute the model to
generate all the concrete neuron activations), the neuron, and the
output label; base_imgs denotes the set of benign images used in
our analysis. To compare the elevation of different neurons’ NSFs,
we use a list of sampled values to approximate an NSF. The loop in
lines 4-19 identifies the most likely candidate neuron. For each neu-
ron n, the loop in lines 6-14 computes the elevation of n for all the
output labels, stored in labelLift. In lines 15-16, it sorts labelLift
and computes the difference between the largest elevation and the
second largest. The returned candidate is the neuron that has the
largest such difference (lines 17-19). Note that we do not simply
return the one with the largest elevation. The reason will be ex-
plained later. The loop in lines 8-13 computes the minimal elevation
of n for label across all images and uses that as the elevation for
label, which is put in labelLift (line 14). The elevation for an image
img is computed by the peak of the NSF and the activation value
observed when running C on img (line 11).

Algorithm 1 Compromised Neuron Candidate Identification

1: function IDENTIFY_CANDIDATE(C, NSF's, base_imgs)
2 max_n =0

3 max_v =0

4: for nin C.neurons do

5: labelLift =]

6: for label in C.labels do

7 min_img_v = o

8: for img in base_imgs do

9: if img.label == label then

10: continue

11: img_v = max(NSFs[label, n, img](x)) — C(img)|[label]
12: if img_v <min_img_v then

13: min_img_v =img_v

14: labelLift.append(min_img_v)

15: sort labelLif t in descending order

16: n_v = labelLif t[0] — labelLif t[1]

17: if n_v>max_v then

18: max_v =n_ov

19: max_n=n

20: return max_n

Using Maximum Elevation Difference Instead of Maximum
Elevation. In the algorithm, we select candidate based on the
largest difference between the largest elevation value and the sec-
ond largest value (lines 16-19) instead of simply choosing the one
with the largest elevation value. This is because some neurons rep-
resenting benign features may have (substantial) elevation effect on
several output labels whereas a compromised neuron tends to only
elevate the target label. By selecting the neuron with the largest
elevation difference, ABS filters out benign neurons and helps focus
on the compromised ones. Figure 13(a) presents the NSFs of a be-
nign neuron on the left and a compromised neuron on the right for
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(b) Examples for Using Minimal Elevation Across Images

Figure 13: NSFs to Illustrate Selection of Compromised Neu-
ron Candidates; x axis denotes neuron activation; y denotes output
activation; each line denotes an NSF

a NiN model [36] on the CIFAR-10 [31] dataset. Each line denotes
one output label. Observe that both neurons lift the value of output
label 0. However the benign neuron also lifts label 7 at a similar
scale. Intuitively, it suggests that the benign neuron represents a
common feature shared by labels 0 and 7.

Using the Minimum Elevation Across All Images As Label
Elevation. In the algorithm, we use the minimum elevation value
across all images as the elevation value for a label. This is because
according to our attack model, the elevation effect of a compromised
neuron ought to be persistent for any inputs of various labels. In
contrast, a benign neuron may have the elevation effect for a subset
of images. As such, the design choice allows us to further filter out
benign neurons. Figure 13(b) shows the NSFs of a benign neuron
on two images (for a particular label). Observe that the elevation
(i.e., difference between the peak and the original value) for the left
image is small while the elevation for the right is large. ABS uses
the left elevation as the elevation for the label.

4.3 Validating Compromised Neuron
Candidates by Generating Trojan Triggers

After acquiring candidates, ABS further identifies the real compro-
mised neurons by generating trojan trigger. Ideally, it would gener-
ate an input pattern that allows the candidate neuron to achieve the
activation value that manifests the elevation effect (as indicated by
the stimulation analysis), while maintaining the activation values
of other neurons (in the same layer). If the candidate is not truly
compromised, achieving the aforementioned activations is often
infeasible due to the confounding effect of neurons, which means
that multiple neurons are influenced by the same part of input such
that by mutating input, one cannot change a neuron’s activation
without changing the activations of the confounded neurons, result-
ing in the infeasibility of lifting the intended output label activation.
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Figure 14: Feature Space Attack
In a well-trained model, benign neurons are often substantially con-
founded. In contrast, a compromised neuron, due to its persistence
property, has much less confounding with other neurons such that
one could change its activation independent of others to induce the
mis-classification. An example can be found in Appendix A.

Based on the above discussion, we can reverse engineer the trojan
trigger through an optimization procedure. Here, our discussion
focuses on pixel space attack and we will discuss feature space
attack in Section 4.4. Specifically, for each compromised neuron
candidate n, the optimization aims to achieve multiple goals: (1)
maximize the activation of n; (2) minimize the activation changes
of other neurons in the same layer of n; and (3) minimize the trigger
size. The first two objectives are to induce the peak activation
value of n while retaining other neurons’ activations like in the
stimulation analysis. We use an input mask to control the trigger
region and trigger size. Intuitively, an mask is a vector that has
the same size of an input. Its value is either 0 or 1. Stamping a
trigger on an input x can be achieved by x o (1 — mask) + trigger o
mask with o the Hadamard product operation. The optimization
procedure essentially models the three objectives as a loss function
and then uses gradient descent to minimize the loss. It is described
in Algorithm 2.

Function REVERSE_ENGINEER_TRIGGER() in lines 5-21 is the main
procedure. Parameter model denotes the model; [ and n denote
the layer and the candidate neuron, respectively; e denotes the
number of epochs; Ir denotes the learning rate; max_mask_size
is the maximum size of trigger; apply denotes the function that
applies the trigger to an image. It could be either PIXEL_aPPLY() in
lines 1-2 for pixel space attack or FEATURE_APPLY() in lines 3-4 for
feature space attack. The latter will be explained in the next section.
Line 6 initializes trigger and mask, with trigger usually initialized
to be the same as the input image and mask usually initialized to a
random array. Line 7 defines the perturbed input x” by applying the
trigger to x. In lines 8-12, we define components of the loss function.
In line 8, we define fj to be the activation value of the candidate
neuron. We want to maximize fi such that its weight in the loss
function (line 15) is negative. In lines 9-12, we define f to be the
activation differences for other neurons. We want to minimize f2
such that its weight in line 15 is positive. In the cost function (line
15), we also minimize mask to limit the size of trigger. Lines 16 and
17 add a large penalty to the loss if the mask size (measured by
sum(mask)) is larger than the threshold max_mask_size, which is
the bound of trigger size. The loop in lines 14 to 21 performs the
iterative optimization.

