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Abstract—Internet-of-things (IoT) introduce new attack sur-
faces for power grids with the usage of Wi-Fi enabled high
wattage appliances. Adversaries can use IoT networks as a
foothold to significantly change load demands and cause physical
disruptions in power systems. This new IoT-based attack makes
current security mechanisms, focusing on either power systems
or IoT clouds, ineffective. To defend the attack, we propose
to use a data-centric edge computing infrastructure to host
defense mechanisms in IoT clouds by integrating physical states
in decentralized regions of a power grid. By enforcing security
policies on IoT devices, we can significantly limit the range of
malicious activities, reducing the impact of IoT-based attacks. To
fully understand the impact of data-centric edge computing on
IoT clouds and power systems, we developed a cyber-physical
testbed simulating six different power grids. Our preliminary
results show that performance overhead is negligible, with less
than 5% on average.

Index Terms—IoT, Edge computing, power grids security

I. INTRODUCTION

Power grid systems integrate information technology (IT)

and operational technology (OT) components to perform opti-

mal energy management [1]. IT components are connected by

an IP-based communication network, which is isolated from

the public Internet; OT components are connected by electrical

equipment, such as transmission lines. Utility operators use

these IT/OT networks to monitor and control state of physical

components, e.g., load demands adjusted by individual users.

However, load units equipped with Wi-Fi access become

Internet-of-things (IoTs) and are exposed to an open IoT cloud

that is beyond the control of utility operators. Through this IoT

cloud, users can employ various mobile applications or web-

interface terminals to adjust load demands.

As shown in Figure 1, IoT clouds introduce a new at-

tack surface to power grids with increasing usage of Wi-

Fi enabled high wattage appliances, such as water heaters

and ovens. Recent studies have revealed that device vul-

nerabilities enable adversaries to control a large number of

IoT devices permeating over a wide area. For example, in

Mirai attack, adversaries compromised more than 6,000,0000

poorly-configured Internet-connected cameras to launch the

largest-scale Distributed Denial of Service (DDoS) attack.

Once applied to the IoT-enhanced power grids, adversaries can

significantly change load demands instantly, causing system-

wide instability and disruptions [2].

The IoT-based attacks make current security mechanisms,

focusing on either power systems or IoT clouds alone, in-

Fig. 1. Exposing load units to IoT clouds introduces a new attack
surface to power systems: adversaries compromise mobile applications, web
interfaces, or botnets to operate IoT devices and change load demands.

effective (see Section II). Closing those research gaps re-

quires a defense in IoT clouds that can integrate physical

knowledge of power systems. The unique requirement leads

us to edge computing. Edge computing is originally used to

increase network performance of large content providers [3],

by deploying edge servers in decentralized regions to handle

requests from end devices without involving a centralized

cloud server (see Figure 1). Each edge server constructs a

small cloud environment, often referred to as an edge cloud,

in close proximity to end devices to balance communication

traffic and serve their requests with short latency [4]. Instead

of improving network performance, we propose to use edge
computing to enhance current perimeter-based defenses in
IoT clouds, by collecting physical data from IoT devices

in different regions of power systems and using them to

determine and enforce security and safety policies.

With graduate deployment of edge computing in IoT

clouds [1], we attempt to provide an initial understanding of

feasibility, benefits, and overhead of using edge computing as

an infrastructure foundation for future security designs against

IoT-based attacks. Specifically, through illustrative examples,

we attempt to answer the following questions:

Will edge computing infrastructure be able to host power
grids’ applications? Hosting power grids’ applications appro-

priately ensures that we can expect few false-positive alerts

when no attacks occur, serving as a prerequisite to host secu-

rity designs. Unlike mobile devices found in general-purpose

clouds, the physical location of IoT devices used in power

grids is comparatively static; dynamic variations of physical

data, which experience significant uncertainty, are critical for

grids’ operations. To answer this question, we discuss how



edge computing can host energy management systems of

traditional power grids. Many research work proposed decen-

tralized algorithms; a few discussed an appropriate computing

infrastructure that can run the algorithms efficiently. Hosting

energy management in edge computing infrastructure allows

monitoring physical states in close proximity to IoT devices,

providing a foundation for other security designs.

