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Abstract. Consider the seller’s problem of finding optimal prices for her
n (divisible) goods when faced with a set of m consumers, given that she
can only observe their purchased bundles at posted prices, i.e., revealed
preferences. We study both social welfare and profit maximization with
revealed preferences. Although social welfare maximization is a seem-
ingly non-convex optimization problem in prices, we show that (¢) it can
be reduced to a dual convex optimization problem in prices, and (i7) the
revealed preferences can be interpreted as supergradients of the concave
conjugate of valuation, with which subgradients of the dual function can
be computed. We thereby obtain a simple subgradient-based algorithm
for strongly concave valuations and convex cost, with query complexity
O(m?/e?), where ¢ is the additive difference between the social welfare
induced by our algorithm and the optimum social welfare. We also study
social welfare maximization under the online setting, specifically the ran-
dom permutation model, where consumers arrive one-by-one in a random
order. For the case where consumer valuations can be arbitrary contin-
uous functions, we propose a price posting mechanism that achieves an
expected social welfare up to an additive factor of O(y/mn) from the
maximum social welfare. Finally, for profit maximization (which may be
non-convex in simple cases), we give nearly matching upper and lower
bounds on the query complexity for separable valuations and cost (i.e.,
each good can be treated independently).

1 Introduction

In consumer theory, it is standard to assume that the preferences of a consumer
are captured by a valuation function, which is often assumed to be known to the
mechanism designer. However, in a real market, one can only observe what buyers
buy at given prices, the revealed preferences. Research on revealed preferences
within TCS has two primary objectives: (i) learning valuation functions from
revealed preferences, with the goal of having predictive properties [6,7,10,36];
(#4) directly learning the prices that maximize social welfare or profit [4,5,8,9,
11,13,28,29,35].

The latter problem is of importance to sellers in today’s online economies,
where a large amount of data about consumers’ buying patterns is available. For
a seller, profit maximization is the primary goal in general, while she may also
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want to maximize social welfare in an effort to earn the goodwill of consumers,
with increased market share as a byproduct.

In this paper, we consider social welfare and profit maximization using only
revealed preferences.

1.1 Our Model, Results, and Techniques

Consider a market with m consumers and a producer (seller) who produces
and sells a set of n divisible goods. In the most general case, the preferences of
consumer ¢ over bundles of goods are defined by a valuation function v; : C — R
(C C R™ is called the feasible set), which is her private information and unknown.
At prices p she demands bundle x;(p) that maximizes her value minus payment,
i.e., her quasilinear utility

xi(p) € arg max (v;(x) — (p,x)) .
xeC
Given prices p, the revealed preference refers to the purchased bundle x;(p)
of each consumer in the market (demand oracle information), or even only
S xi(p) (aggregate demand oracle information). No other information of the
valuations is revealed.

Producing the demanded goods incurs cost to the producer, which is rep-
resented by a convex cost function c. The producer, or the algorithm, posts
prices and makes observations repeatedly, trying to maximize the social welfare
or profit, as described below.

Social Welfare Maximization. The social welfare of bundles x3,...,x,,, € C is
the sum of consumers’ valuations minus production cost, i.e.,

SW(Xl, P ,Xm) = E:il ’Ui(xi) —C (221 Xi) . (1)

The benchmark used in this paper is the maximum social welfare SW* and
corresponding maximizing bundles (x7,...,x5,), defined as

SW*=  max SW(xi,...,X,,)and (x7,...,%),)€ argmax SW(X1,...,Xm).
X1,y Xm EC X1y, Xm EC
(2)

In Sect. 3, offline social welfare maximization is considered. The producer tries
to find good prices p such that SW(x;(p),...,Xm,(p)) is maximized. Although
there exist many methods to maximize a concave function, the social welfare is
usually a non-concave function in p [29]. Moreover, the producer only has access
to the aggregate demand oracle; the true valuations v;(x;(p)) are unknown.

We first show using duality theory that the maximum social welfare SW*,
which is larger than or equal to any social welfare that can be induced by some
prices, can in fact be induced by a single price vector p*, which is the minimizer
of a convex dual function f(p) = ¢*(p) — Y iv, v} (p), where ¢* and v} are
respectively convez and concave conjugates [27], as reviewed in Sect. 2. Moreover,
the revealed preferences are supergradients of v}, with which subgradients of
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f can be computed. Finally, to get a faster algorithm, we apply a smoothing
technique to f and then invoke the accelerated gradient descent method. These
ideas are formalized in Algorithm 1, whose guarantee is given below.