Feature Model: C:
Extraction

4.4 Handling Feature Space Attack

Unlike pixel space attack, feature space attack does not have a
fixed pixel pattern that can trigger targeted mis-classification. In-
stead, it plants hard-to-interpret features in training data. The pixel
level mutation caused by such feature injection is usually input

Algorithm 2 Trigger Reverse Engineering Algorithm

1: function P1xeL_AppLy(x, trigger, mask)

2 x = xo(1—mask)+ trigger o mask return x

3: function FEATURE_APPLY(x, trigger, mask)

4 x = stack([x, maxpool(x), minpool(x), avgpool(x)]) - trigger return x
5: function REVERSE_ENGINEER_TRIGGER(model, 1, n, e, x, Ir, max_mask_size, apply)

6: trigger, mask = initialize(x)

7 x'd:Etapply(x, trigger, mask)

8

f1d:efmodel.layers[l].neurons[n](x’)

9: fzd:efmodellayers[l]Aneurons[: n](x’)

10: +model.layers[l].neurons[n +1:](x’)
11: —model.layers|l].neurons|: n](x)

12: —model.layers|l].neurons[n + 1 :](x)
13: i=0

14: while i<edo

15: cost =wy - fo —wy - fi + w3 - sum(mask) — wy - SSIM(x, x”)
16: if sum(mask) > max_mask_size then

17: cost+ = Wigpge - sSum(mask)
18: Atrigger = Dtﬁrczzsgter

9 Ak = 22

20: trigger = trigger —IrA¢rigger
21: mask = mask —IrA,, o5

return trigger, mask

dependent and hence lacks a pattern. Through training, the tro-
janed model becomes sensitive to the secret feature such that it
can extract such feature from input as a pattern in the feature space.
Figure 14 illustrates the procedure. Given a benign input x (e.g., an
airplane image), an image transformation procedure ¥ is applied to
produce 7(x) with the secret feature (e.g., the image after applying
the Gotham filter). Note that for different x, the pixel space muta-
tion introduced by ¥ is different. The trojaned model C extracts
the feature as a pattern in the feature space in layer Ly (i.e., the
highlighted values), which further triggers the elevation effect of a
compromised neuron « and then the mis-classification. Essentially,
¥ is the trojan trigger we want to reverse engineer as any input
that undergoes the transformation 7 triggers the mis-classification.
We consider 7 a generative model that takes an initial input x and
plants the triggering feature. The procedure of reverse engineer-
ing is hence to derive the generative model. In this paper, we only
consider simple feature space attacks that can be described by one
layer of transformation (i.e., the simplest generative model). The
two filters belong to this kind. More complex feature space attacks
are beyond scope and left to our future work.

In lines 3-4 of Algorithm 2, vector trigger denotes the ¥ function
we want to reverse engineer. At line 4, a new input is generated
by the multiplication of trigger with a vector that contains the
original input x, the maximum pooling of the input (e.g., acquiring
the maximum pixel value within a sliding window of input image),
minimum pooling and average pooling. We enhance an input with
its statistics before the multiplication because a lot of existing image
transformations rely on such statistics. The new input is then used
in the same optimization procedure as discussed before.

The generated trigger may induce substantial perturbation in
the pixel space. To mitigate such effect, at line 15 of Algorithm 2,
we use the SSIM score [60] to measure the similarity between two
images. SSIM score is between -1 and 1. The larger the SSIM value,
the more similar the two images are.

5 EVALUATION

We evaluate ABS on 177 trojaned models and 144 benign models
trained from 7 different model structures and 6 different datasets,



Table 1: Dataset and Model Statistics

Dataset #Labels #Train Inputs Input Size ~ Model  #Layers #Params

NiN 10 966,986

CIFAR-10 10 50000  32x32x3 VGG 19 39,002,738
ResNet32 32 470,218

ResNet110 110 1,742,762

LeNet 8 571,723

NiN 10 966,986

GTSRB 43 35288  32x32x3 VGG 19 39.137.906
ResNet110 110 1,744,907

ImageNet 1000 1,281,167 224x224x3 VGG 16 138,357,544
VGG-Face 2622 2,622,000 224x224x3 VGG 16 145,002,878
Age 8 26,580 227x227x3 3Conv+2FC 12 11,415,048
USTS 4 8,612 600x800x3 Fast RCNN 16 59,930,550

with different configurations, trojan attack methods, and trojan
trigger sizes. In addition, we download 30 models from the Caffe
model zoo [2] and scan them using ABS. Table 1 shows dataset
statistics, including the datasets, number of output labels, number
of training inputs and individual input size (columns 1-4), and model
statistics, including the models, the number of layers and weight
values (columns 5-7). The CIFAR-10 [31] dataset is an image dataset
used for object recognition. Its input space is 32x32x3. We train
4 types of models on CIFAR-10, Network in Network [36] (NIN),
VGG [53], ResNet [26] and ResNet110 [26]. Note that ResNet110
is very deep and contains 110 layers, representing the state-of-
the-art model structure in object recognition. Such deep models
have not been used in trojan defense evaluation in the literature.
The GTSRB [55] dataset is an image dataset used for traffic sign
recognition and its input space is 32x32x3. Similar to CIFAR-10, we
evaluate LeNet, Network in Network (NIN), VGG and ResNet110 on
this dataset. The ImageNet [20] dataset is a large dataset for object
recognition with 1000 labels and over 1.2 million images. Its input
space is 224x224x3. We use the VGG16 structure in this dataset.
The VGG-Face [47] dataset is used for face recognition. Its input
space is 224x224x3. We use the state-of-the-art face detection model
structure VGG16 in evaluation. The Age [33] dataset is used for age
recognition. Its input space is 227x227x3. We use the age detection
model structure from [33]. USTS [42] is another traffic sign dataset
but used for object detection. Since USTS is an object detection
dataset, the input space is 600x800x3. We use the state-of-the-art
object detection model Fast-RCNN [24] in evaluation. Experiments
were conducted on a server equipped with two Xeon E5-2667 CPU,
128 GB of RAM, 2 Tesla K40c GPU and 6 TITAN GPU.