What security benefits can edge computing bring to power
grids? Edge computing indirectly changes information flows

from IoT devices, providing an opportunity to design a multi-

layer defense mechanism against IoT-based attacks. Using

decentralized edge servers to host security designs can meet

trade-off of existing perimeter-based protections in IoT clouds

that lack the consideration of physical states and centralized

intrusion detection systems (IDSs) that suffer from a long

latency. In edge servers, we can dynamically deploy a fine-

grained policy for each IoT device according to its role in

power grids’ control operations.

What are the potential overheads with edge computing?
Edge computing changes network flows. To fully understand

the impacts of the proposed data-centric edge computing

infrastructure on IoT clouds and power systems’ IT/OT net-

works, we developed a cyber-physical testbed integrating six

different power grids. We implemented a fine-grained access

control in this testbed; our preliminary results show that the

performance overhead is negligible, with less than 5% on

average.

II. RESEARCH GAPS IN RELATED WORK

Physical Protection. Huang et al. demonstrate that existing

physical protection in substations, e.g., primary and secondary

control, can remedy impacts of IoT-based attacks, even though

they may not completely remove the cyber threat [5]. Soltan

et al. further adjust the physical protection by allocating more

operational margins, e.g., reserved generation, to respond to

sudden and significant changes in load demands caused by

IoT-based attacks [6]. These passive approaches do not remove

unauthorized access to IoT devices. When adversaries change

attack strategies in IoT clouds, these approaches need to adjust

physical protection correspondingly, introducing significant

overhead on existing control operations.

Policy Enforcement on IoT Devices. Current security

approaches detect and prevent attacks on IoT devices by speci-

fying security policy related to their behaviors [7]. The security

policy can effectively specify access control by restricting the

inbound and outbound traffic of IoT devices [8]. However,

those approaches do not enforce safety behavior under IoT-

based attacks, as they usually lack the knowledge of physical

states of power grids. For example, an access control policy

can restrict the number of devices that adversaries can access,

but IoT-based attacks can introduce a “sudden” increase of

load demands by accessing a small number of high wattage

load units, to cause physical disruptions.

Edge Computing in Smart Grids. Some work proposes

to apply edge computing into IT networks of power grids [9],

to manage the increasing number of physical measurements

hierarchically and with a decreased latency. Edge computing is

a feasible solution especially for power distribution networks,

where utilities deploy off-the-shelf IT/OT components [10].

Similar to [11], we propose to deploy a data-centric edge com-

puting in IoT clouds, not power grids’ IT networks. However,

unlike [11] providing energy services to individual users, data-

centric edge computing collects physical measurements from

multiple sites to monitor power grids’ security conditions.

III. BUILDING DATA-CENTRIC EDGE COMPUTING TO

ENFORCE SECURITY POLICY FOR IOT-BASED ATTACKS

We present in Figure 2 design components of a data-centric

edge computing infrastructure to enforce security policies.

We first present assumptions of system and threat model.

In Section III-A, we present a design of data-centric edge

computing to host power grids’ applications, avoiding false

alerts during attack-free operations. We further discuss security

policies to restrict behaviors of IoT devices to ensure grids’

safety conditions in Section III-B.

System & Threat Model. We assume that IoT clouds

use edge servers at network perimeters to handle services

from IoT devices, i.e., high wattage load units, which are

shown in Figure 1. This assumption is compatible with existing

perimeter-based defenses proposed for IoT clouds. Under this

assumption, a communication link connecting a cloud server

and IoT devices is divided into three pieces. With a short

geographical distance and sufficient bandwidth, Edge-to-Client

links enable a short latency and reduce the workload of Cloud-

to-Edge links. Some applications also require Edge-to-Edge

communication to exchange information from different regions

without involving a cloud server.

We assume that adversaries can compromise mobile appli-

cations and computers with web interfaces to control IoT de-

vices, e.g., spoofing malicious measurements from IoT devices

and/or changing control commands issued by users. We do not

assume any forms of software bugs or protocol vulnerabilities

granting adversaries such capability. Unlike previous designs

of IDSs relying on the integrity of load units, we assume

that adversaries have already compromised IoT devices and

installed bot applications there. Consequently, adversaries can

also use a control and command server to operate on a large

number of IoT devices.

A. Data-Centric Edge Computing to Host Power Grids’ Ap-
plications

It is critical for the data-centric edge computing to host

power grids’ applications, monitoring physical states collected

by corresponding IoT devices. This capability avoids false

alerts in normal operational conditions and is a prerequisite

to implement security policies for IoT-based attacks.