Theorem 1 (Informal statement of Theorem 4). The additive error
between the social welfare induced by Algorithm 1 and the mazimum social wel-
fare Eq. (2) is at most O(m/\T), where T is the number of queries to the
aggregate demand oracle.

In other words, to ensure an additive € approximation of the maximum social
welfare, Algorithm 1 needs O(m?/e?) queries to the aggregate demand oracle.

[29] and [28] are the most relevant prior work. [29] studies profit maximiza-
tion instead of social welfare maximization in a market with one consumer.
However, it is assumed that the valuation function is homogeneous, under which
profit maximization can be reduced to social welfare maximization. Assump-
tions made in [29] and this paper are basically identical. Key differences are: (i)
[29] proposes a two-level algorithm, where there is an outer iterative algorithm
maximizing social welfare, and for each outer iterate, the supergradient of the
unknown valuation function is computed by solving a dual optimization prob-
lem. In this paper, we only need to solve a single (different) dual optimization
problem. Therefore, this gives a simpler approach which may be of independent
interest. (ii) The subgradient of the dual objective function in this paper can be
interpreted as the excess supply (see the discussion around Eq. (8) in Sect. 3.1),
which gives our algorithm a natural interpretation as a Tatonnement process.
(iii) The query complexity given in [29] can be as large as O(1/€%) to ensure an
additive error of € between the induced social welfare and the maximum social
welfare; one reason is that they use subgradient descent, which works for non-
smooth convex functions but converges slowly. In this paper, by combining a
smoothing technique and accelerated gradient descent, Theorem 1 only needs
O(1/€?) queries to the aggregate demand oracle. [28] assumes that the valua-
tion is stochastic, but only considers a linear cost. It also considers unit demand
consumers with indivisible goods, which is out of the scope of this paper.

Next in Sect. 4 we consider online social welfare maximization under the ran-
dom permutation model. In this model, m consumers come to make purchases
one by one, and correspondingly the producer is allowed to post prices dynam-
ically, i.e., to update prices from p; to p;;+1 after the purchase of consumer
i. Random permutation here means that those m consumers are first chosen
potentially by an adversary, and then come and make purchases one by one in
a uniformly random order. (The random permutation model has been exten-
sively studied within online optimization [2,14,17], and is more general than the
i.i.d. model where each valuation is an independent sample from an unknown
distribution.) The objective is to maximize the expected online social welfare
E[SW(x1(P1); - - - Xm(Pm))], where the expectation is taken over random orders.

The idea to solve the online social welfare maximization problem is to run
an online convex optimization algorithm on a dual problem f;(p) = ¢ (P)/m —
(x;(p:), p). See Algorithm 2 for details; an introduction to online convex opti-
mization is given in Sect. 4.
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Theorem 2 (Informal statement of Theorem 5). The expected additive
error between the online social welfare achieved by Algorithm 2 and the maximum
offtine social welfare Eq. (2) is bounded by O(y/mn), where the expectation is
taken over random orders of valuations.

For a given producer, the number of goods n can be thought of as fixed. As
a result, the loss of social welfare induced by Algorithm 2 is sublinear in the
number of consumers m.

The idea of Algorithm 2 comes from [2], where a general online stochastic
convex programming problem is considered. It has many other advantages when
applied to online social welfare maximization. First, it is enough to assume that
the valuations are continuous; the consumer demand oracle may potentially need
to solve some non-convex quasi-linear utility maximization problem, but our
focus is on the producer side. Since f; only depends on the revealed preference
x;(pi), not on v;, it is still convex. Second, Algorithm 2 is robust, in the sense
that it is not sensitive to the potential error in quasi-linear utility maximization.
For details, see the discussion at the end of Sect. 4.

Profit Mazimization. Next we consider profit maximization with access to the
aggregate demand oracle. Given prices p, the profit of producer is the revenue
minus production cost, i.e.,

Profit(p) = (p, 321 xi(p)) — ¢ (X272 xi(p)) - 3)

Although it is more reasonable for the producer to maximize the profit, this
problem is hard due to non-convexity. The social welfare maximization problems
are solved by making a reduction to some convex optimization problem on the
space of prices. However, for profit maximization, both the set of optimal bundles
and the set of optimal prices may be non-convex, as shown by Example 1 in
Sect. 5.