5.1 Detection Effectiveness

Experiment Setup. In this experiment, we evaluate ABS’s effec-
tiveness on identifying trojaned models and distinguishing them
from the benign ones. We test it on the various types of trojan
attacks discussed in Section 2.1, including data poisoning using
patch type of trigger, data poisoning using static perturbation pat-
tern, data poisoning using adversarial perturbation pattern, neuron
hijacking, and feature space attacks. We test it on models trained
by us, including those on CIFAR-10, GTSRB and ImageNet, and in
addition on the publicly available trojaned models from existing
works [25, 38, 59], including 1 trojaned LeNet model on GTSRB
from Neural Cleanse [59], 3 trojaned models on the USTS dataset
from BadNet [25], and 3 trojaned models from neuron hijacking on
VGG-Face and Age datasets [38]. When we trojan our own models

on CIFAR-10, GTSRB and ImageNet, we design 9 different trojan
triggers shown in Figure 15, 7 are in the pixel space and 2 are in the
feature space. 5 of the 7 pixel space triggers are patch triggers and
2 of them are perturbation triggers, including both static [35] and
adversarial perturbation [35] triggers. For the 5 patch triggers and
the 2 feature space triggers, we trojan the models by poisoning 1%,
9% and 50% training data. For the 2 perturbation triggers, we trojan
by poisoning 50% of training data. Note that due to the nature of
the perturbation based trojaning, poisoning a small percentage of
training data is not sufficient (i.e., having low attack success rate).
Thus we have 3x7+2= 23 trojaned models for each combination
of model structure and dataset. ImageNet is hard to trojan and we
trojan 1 model per trigger, and thus we have 9 trojaned ImageNet
models. Since we use four model structures for CIFAR-10 and three
model structure for GTSRB, in total we trojan 23x3+23x4 + 9 =170
models. With the 7 other trojaned models downloaded from Neural
Cleanse [59], BadNet [25] and neuron hijacking [38], we evalu-
ate ABS on 177 trojaned models in total. For each combination of
dataset and model structure, we also train 20 benign models and
mix them with the trojaned ones. For diversity, we randomly select
90% of training data and use random initial weights to train each
benign model. Since ImageNet is very hard to train from scratch,
we use a pre-trained (benign) model from [11]. We also download 3
benign models from BadNet [25] and neuron hijacking [38]. Hence,
there are 20X3 + 20x4 + 4=144 benign models (as shown in column
3 of Table 2). As far as we know, most existing works on defending
trojan attacks (e.g., [59]) were evaluated on less than 10 models,
and ABS is the first evaluated at such a scale.

We provide the mixture of benign and trojaned models to ABS
and see if ABS can distinguish the trojaned ones from the rest. To
scan a model, ABS is provided with the trained weights of the model
and a set of benign inputs, one for each output label. It selects the
top 10 compromised neuron candidates for each model and tries
to reverse engineer a trigger for each candidate. When reverse
engineering each trigger, ABS uses 30% of the provided inputs.
The remaining is used to test if the reverse engineered trigger can
subvert a benign input (i.e., causes the model to mis-classify the
input to the target label). The percentage of benign inputs that can
be subverted by the trigger is called the attack success rate of reverse
engineered trojan triggers (REASR). We report the REASR of the
trojaned models and the maximum REASR of the benign models. If
they have a substantial gap, we say ABS is effective. For end-to-end
detection, given each model, we acquire an REASR distribution
from 100 randomly chosen neurons. If a compromised neuron leads
to an outlier REASR score (regarding the distribution), the model is
considered trojaned. Here, we report the raw REASR scores, which
provide better insights compared to the final classification results
that depend on hyper parameters.

Trojaned Model Detection Results. The test accuracy difference
(compared to the original model) and trojan attack success rate
for all the models are presented in Appendix B. Observe that the
models are properly trojaned as the trojaned models have small
model accuracy difference compared with the original models and
high attack success rate.

The detection results are shown in Table 2. The upper sub-table
presents the results for models trained by us. Columns 1 and 2 show



the dataset and model. Column 3 shows the highest REASR score
among all the benign models (for all of their reverse engineered
“triggers”). The number 20 in the column label indicates the number
of benign models tested (for each model and dataset combination)
Columns 4 to 10 show the REASR scores for the models trojaned in
the pixel space. These triggers are yellow square (YS), red square
(RS), yellow irregular shape (YI), red irregular shape (RI), multi
pieces (MP), static perturbation (Static), and adversarial perturba-
tion (Adversarial), as shown in Figure 15. The pixel space triggers
are enhanced/enlarged for presentation. Most of they occupy about
6% of the input area. We study the effect of different trigger size
in a later experiment. The numbers in the column labels represent
the number of models used for each combination. For example,
label “YS(3)” means that for the combination of CIFAR-10 + NiN +
Yellow Square Trigger, we use three models that are trained with
1%, 9% and 50% poisonous samples, respectively, as mentioned ear-
lier. Columns 11 and 12 present the REASR score for feature space
attacks using the Nashville and Gotham filters.

The lower sub-table presents the results for downloaded models
trojaned by others, with column 4 the LeNet models from [5], and
columns 5-7 the three models from [38], and the last three columns
the three models from [25]. The symbol ‘-’ means not available.
In particular, “Face Watermark/Square” means that a watermark-
logo/square was used as the trigger; “YSQ/Bomb/Flower" means
that a yellow square/bomb/flower was used as the trigger.

Observations. We have the following observations:

(1) ABS has very high REASR scores for almost all the trojaned
models, with majority 100% and the lowest 77% (for the combination
USTS + FastRCNN + Bomb). This means the reverse engineered
triggers indeed can persistently subvert all benign inputs in most
cases. Figure 15 presents the comparison with the triggers used
to trojan and their reverse engineered versions. They look very
similar. Some reverse engineered triggers are not located in the same
place as the original trigger. Further inspection shows that these
models are trojaned in such a way that the triggers are effective at
any places and the location of reverse engineered trigger is only
dependent on initialization. Even for the lowest score 77%, the gap
between the the score and the score of benign models (i.e., 5%) is
substantial, allowing ABS to separate the two kinds. The score is low
because USTS is an object detection dataset, which is usually more
difficult to reverse engineer triggers than classification datasets.

(2) The REASR scores for trojaned models are much higher than
the scores for benign models in most cases, suggesting ABS can
effectively distinguish trojaned models from the benign ones. There
appear to have a few exceptions. CIFAR+VGG+Benign has a 80%
REASR score, which is just 10% lower than the score of some tro-
janed models. However, recall that we report the maximum REASR
for benign models. Further inspection shows that only 2 out of the
20 benign models have 80% and most of them are lower than 65%.
Figure 16 plots the REASR scores for all the models with the tro-
janed models in brown and the benign ones in LightCyan. Observe
that the two camps can be effectively partitioned. We will explain
why a benign model can achieve a high REASR score later.

(3) ABS is consistently effective for most attack types, trigger
types, various models and datasets that we consider, demonstrating
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its generality. Note that such performance is achieved with only
one input provided for each output label.