Control applications used by power grids can be very

different from ones used in general-purpose IoT clouds. For

example, in an IoT cloud where mobility is a common

feature of end devices, a cloud server and edge servers aim

at optimizing resource allocation of end devices when they

change their locations. In power grids, IoT devices rarely

relocate. However, the variations of physical data collected by

them play a critical role in control applications. Consequently,
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Fig. 2. Infrastructure overview of data-centric edge computing for power grids.

when applying edge computing in power grids’ computing

environment, we should shift the design focus to classifying
data according to its runtime state and service requirements of
control operations that are critical to grids’ safety condition.

To reflect the changes of design focus on power grids, we

use Figure 2 to present an overview of the data-centric edge

computing infrastructure, which includes two procedures:

• Subsystem construction. In this procedure, we logically

group IoT devices or load units in substations (or “buses”

used in Figure 2) into different subsystems of a power grid.

Consequently, we can use limited computational resources

in each edge server to analyze physical states of a small-

scale subsystem. The detailed procedure of subsystem

constructions varies with control applications as well as the

current state of physical components. For example, if we

build subsystems for distributed state estimation (shown

in the following paragraph), we construct subsystems

according to the decomposition step in the algorithm: up

to m load units forming a connected sub-graph of the

transmission or distribution network of the original power

grid are included in a subsystem (where m is a design

parameter).

• Edge cloud construction. To construct an edge cloud (i.e.,

a small cloud environment including an edge server and

IoT devices), we connect IoT devices to an edge server

according to the correlations of their collected physical

states, determined by the corresponding subsystem. This

procedure is different from edge cloud constructions used

for general-purpose applications, where end devices are

usually connected to an edge server according to their ge-

ographical locations. The number of edge servers depends

on the available computing resources in IoT clouds and the

amount of data that each edge server can process, which

is related to the size of a subsystem.

The data-centric edge computing is not necessarily de-

pendent on software-defined networking (SDN), an advanced

network technology allowing runtime manipulation of network

flows. However, global network visibility and flexible pro-

grammability can significantly benefit edge computing [12].

For example, we can use an SDN control plane to extract

application-layer payloads related to physical states to classify

IoT devices, without proprietary instrumentation on them.

Hosting Power Grids’ Applications. Energy management

systems use different applications. In this paper, we use the

proposed data-centric edge computing to host state estimation,

which is a foundation of many of those applications, e.g.,

optimal power flow analysis and contingency analysis.

Specifically, we apply distributed or hierarchical state es-

timation methods and use each edge server to host a state

estimation for a small region of a power grid. Distributed

state estimation usually follows a decomposition-coordination

scheme [13]. In the decomposition part, a power grid is split

into multiple regions, and each region performs its own state

estimation independently. In the coordination part, measure-

ments of tie lines—transmission lines connecting two different

regions—are updated iteratively based on states estimated at

each involved region.

The data-centric edge computing can serve as an infrastruc-

ture for distributed state estimation. Specifically, to support

the decomposition part of distributed state estimation, we can

construct a subsystem dynamically by including any number

of physical components that form a connected sub-graph of

the original transmission or distribution networks, providing

more flexibility than previous approaches [13]. To support

the coordination part, Edge-to-Edge links in edge computing

can ensure data exchange, such as tie-line measurements,

among different subsystems. By applying the data-centric edge

computing, we expect to significantly reduce traffic volumes

that need to be sent to a control center and the latency of

state estimation, allowing for instant responses on anomalies
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in remote sites.

The data-centric edge computing can also host future mi-

crogrid applications controlling distributed energy resources

(DERs) without involving a control center [14]. Many energy

management systems propose decentralized algorithms, e.g.,

alternating direction method of multipliers (ADMM), to fully

explore the benefits of distributed computing [15]. By running

those algorithms in different edge servers, we can monitor

physical states of future microgrids and specify security poli-

cies for those environments correspondingly.

B. Security Policy to Defend IoT-based Attacks

For a better explanation, we classify attacks that can be

launched in IoT clouds into two types based on the most likely

targets (marked as A and B in Figure 2) [16]. We discuss how

the data-centric edge computing can benefit defenses against

these two types of attacks respectively.

• Type A: control-related attacks (CRAs). Adversaries ma-

liciously change physical state by issuing or modifying

control commands to a large number of IoT devices, e.g.,

dramatically adjusting load demands.

• Type B: false or bad data-injection attacks (FDIAs). This

type of attacks is a severe threat for state estimation used

in power systems as adversaries can use knowledge of a

power grid, such as topology of transmission or distribution

networks, to intelligently compromise physical state without

being noticed [17].