We then consider the case where both the valuations and cost are separable. A
separable valuation v;(x) = >_7_, v;j(x;), while similarly a separable cost c(y) =
>y ¢;(y;). Under this assumption, in Sect. 5 we give upper and lower bounds
on the query complexity for profit maximization and revenue maximization (i.e.,
the cost is 0). These upper and lower bounds match for revenue maximization.

Theorem 3 (Informal statement of Theorems 6 and 7). Consider a mar-
ket with m consumers and n goods. If the valuations are strongly concave, and
both the valuations and cost are separable and Lipschitz continuous, then Algo-
rithm 3 mazximizes the profit up to an additive € error with O(mn/e) queries
to the aggregate demand oracle. If the cost is zero, then the strongly concave
assumption on valuations can be dropped.

On the other hand, for concave, separable and Lipschitz continuous valua-
tions, any algorithm requires 2(n/e) queries to the aggregate demand oracle in
order to maximize the revenue up to an € additive error.
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1.2 Related Work

Samuelson started the theory of revealed preferences in 1938 [30] to facilitate
mapping observed data to valuation functions, which led to extensive work within
economics on “rationalization” or “fitting the samples” [1,15,20,22,23,26,33,34].
In TCS, there have been a lot of work on learning valuations from revealed
preferences with which predictions can be made [6,7,10,36].

Another line of research is on learning prices directly that can maximize social
welfare or profit, usually known as the dynamic pricing problem [4,5,8,9,11,13].
Some prior works assume nice properties of the demand function (oracle) itself,
such as linearity in case of large number of goods [12,21], concavity [5], Lipschitz
continuity [8,9,35]. However, these properties may not be satisfied by demands
that come from typical concave valuation functions. In [4], the valuation function
is assumed to be linear, and is first partially inferred and then used in a price
optimization step. However, if the valuation is general concave, such a learning
phase is not possible [7].

Recently, [16] studies an omline linear classification problem under the
revealed preference model.

2 Preliminaries

Market Model. Our model consists of one producer (seller) who produces and sells
n divisible goods, and m consumers. Consumer i’s preferences are represented
by an unknown valuation function v; : C — Ry. The feasible consumption set
C C R is typically assumed to be convex and compact with non-empty interior.
It is assumed that C is known to the algorithm, and let D = maxy yec ||x — |2
denote the /5 diameter of C. Note that our algorithm can be extended to the case
where v;’s have different domains with different diameters; a common domain C
is used here only for convenience.

Given prices p = (p1,...,pn) € R} of goods, the quasi-linear utility of a
bundle x € R is defined as

ui(x,p) = vi(x) — (x,p).

Naturally, consumer ¢ demands a bundle from C that maximizes her quasi-linear
utility

x;(p) € arg max u;(x, p),
xeC

which is known as the revealed preference of consumer i at prices p. Once the
seller sets prices p, we only get to see x;(p) for each consumer i, where every
consumer can be thought of as a demand oracle, or even only x(p) = >~ | x;(p),
where the market can be seen as an aggregate demand oracle. v; is always
assumed to be continuous to ensure that x;(p) exists. This is the only assump-
tion needed for the online social welfare maximization part of this paper; the
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offline social welfare maximization part and the profit maximization part further
assume that the valuations are strongly concave, which will be introduced later.

The production cost is represented by a convex, Lipschitz continuous, non-
decreasing cost function ¢ : mC — Ry, where mC = {mx|x € C} =
{30 xi|x1,...,%Xm € C} since C is convex. Note that the domain of ¢ is big
enough to allow production of any aggregate demand. Let A\ denote the modulus
of Lipschitz continuity of ¢ with respect to the fo-norm. It is assumed that the
cost function is known to the algorithm.

The producer, or the algorithm, can only post prices and observe the pur-
chased bundles repeatedly, trying to maximize the social welfare Eq. (1) or profit
Eq. (3). Note that if valuations are only continuous, x;(p) and the induced social
welfare and profit may not be uniquely defined. In this paper, the online social
welfare result holds for any x;(p), while in offline social welfare and profit max-
imization, x;(p) is unique since strong concavity is assumed.

Convez and Concave Conjugates. The notion of convex and concave conjugates
are crucial in our algorithms. Given a convex function f : D — R where D C R"
is non-empty, its convex conjugate f* is defined as:

f(y) = sup ({y,x) - f(x)),
x€D

where the domain of f* is given by dom f* = {y € R"|f*(y) < oo}. Similarly,

given a concave function f: D — R, its concave conjugate is defined as

where the domain of f* is given by dom f* = {y € R"|f*(y) > —oo}. Since we
only compute convex conjugates of convex functions and concave conjugates of
concave functions, the above notation is fine. 9f denotes the set of subgradients
of convex f or supergradients of concave f.