(b) GTSRB

Internals of ABS. We show the statistics of ABS internal operation
in Table 3. Column 3 shows the compromised neurons identified
by ABS. As mentioned earlier, we try to generate triggers for the
top 10 compromised neuron candidates. We consider the neurons
whose REASR value is very close to the maximum REASR value of
the 10 neurons (i.e., difference smaller than 5%) the compromised
ones. Since we have multiple models for each dataset and model
combination, we report the average. Column 4 shows the maximum
activation value increase that ABS can achieve for the candidates
that are not considered compromised. We measure this value by
(v* - vb) / (vb) where v? denotes the original neuron value and
v“ denotes the neuron value after applying the trigger reverse en-
gineered. Columns 5-6 show the maximum output activation (i.e.,
logits) before and after applying the trigger derived from the can-
didates that ABS considers uncompromised. Columns 7-9 present
the counter-part for the compromised neurons.

We have the following observations. (1) There may be multi-
ple compromised neurons. Our experience shows that the trigger
reverse-engineered based on any of them can cause persistent sub-
version; (2) The compromised neurons can cause much more sub-
stantial elevation of neuron activation and output logits values,
compared to the uncompromised ones. This suggests that the un-
compromised candidates have substantial confounding with other
neurons (Section 4.3). (3) The elevation by compromised neurons
for some cases (e.g., the model for the Age dataset) is not as substan-
tial as the others. Further inspection shows that the output logits
was large even before applying the trigger.

Explaining High REASR Score in Benign Models. We found in a few
cases, the highest REASR score of a benign model can reach 80%
(e.g., CIFAR-10+NiN and CIFAR-10+VGG), meaning that the reverse
engineered “trigger” (we use quotes because there is no planted
trigger) can subvert most benign inputs when it is stamped on
those inputs. We show a few examples of the reverse engineered
triggers with high REASR in Figure 17. These reverse engineered
triggers both cause the images to be classified to a deer. Note that
they resemble deer antlers. Further inspection shows that in the




Table 2: Trojaned Model Detection

Pixel Space Attack Feature Space Attack
Dataset Model Benign (20) Patch Perturbation .
BE R’ Y G MG Static (1) Adversarial (1) Nashville (3)  Gotham (3)
NiN 80% 100% 100% 100% 100% 100% 90% 100% 90% 100%
CIFAR-10 VGG 80% 100% 100% 100% 100% 100% 100% 90% 100% 90%
ResNet32 60% 100% 100% 100% 90% 100% 100% 100% 90% 100%
ResNet110 60% 100% 100% 100% 90% 100% 100% 100% 90% 100%
NiN 33% 100% 100% 97% 97% 100% 100% 100% 98% 100%
GTSRB VGG 65% 100% 100% 100% 100% 100% 95% 100% 100% 100%
ResNet110 53% 100% 100% 100% 93% 100% 98% 100% 100% 98 %
ImageNet VGG16 20%(1) 100% 100% 100% 100% 100% 100% 100% 100% 90%
Benign (1) Neural Neuron Hijacking [38] Badnets [25]
g Cleanse (1)[59]  Face Watermark (1)  Face Square (1)  Age Square (1) YSQ (1) Bomb (1) Flower (1)
GTSRB LeNet - 100% - - - - - -
VGG-Face VGG 10% - 100% 100% - - -
Age 3Conv+3FC 38% - - - 100% - - -
USTS FastRCNN 5% - - - - 97% 77% 98%

The -’ symbol indicates a pre-tained trojaned model for that combination does not exist.
For ImageNet dataset, we only download 1 benign model [11] and only trojan 1 model for each type of attack.

Table 3: ABS Internals

Compromised Benign  Logits ~ Compromised  Logits

Dataset Model Neurons Inc Before After Inc Before After
CIFAR NiN 53 7.6 9.21 178 102 9.99 113.2
VGG 3.1 576 -0.45 0.93 10.74 -0.43 9.17
ResNet32 3.9 0.83 1.96 6.54 4.86 11.07 36.22

ResNet110 3.7 1.38 0.003 6.46 5.15 0.245 23.5

GTSRB NiN 5.8 0.12 56 21.6 1.7 10.6 116
VGG 4.9 244 002 113 14.8 0.04 16.76

ResNet110 3.9 0.6 0 0.2 4.98 2.6 184
LeNet 4.0 0.27  -69.1 -59.7 0.86 -75.1 88.44

ImageNet VGG 2.0 36.6 1.66 3.76 245.6 59 43.6
VGG-Face VGG 8.0 16.7 0 4.3 26.3 10.12 254

Age 3Conv+3FC 7.0 8.2 0 1.9 20.3 2.07 3.8

USTS  FastRCNN 6.0 0.51 0.87 1.15 3.7 -0.67 3.3

L oo

Figure 17: Trigger Rev. Eng. from High REASR Benign models
CIFAR-10 dataset, most deer images have antlers. As such, some be-
nign models pick up such strong correlation. Although such strong
features are not planted by adversaries, they are so strong that they
can be used to subvert other inputs. In that nature, they are quite
similar to trojan triggers.

5.2 Comparison with Neural Cleanse (NC)

Since NC is based on optimization without guidance from model
internals (see Section 2.2), it is sensitive to the initial random seed.
That is, it may generate the trojan trigger or a benign feature de-
pending on the random seed. To suppress such non-determinism,
we run NC 5 times and take the average. We use the default de-
tection setting of NC in [59]. The trigger size is 6%. We consider
NC successfully detects a trojaned model if the trojaned labels NC
outputs contain the trojan target label. The results are shown in
Table 4. Columns 1-2 show the dataset and model. Note that the
original NC paper also includes MNIST and two other face recog-
nition models. We exclude them because MNIST is too small to be
representative ! and the two face recognition models are similar
to (and even smaller than) the VGG-Face model/dataset we use.

!We had MNIST tested and the results are consistent to the ones reported for other
datasets and models.

Table 4: Detection Accuracy Comparison between ABS and NC

ABS NC (1 image) NC full
Dataset Model Pixel Feature  Pixel Feature Pixel Feature
NiN 98% 98% 22% 17% 67% 17%
CIFAR-10 VGG 98% 97% 27% 17% 60% 33%
ResNet32  100% 98% 7% 17% 73% 17%
ResNet110  100% 98% 7% 17% 73% 17%
NiN 100% 99% 22% 17% 78% 22%
GTSRB VGG 99% 100% 22% 17% 60% 33%
ResNet110 98% 100% 33% 17% 67% 33%
LeNet 100% - 0% - 100% -
ImageNet VGG 95% 90% Timeout Timeout Timeout Timeout
VGG-Face VGG 100% - Timeout - Timeout -
Age 3Conv+3FC  100% - 0% - 0% -
USTS FastRCNN  100% - - - - -

Symbol ‘-’ means not available as those are downloaded models

Columns 3 and 4 present the detection rate of ABS on pixel space
trojaning attacks and feature space trojaning attacks. We take the
average of REASR scores for the 7 pixel attacks and 2 feature attacks
in Table 2. Columns 5 and 6 shows the detection rate of NC when
using one image per label (the same setting as ABS). Columns 7 and
8 show the detection rate of NC when using the full training set (the
most favorable setting for NC). For VGG-Face, there are 2622 labels
and NC needs to scan them one by one. It does not terminate after
96 hours, so we mark this case as timeout. ImageNet also timeouts
for a similar reason.