The data-centric edge computing can serve as a security

middle-box: each edge server can enforce fine-grained security
policy on connected IoT devices, e.g., “read” and “execute”

permissions on measurements and control commands. In Fig-

ure 2, we provide a motivation example. We specify permis-

sions for three IoT devices connected to edge server 1; for each

device, we put permission bits into two groups, according to

the subject issuing operations, e.g., the edge server and the

cloud server. In the example, we allow both edge server and

cloud server to read measurements from device 1 but not to

execute commands on it.

Protection Against Control-related Attacks (Type A).
Even though there are many IDS approaches defending the

control-related attacks, most of them are proposed for a

centralized unit (such as a control center) and rely on the rich

information collected there. Centralized IDSs introduce three

problems. First, they need to put trust on the wide variety

of computing devices in power systems, complicating threat

model and making deployment of the IDSs less practical.

Second, they can suffer from time-of-check-to-time-of-use

(TOCTTOU) vulnerability as there is a wide-area network in

which adversaries can compromise control commands after

analysis in centralized IDSs. Last, when a successful detection

requires a response to remedy physical damage, there is

another round trip of communication for response mechanisms

to reach remote substations.

Setting “execute” permissions can significantly restrict the

range of IoT devices, to which an adversary can issue mali-

cious control commands. Using the example in Figure 2, even

if an adversary can compromise a critical device to inject

commands, he/she will not be able to maliciously reroute

the command to device 1 or 3 as the edge server does

not allow commands being executed in them. Consequently,

adversaries can only inflict disruptions on device 2 even if

they successfully inject malicious commands. Furthermore, if

we can ensure that the target power grid can tolerate any

commands executed in device 2, we can completely prevent

physical damage from adversaries.

More importantly, we envision that the data-centric edge

computing can remedy the drawbacks of centralized IDSs.

First, because each edge server, distributed in different sites,

does not require complicated implementation, we can trust

edge servers instead of power systems, reducing the com-

plexity of threat model and preventing a control center from

becoming a single point of attacks. Second, with edge servers

in close proximity to IoT devices, we can reduce the width of

the TOCTTOU window as well as latency to launch response

mechanisms.

Protection Against False-data Injection Attacks (Type
B). In the data-centric cloud computing, we use edge servers

to host state estimation application to monitor physical states

of subsystems. At first glance, it seemed that edge servers can

be vulnerable to FDIAs. However, “read” permission set by

edge servers can help make the attack challenging to succeed.

Previous works show that randomly filtering compromised

data (even only a small part) can be effective against false data

injection attacks, as remaining compromised data can trigger

alerts in state estimation [18]. However, there lacks a friendly

way to implement those mechanisms: they either require mod-

ifying state estimation software, which can reduce estimation

accuracy, or intentionally introducing physical disruptions.

The “read” permission can directly enable such functionality

without any software modification and physical disruptions.

Specifically, by randomly marking some data from IoT devices

as “unreadable,” an edge server uses a set of data, which

is challenging for adversaries to obtain, to perform state

estimation. Without such knowledge, randomly compromising

data can easily trigger alerts. In addition, we can set “read”

permissions based on data redundancy, to maintain the accu-

racy of state estimation. Because an edge server can connect

multiple devices, achieving wider observability than a single

device, it can identify redundancy of data and thus select a

subset of data sufficient enough for accurate state estimation

(also known as a basic or critical data set).

Another byproduct of setting “read” permissions is to pro-

tect data privacy and user confidentiality. By applying the edge

computing in power grids, we can further determine a user’s

confidentiality based on physical applications in which the user

is involved.

IV. PRELIMINARY EVALUATION ON CYBER-PHYSICAL

TESTBED WITH EDGE COMPUTING INFRASTRUCTURE

To provide an initial feasibility evaluation of the data-centric

edge computing, we develop a cyber-physical testbed shown in

Figure 3. This testbed includes realistic cyber (edge computing

infrastructure based on SDN) and physical (power system

analysis) aspects of six different power grids, being used as

evaluation cases.
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Fig. 3. Cyber-physical testbed with edge computing infrastructure.

• IoT Clouds. We implemented an IoT cloud by connecting an

IoT hub application in Microsoft Azure cloud and emulators

of IoT devices in our lab network, which is built on five

HP ProCurve 3500yl switches and 7 HP ProLiant DL3600

servers. Each switch has 48 ports, and we extended each

server with 20 Ethernet ports. By grouping switch ports

into different VLANs (virtual local area networks), we built

six networks of different sizes (we include the number of

switches of each network in parentheses) based on topology

in TopologyZoo dataset [19].