We have the following observations. (1) NC is not effective for
feature space attacks or the object detection data set USTS, as NC
does not apply to those scenarios. (2) NC is not that effective when
only one image is provided for each label. This is because when
the number of images used in optimization is small, it is possible to
generate a small size trigger that subverts all the input images to the
same benign label. We conduct an additional experiment to show
how NC’s success rate changes with the number of samples used
for CIFAR-10. The results are shown in Figure 18. (3) NC is much
more effective when the full training set is used. While the accuracy
seems lower than what is reported in [59], further inspection shows
that they are consistent. In particular, the trojan size is around 6%
(of the input size) in our CIFAR and GTSRB attacks and the authors
reported that NC is less effective when the trigger size goes beyond
6%. For the Age dataset, the trojan trigger is also larger than 6%
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Table 5: Running Time of ABS and NC

Dataset Model ABS Time(s) NC Time(s)
Stimulation Analysis Trigger Gen. Total
NiN 35 80 115 330
CIFAR-10 VGG 120 180 300 820
ResNet32 40 300 340 740
ResNet110 270 1000 1270 1370
NiN 144 90 234 15800
VGG 300 260 560 30200
GTSRB ResNet110 480 1100 1580 50400
LeNet 120 100 220 1256
ImageNet VGG 4320 600 4920  Timeout
VGG-Face VGG 18000 300 18300 Timeout
Age 3Conv+3FC 200 100 400 417
USTS FastRCNN 650 600 1250 -

(a) Plane (b) car (c blrd (d) cat (e) deer (f) dog (g frog (h) horse 1) ship )) truck

Figure 21: Inversed Input Samples

of the whole images. We further conduct an experiment to show
how the detection rate of NC changes with trojan trigger size on
CIFAR-10 in Figure 19. NC has a very high success rate when the
triggers are smaller than 6%. It fails to detect any triggers larger
than 6%. As discussed in Section 2.2, triggers do not have to be small.
Note that ABS is not sensitive to trigger size (see Appendix C). (4)
ABS consistently out-performs NC (when the trigger size is around
6% and beyond). In addition, it does not require a lot of samples to
achieve good performance. Additional experiments are performed
to evaluate the effectiveness of NC by tuning its parameter settings
and using data augmentation (Appendix E). While these efforts do
improve its performance a bit, the improvement is limited and still
not comparable to ABS.

5.3 Detection Efficiency

We show the detection efficiency of ABS and NC in Table 5. Columns
3 to 5 show the execution time of ABS, including the stimulation
analysis time, trigger generation time, and their sum. The last col-
umn shows the NC execution time. In Table 5, both ABS and NC
use 1 image per label. We can observe that ABS is consistently
much faster than NC due to its analytic nature and its use of model
internals. For example, without the hints like compromised neu-
ron candidates (and their interesting value ranges) identified by
ABS, NC has to scan all the output labels one by one. Also observe
that ABS execution time grows with model complexity. Note that
the model complexity order is ResNet>VGG>NiN. In CIFAR-10,
ResNet32 has fewer neurons than VGG and takes less time in stim-
ulation analysis. For VGG-Face and ImageNet VGG models, the
stimulation analysis time is much more than others because it has
the largest number of neurons (i.e., millions).

Size of Trojan Trigger

Figure 19: Detection Accuracy of NC w.r.t
Number of Data Points Used on CIFAR-10 Trigger Size on CIFAR-10
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Figure 20: REASR of Benign and Trojaned
Models When No Inputs Provided

5.4 Detection Effectiveness Without Input

We further explore the scenario in which models are provided with-
out any sample inputs. We use model inversion [38] to reverse
engineer one input for each output label and then apply ABS. Ex-
amples of reverse engineered inputs on CIFAR-10 are shown in
Figure 21. We test ABS on the combination of CIFAR-10+NiN. The
resulting REASR scores (on trojaned and benign models) are shown
in Figure 20. Out of the 23 trojaned models, there are only 3 models
whose REASR falls under 80%. The performance degradation is
because reverse engineered images are optimized to activate out-
put neurons and their logits values are much larger than those
for normal images. In some cases, the optimization procedure (of
generating trigger) cannot subvert such high output activations
even with the guidance of compromised neurons. Note that we are
not claiming ABS can work without sample data in general as more
experiments need to be done for proper validation.

5.5 Scanning models hosted on online model
Z0o

We download 30 per-trained model from the Caffe model zoo [2],
15 on age classification with 8 labels and 15 on gender classification
with 2 labels. We have no knowledge of the benignity of these
models and we scan them with ABS. For all these models, we use
one image per label during scanning. Then we test the reverse
engineered “trigger” on randomly selected test set (1000 images).
We use max_trigger_size = 6%. The REASR scores are reported in
Table 6. Two models have over 85% REASR (in red), one forcing
88.1% of the test images to be classified as age 25-32 and the other
forces 85.9% of the test images to female. Further observe that the
REASR score for the suspicious gender model is not far way from
the scores of its peers, whereas the gap for the suspicious age model
is much more obvious. Given that the test accuracy of the suspicious
age model is 71.2%, close to the average of the others, 75.3%, the
particular model is fairly suspicious, or at least faulty. The triggers
produced by ABS are shown in Figure 22.

Table 6: REASR for Downloaded Pre-trained Models
Age  26% 12% 57% 23% 11% 55% 25% 19% 29% 26% 43% 88% 25% 33% 46%

Gender 72% 71% 65% 86% 69% 59% 72% 72% 70% 66% 77% 80% 83% 62% 55%

(b) Gender

(a) Age

Figure 22: Triggers with High REASR for Downloaded Models



5.6 Detection Effectiveness On Adaptive
Trojaning Attacks

The experiments in previous sections are to detect trojaned models
under the assumption that the attacker is not aware of ABS. In this
section, we devise three adaptive trojaning attacks that are aware
of ABS and try to deliberately evade it. We then evaluate ABS on
these adaptive attacks to demonstrate its robustness.

The first adaptive attack to bypass ABS is to trojan a model
while minimizing the standard deviation of neuron activations in
the same layer during data poisoning. The intention is to force
multiple neurons to work together to realize the trojaned behavior,
by minimizing the activation differences of individual neurons.
Ideally, there shall not be a “compromised neuron” to blame.

The second method is to trojan a model such that neuron ac-
tivations on benign inputs and inputs stamped with triggers are
as similar as possible. Since compromised neurons are activated
when inputs contain triggers, minimizing the activation difference
between benign and malicious inputs has the effect of limiting
the elevation effects of compromised neurons such that multiple
neurons may be forced to interact to realize the injected behavior.

The third method is to constrain the maximum neuron activation
differences between benign and malicious inputs. The rationale is
similar to the second method.

For the three attacks, we introduce an adaptive loss function in
addition to the normal classification loss, and minimize these two
loss functions together. For the first adaptive attack, the adaptive
loss is the standard deviation of neuron activations within the same
layer. For the second attack, the adaptive loss is the mean squared
value of activation differences between benign and malicious inputs.
For the third attack, the adaptive loss is the maximum mean squared
value of activation differences between benign and malicious inputs.

We tune the weight between the normal classification loss and
the adaptive loss and obtain a set of trojaned models, with different
accuracy on benign inputs and different adaptive loss values. The
relation between adaptive loss and model accuracy is shown in
Figure 23. The figures in (a), (b), (c) stand for the results for the
three attacks: minimized standard deviation, minimized differences
between benign and malicious inputs, and minimized maximum
differences between benign and malicious inputs, respectively. Each
triple (e.g., the three in (a)) includes the results for the NiN, VGG
and ResNet110 structures, respectively. The dataset is CIFAR10. In
each figure, the x axis is the adaptive loss and the y axis is the model
accuracy. The attack success rate (in testing) is always 100% for
all these models. As shown in Figure 23, for most trojaned models,
along with the decrease of adaptive loss, the model accuracy (on
benign inputs) decreases as well. We stop perturbing the weight
of adaptive loss when the normal accuracy decreases exceeds 3%.
For NiN models and ResNet models of the third type of adaptive
loss, we stop perturbing when the adaptive loss is close to 0. For
all these trojaned models, ABS can successfully detect them by
reverse engineering the top 40 neurons selected through neuron
sampling . Recall that without the adaptive attacks, we need to
reverse engineer top 10 neurons. The experiment shows that while
the adaptive attacks do increase the difficulty, ABS is still quite
effective. While more complex and sophisticated adaptive attacks
are possible, we will leave such attacks to the future work.

6 DISCUSSION

Although ABS has demonstrated the potential of using an analytic
approach and leveraging model internals in detecting trojaned
models, it can be improved in the following aspects in the future.
Distinguishing Benign Features from Triggers. As shown in
our experiments, ABS occasionally reverse engineers a (strong)
benign feature and considers that a trigger. While this is partially
true as the feature can subvert other inputs, a possible way to
distinguish the two is to develop a technique to check if the reverse
engineered “trigger” is present in benign images of the target label.
Handling Complex Feature Space Attacks. In our experiments,
we only show two simple feature space attacks. Note that such
attacks (for inserting back-doors) have not been studied in the
literature as far as we know. As discussed in Section 4.3, complex
generative models can be used as the trigger to inject feature space
patterns, which may lead to violations of ABS’s assumptions and
render ABS in-effective. We plan to study more complex feature
space attacks and the feasibility of using ABS to detect such attacks.
Handling Label Specific Attacks. Label specific attack aims to
subvert inputs of a particular label to the target label. It hence has
less persistence. While we have done an experiment to demonstrate
that ABS is likely still effective for label specific attack (see Appen-
dix D), we also observe that ABS tends to have more false positives
for such attacks and requires additional input samples. We plan to
investigate these limitations.

Better Efficiency. Although ABS is much faster than the state-
of-the-art, it may need a lot time to scan a complex model. The
main reason is that it has to perform the stimulation analysis for
every inner neuron. One possibility for improvement is to develop
a lightweight method to prune out uninteresting neurons.
One-neuron Assumption. We assume that one compromised neu-
ron is sufficient to disclose the trojan behavior. Although the as-
sumption holds for all the trojaned models we studied, it may not
hold when more sophisticated trojaning methods are used such
that multiple neurons need to interact to elevate output activation
while any single one of them would not. However, as shown in
Appendix F, ABS can be extended to operate on multiple neurons.
The challenge lies in properly estimating the interacting neurons
to avoid exhaustively searching all possible combinations. We will
leave it to our future work.

More Relaxed Attack Model. In ABS, we assume that misclassi-
fication can be induced by applying trojan trigger on any input. In
practice, the attacker may be willing to strike a balance between
attack success rate and stealthiness. For example, it may suffice
if the attack succeeds on a subset of inputs (say, 80%). In practice,
it is also possible that multiple triggers and trigger combinations
are used to launch attacks. We leave it to our future work to study
ABS’s performance in such scenarios.

7 RELATED WORK

In addition to the trojan attacks and defense techniques discussed
in Seciton 2, ABS is also related to the following work. Zhou et
al. [65] proposed to inject trojan behavior by directly manipulat-
ing model weights. However this approach has only been tested
on small synthetic model and not yet on real DNNs. Clean label
attacks[51, 58] aimed at degrading model performance by poisoning
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the training set with adversarial examples. Human checks cannot
recognize such adversarial examples as poisonous but they can
change model decision boundary and result in performance degra-
dation. The work in [19, 34] trojans hardware that neural networks
are running on. It injects back-door by tampering with the circuits.

Many defense techniques have been proposed to defend against
training data poisoning [16, 27, 44, 48]. Most fall into the category
of data sanitization where they prune out the poisonous data during
training. In contrast, ABS provides defense at a different stage of
model life cycle (after they are trained).

ABS is also related to adversarial sample attacks (e.g., [13, 21,
45, 46, 52, 56, 62, 64]). Some recent work tries to construct input-

agnostic universal perturbations [43] or universal adversarial patch [15].

These works have a nature similar to Neural Cleanse [59], which
we have done thorough comparison with. The difference lies in
that ABS is an analytic approach and leverages model internals. A
number of defense techniques have been proposed for adversarial
examples. Some [18, 40, 57, 63] detect whether an input is an ad-
versarial example and could be potentially used for detecting pixel
space trojan triggers. However, these approaches detect inputs with
trojan trigger instead of scanning models.