• Power Grid Simulations. To provide physical data for

network traffic, we simulate power systems with different

transmission or distribution networks in MATPOWER, an

open-source MATLAB toolbox [20]. MATPOWER, analyz-

ing steady state of power grids, plays two critical roles.

First, it generates and delivers physical data to emulated

IoT devices via a separate communication channel; IoT

devices further issue the data to the IoT hub application via

the IoT cloud. Second, when there is an IoT-based attack,

MATPOWER estimates physical consequences of load-

changing commands delivered by the attack and updates

the physical data with the IoT devices.

• Edge Servers. We followed suggestions in [12] and im-

plemented edge computing infrastructure on top of SDN.

Specifically, we used ONOS SDN controller to manipulate

network traffic and group IoT devices into different edge

servers based on traffic contents. ONOS provides two fea-

tures that are critical to implementing functionality proposed

in this paper: (i) it allows developing applications, e.g.,

security policies, and adding them to the “core” engine at

runtime; and (ii) it facilitates adding parsers and encoders of

new network protocols so that controllers are able to obtain

knowledge related to power grids from runtime network

packets.

In preliminary evaluation shown in Figure 4, we focused

on the overhead of edge servers constructing subsystems and

grouping IoT devices and performance of security policies

presented in Section III-B. In future work, we will add

implementation and evaluation of other security policies on

top of the proposed edge computing infrastructure.

Using left y-axis and bar graphs in Figure 4, we present

the overhead of determining subsystems and grouping IoT

devices for edge servers. For each case (specified by the x-

axis), we increase the maximum size of subsystems from 4

to 10 substations and measure the impact on overhead. We

can see that the latency to construct subsystems is around 1.6

milliseconds (ms) on average, which is neither significantly

affected by the size of subsystems nor the size of simulated

power grids.

Although the overhead of configuring edge servers is not

affected by the size of communication networks, it increases

with the size of subsystems, because an SDN controller moni-

tors and manipulates network traffic from multiple IoT devices.

In our experiment, we used a single instance of ONOS SDN

controller to connect all switches in the simulated network.

When we increased the scale of subsystems to include up to

10 substations, congested networks increased the latency for

the SDN controller to configure edge servers. Even in this case,

we could still configure edge servers under 6 ms on average. In

practice, we can deploy multiple controllers to further reduce

overhead.

Using the right y-axis and line plots in Figure 4, we present

the goodput of the SDN controller to measure its capability

to execute the proposed security policy. Specifically, we used

the SDN controller to monitor the load-changing commands

exchanged between the IoT hub application and the emulated

IoT devices and restrict the number of network packets such

that delivered commands would not introduce physical damage

in power grids. We compare the goodput when the SDN

controller is equipped with and without the security policy

(with 95% confidence interval).

In our experiment, goodput varies from 4 to 7.5 Mbps. By

measuring elapsed times on the block of codes that implement

the security policy, we expect that enabling the security policy

would increase around 5 to 10 ms on the round trip time

between the SDN controller and switches, further reducing

goodput. However, such impacts due to the security policy is

less significant compared to the impacts caused by congested

networks, as we have made heavy usage of available network

bandwidth in our lab network and goodput experiences signif-

icant variations from time to time and in different evaluation

cases. By analyzing network traces in detail, a certain number

of re-transmission of network packets largely contributed to

such variation. Even under such busy network communication,

we can still obtain at least 4 Mbps of goodput.

V. CONCLUSION

In this paper, we present the design of a data-centric

edge computing infrastructure used for IoT devices in power

grids. By equipping edge servers with knowledge of power
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Fig. 4. Overhead of the data-centric edge computing. The left y-axis with bars shows the overhead to construct subsystems and group IoT devices while
the right y-axis with the line plots shows the goodput of SDN controller executing security policies (with 99% confidence interval).

grids in different subsystems, we can enhance the proposed

edge computing with security policies to defend IoT-based

attacks, e.g., by filtering compromised measurements and/or

restricting the range of adversaries’ activities. Preliminary

evaluations show promising results that edge servers can effi-

ciently process physical data and manipulate network traffic at

runtime. In future work, we will design and implement security

policies on the data-centric edge computing and evaluate their

performance over different IoT-based attacks.
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