8 CONCLUSIONS

We develop a novel analytic approach to scan neural network mod-
els for potential back-doors. It features a stimulation analysis that
determines how providing different level of stimulus to an inner
neuron impacts model output activation. The analysis is leveraged
to identify neurons compromised by trojan attack. Our experiments
show that the technique substantially out-performs the state-of-
the-art and has a very high detection rate for trojaned models.
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Appendix A EXAMPLE OF CONFOUNDING
EFFECT

Figure 24 shows a real world example of confounding using a tro-
janed model on MNIST. As shown in the figure, the NSFs for a
benign neuron and a compromised neuron (from the same trojaned
model) are similar. Hence, both are candidates. Then we run the
model with all the inputs, including the poisonous inputs. We found
that the input that induces the largest activation of the benign neu-
ron is a benign input and the largest activation is only 1.8 while
a poisonous input can induce the compromised neuron to have
a value of 10.4. From the NSF of the benign neuron, there is no
elevation effect when the activation is 1.8. The example shows that
the elevation effect of a benign neuron usually does not originate
from training and may likely be infeasible, whereas the elevation
of a compromised neuron is induced by training.
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Figure 24: Example of confounding effect

Appendix B MODEL TROJANING

In this section, we show test accuracy and attack success rate of the
models trojaned in this paper in Table 7. Columns 1 and 2 show the
dataset and models. Column 3 shows the average accuracy of the
benign models. Number 20 in the column label indicates that each
reported value is an average over 20 models. Column 4 Acc Dec
shows the accuracy decrease of models trojaned with trigger YS.
Column 5 ASR shows the attack success rate of models trojaned with
trigger YS. The accuracy decrease denotes the difference between
the accuracy of a benign models and the accuracy of its trojaned
version. Note that for CIAR-10 and GTSRB, we trojan 3 models with
YS using 3 different combinations of benign and poisonous data,
and hence the accuracy decrease and attack success rate are average
across 3 models. For ImageNet, we trojan 1 model per trigger, we
directly report the accuracy decrease and attack success rate of
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Figure 25: Label Specific “Trigger”

each trojaned model in row 8. ImageNet is a hard task and hence
top-5 accuracy is often used [50, 53] . Here we report the top-5 accu-
racy decrease and the top-5 attack success rate of trojaned models.
Columns 6-21 show the accuracy decrease and attack success rate
for different kinds of attacks. In some cases, the trojaned models
have higher accuracy than the original ones, indicated by negative
values in Acc Dec columns. Because the adversarial perturbation is
very small, it is hard to trojan an adversarial perturbation model
with high attack success rate without degrading the performance
on benign images. For adversarial perturbation attack on CIFAR-
VGG, the accuracy drops 10.3%. For all other types of attacks, the
trojaned models have minor accuracy decrease. The downloaded
(benign and trojaned) models have similar test accuracy difference
and attack success rate, as shown in their papers [25, 38].

Appendix C DETECTION EFFECTIVENESS VS.
TRIGGER SIZE

In this experiment we evaluate how ABS’s detection rate changes
with trigger size changes on CIFAR-10. In Table 8, the row TS means
the size of trigger and column MMS denotes the max_mask_size in
Algorithm 2. We vary the trigger size from 2% of the input to 25%,
following a setting suggested in [30]. As show in Table 8, as long as
the max_mask_size is larger or equal to the trigger size, the REASR
of our approach is at least 85% (100% in most cases). This shows our
approach can successfully detect trojaned models within the trigger
size budget. In all other experiments, we use max_mask_size = 6%.

Appendix D DETECTING LABEL SPECIFIC
ATTACK

Although our goal is to defend attacks that aim to persistently
subvert any input (of any label) to the target label, we conduct an
experiment to observe if ABS has potential in dealing with label
specific attack, in which the attacker only aims to subvert inputs
of a specific label (called the victim label) to the target label. We
trojan the CIFAR-10 ResNet model with 10 triggers and each trigger
causing the images belonging to class k to be classified to k + 1. We
poison 10% samples. The model accuracy changes by -0.3% and the
average attack success rate (on all labels) is 93.7%. Note that in this
context, ABS can no longer use one input per label as stamping
inputs of labels other than the victim with the trigger has no effect.
Hence, we use 5 additional images for each label for validating if the
generated trigger is effective. The REASR scores of benign models
and trojaned model are shown in Table 9, with each column (except
the first one) representing a label. For benign models, label deer
has a high REASR and hence ABS fails. The reverse engineered
trigger is shown in Figure 25, which looks like antlers. In general,
label specific attack incurs more false positives for ABS because
the reverse engineered “trigger” only needs to subvert one class of
inputs. For trojaned models, ABS can detect 9 out of 10. ABS fails
to detect the trigger that mis-classifies Horse to Ship.

Appendix E  PERTURBING PARAMETERS
AND USING DATA
AUGMENTATION IN NC

In this section, we try different parameter configurations and lever-
age data augmentation to see if NC’s performance can be improved.
We perturb 3 main parameters used in NC optimization, the attack
success rate threshold (THRESHOLD), cost multiplier (MULTIPLIER)
and learning rate (LR). The first is the threshold at which NC stops
the optimization and considers the reverse engineered pattern a
trigger. The second is used to control the weight between the op-
timization loss and the trigger size loss. The third is the learning
rate for optimization. We experiment different settings of the three
parameters on CIFAR10. In addition, since NC’s performance is re-
lated to the number of samples used in optimization, we try to use
data augmentation to increase the number of samples. We use the
same data augmentation setting as normal CIFAR-10 training [9].
We test NC with one image per class which is the same setting
for ABS. The results are shown in Table 10. Column 1 shows the
parameters and column 2 the value settings. Columns 3-5 show
the classification accuracy for pixel space trojaned models, feature
space trojaned models and benign models for the NiN structure.
Columns 6-8 and columns 9-11 show the detection accuracy for
VGG and ResNet models. By changing these parameters, the de-
tection rate of pixel space attacks can increase to 60% on VGG
models but the accuracy on benign model also decreases to 72%.
The detection rate of feature space attacks can increase to 67% on
ResNet models but the accuracy on benign model also decreases
to 70%. As shown in row 12 in Table 10, using data augmentation
increases detection rate on pixel space attacks, while in the mean
time causes accuracy degradation on benign models. We speculate
that data augmentation can only explore a small region around the
input and cannot increase the diversity of data substantially and
does not help guide the optimization of NC. This shows changing
parameter settings or using data augmentation may improve NC’s
performance but the improvement is limited.

Appendix F OPTIMIZING MULTIPLE
COMPROMISED NEURONS
TOGETHER

There could be multiple compromised neurons in a trojaned model.
In this section, we try to optimize multiple compromised neurons
together to see if it can help produce triggers of better quality. For
NiN models trojaned with pixel space patch triggers, we further
reverse engineer triggers based on all the compromised neurons
ABS finds. Figure 26 shows the results. Row 1 shows the original
triggers. For each kind of trigger, we trojan the model with 3 dif-
ferent settings such that with the 5 different kinds, there are 15
different models in total. Row 2 shows the triggers reverse engi-
neered using one compromised neuron. ABS may report multiple
compromised neurons for a trojaned model. We randomly select
one. Row 3 shows the triggers reverse engineered using all com-
promised neurons together. To use all compromised neurons, we
change fi in Algorithm 2 to the be sum of the activations of all
compromised neurons. As shown in Figure 26, the triggers reverse
engineered by multiple neurons are not better than those reverse



Table 7: Accuracy and Attack Success Rate of Trojaned Models

. Pixel Feature
Dataset  Model  Benign(20)  yg(q) RS(3) YI3) RI3) P(3) Static(1)  Adversarial(l)  Nashville(3)  Gotham(3)
Acc AccDec ASR AccDec ASR AccDec ASR AccDec ASR AccDec ASR AccDec ASR AccDec ASR AccDec ASR AccDec ASR
NiN 88.7% 1.0% 100.0% 0.6% 99.8% 0.6% 99.8% 4.0% 99.9% 0.4% 100.0% 3.0% 99.9% 4.1% 100.0% 0.9% 100.0% 0.3% 100.0%
CIFAR-10 VGG 92.7% 1.8% 100.0% -0.4% 100.0% -0.2% 100.0% -0.5% 100.0% -0.4% 100.0% 0.1% 98.7% 10.3% 99.4% -0.4% 100.0% -0.6% 100.0%
ResNet32 92.1% -0.1% 99.9% -0.1% 99.5% -0.3% 100.0% -0.1% 99.5% -0.3% 100.0% 3.8% 99.3% 1.0% 99.9% -0.1% 99.7% -0.1% 100.0%
ResNet110 93.0% -0.3% 100.0% -0.5% 100.0% -0.5% 100.0% -0.4% 100.0% -0.2% 100.0% 1.0% 99.8% 1.0% 96.6% -0.3% 99.9% -0.4% 100.0%
NiN 92.4% -2.2% 100.0% 0.8% 100.0% -0.1% 100.0% 1.3% 100.0% 0.4% 100.0% -4.0% 99.9% -1.3% 98.4% -2.0% 98.7% -1.5% 99.7%
GTSRB VGG 96.8% 0.1% 100.0% 0.0% 100.0% 0.1% 100.0% 0.1% 100.0% 3.5% 100.0% 0.6% 97.0% 6.1% 97.6% 4.6% 99.7% 4.2% 99.8%
ResNet110 94.9% 0.7% 100.0% 1.9% 100.0% 2.5% 100.0% 1.2% 100.0% 0.6% 100.0% 2.7% 99.5% 2.6% 100.0% 3.9% 99.3% 1.2% 99.3%
ImageNet VGG 90.2% 0.0% 92.1% 0.1% 90.5% 0.1% 99.8% 0.0% 92.4% 0.0% 96.6% 1.1% 95.1% 1.1% 99.3% 1.7% 93.8% 1.0% 98.3%

N O I

(a) Original Triggers

(b) Triggers Reverse Engineered on 1 Neuron

c) Triggers Reverse Engineered on Multiple Neurons

Figure 26: Reverse Engineer 1 Neuron vs Multiple Reverse Engineer Neurons

Table 8: REASR of ABS with Different Trigger Size

TS
MMS 2% 4% 6% 10% 14% 19% 25%
2% 100% 100% 8% 23% 13% 15% 25%
4% 100% 100% 83% 43% 23% 25% 35%
6% 100% 100% 100% 100% 33% 58% 40%
10% 100% 100% 100% 100% 60% 95% 65%
14% 100% 100% 100% 100% 85% 100% 75%
19% 100% 100% 100% 100% 100% 100% 98%
25% 100% 100% 100% 100% 100% 100% 100%
Table 9: REASR for Label Specific Attack

Label Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

Trojaned 100% 100% 100% 100% 100% 100% 100% 100% 17% 100%

Benign 17% 33% 33% 17% 100% 50% 17% 0% 0% 17%

Table 10: Perturbing Parameters and Using Data Augmenta-
tion in NC

NiN VGG ResNet

Pixel Feature Benign Pixel Feature Benign Pixel Feature Benign

Appendix G SENSITIVITY OF PARAMETERS
IN ABS
In this section, we evaluate the sensitivity of weight parameters

w1, w2, w3 and wy in Algorithm 2, where the function cost can be
re-written as follows:

w w w.
cost = wi(-f2 — 2z fi+ 2 sum(mask) — — - SSIM(x, x"))
w1 w1 w1
Note that w; is a common parameter for all entries in cost. Thus

we can focus on tuning wy, ws and wy to show the sensitivity
of parameters in ABS. Recall that w3 is the parameter for pixel

space triggers and wy is the parameter for feature space triggers.

Hence we perturb wy and w3 for pixel space attacks, and wy and
wy for feature space attacks. We perturbed these parameters on the
trojaned NiN models at a scale of 10. The default value of w; is le-4
and we try different values of wy ranging from 1le-6 to le-2. The
default value of w3 is 50 and we try different values from 0.5 to
500. The default value of wy is 10 and hence we try the values from
0.1 to 1000. In Table 11, row 1 shows the different parameters, row
2 shows the different values of parameters and row 3 shows the

08 40% 17% 70% 33% 17% 715% 1% 17%  90% ; ’ -
THRESHOLD 0.9 40% 0%  85% 20% 17% 95% 7%  17%  90% average REASR for the trojaned NiN models. Observe that changing
099 40% 17% 8% 27% 17% 100% 7% 17%  85% wy and w3 does not significantly impact REASR. For wy, ABS is
1 47%  17%  35% 60%  33% 72% 1% 17%  90% effective from 0.1 to 10, but has degraded performance beyond 10.
MULTIPLIER 2  40% 17% 85% 27% 17% 100% 7% 17% 85%
4 3% 7% 70% 20% 7% 90% 7% 33%  90% Table 11: Sensitivity of ABS parameters
0.01 47% 0% 75% 13% 17% 95% 7% 17%  90%
wy w3 Wy
LR 01 40% 17% 85% 27% 17% 100% 7% 17%  85%
1 53% 17% 80% 40% 17% 80% 40%  67%  70% 1E-06 1E-05 1E-04 1E-03 1E-02 05 5 50 500 5000 0.1 1 10 100 1000
Data Augmentation 60%  33%  40% 33%  17% 75% 33%  17%  50% 098 098 098 098 098 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.25 0.1

engineered using just a single neuron (from humans’ perspective),
while both kinds of triggers have very high REASR. This supports
our design choice of using one neuron.
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