Note that in our case, since dom ¢ = mC is non-empty and compact and ¢
is continuous, dom ¢* = R". Similarly, for every ¢, domv; = R".

Lemma 1 is crucial in our algorithm: One key observation in this paper is
that revealed preferences are actually supergradients of the concave conjugate
of valuation, which is given by Lemma 1. Lemma 1 can be derived from [19]
Corollary E.1.4.4 immediately. Although it is stated for convex functions and
convex conjugates, corresponding properties hold for concave functions and con-
cave conjugates.

Lemma 1. Suppose f is conver continuous with non-empty domain. For every
pair (x,y) € dom f x dom f*,
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y € 0f(x)
= x€If*(y)
<= X € argMaxxcdom f ({y,x') — f(x))
<=y € arg maXy/cdom f* (<X7 y') — f*(y/))
= f(x)+ f(y) = (xy)

3 Offline Social Welfare Maximization

Problem Description. The goal of offline social welfare maximization is to find
prices p € R’ such that the induced social welfare SW(x1(p),...,xm(P)) =
S vi(xi(p)) — ¢(>i, xi(p)) is maximized. As introduced below, v;’s are
assumed to be strongly concave, and thus x;(p)’s are uniquely determined.

Strongly Concave Valuations. In the offline setting, the valuation functions (v;’s)
are further assumed to be a-strongly concave, meaning that v;(z) + alzll3/2 is
concave. Concavity is a standard assumption on valuations to capture diminish-
ing marginal returns. Strong concavity, as its name suggests, is a strong assump-
tion; however it is satisfied by many common valuations such as the constant
elasticity of substitution functions and Cobb-Douglas functions (c.f. [29]). Fur-
thermore, a common modulus of strong concavity « is only for convenience; the
algorithm can be easily adapted to the case where different v; have different
moduli of strong concavity.

The dual notion to strong concavity (convexity) is strong smoothness. f :
D — R is @-strongly smooth if f is differentiable and its gradient is S-Lipschitz
continuous, or formally, for any x,y € D, [|[Vf(y) — VI (x)|2 < By — x]|2.

The following lemma can be immediately derived from [19] Theorem E.4.2.1
and E.4.2.2.

Lemma 2. Suppose f : D — R is concave continuous and D C R"™ is non-
empty. Then f is a-strongly concave if and only if f* is t/a-strongly smooth and
concave on R™.

Accelerated Gradient Descent. The accelerated gradient descent algorithm, which
was first introduced in [25], gives the optimal convergence rate for smooth convex
optimization problems. There have been many extensions to AGD, including
[3,32]. In this paper, one variant called the AGM algorithm given in [3] will be
invoked.

Lemma 3 ([3] Theorem 4.1). Suppose f : D — R is (-strongly smooth and
conver and x* € argmingep f(x). Given xo € D, for any t > 1, The AGM
algorithm outputs x; € D such that

< 2% —x[

7o) = Fx7) =
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3.1 Algorithm and Analysis

We propose Algorithm 1 to solve the offline social welfare maximization problem.

Algorithm 1. Offline SW Maximization

o= 2 cu(y) = cly) + 5lIy I3, fu = cilp) = X0, vl (p).

P — {p > 0[[p[l2 <A}, pj = 0.

Give T, the total number of rounds, and pﬂ to the AGM algorithm.
Output pf; returned by the AGM algorithm.

Theorem 4. The social welfare induced by pz given by Algorithm 1 is within
9IXmD /T 4 16X*m/oT from the mazimum offline social welfare.

The proof is based on two observations. The first one, formalized in Lemma

4, says that the optimal solution of a dual optimization problem can induce the
maximum social welfare SW*.

Lemma 4. Given concave continuous valuations vi,...,v, : C — R and a
convex continuous cost ¢ : mC — R,

SW* = min [ ¢*(p) — v ,
min | ¢ (p) ; 7 (p)
and for any dual optimal solution p*, (x1(P*),...,Xm(P*)) mazimizes social

welfare. If furthermore the cost is mon-decreasing and A-Lipschitz continuous,
then

m m

SW* = min | ¢*(p) =S u =  mi “p) =S v (p) |,
min [ ¢*(p) = Y v (p) Loomin | e () > i (p)

peRr” i=1 i=1
and for any optimal solution p* of the rightmost dual problem, (x1(p*),
oy Xm(P*)) mazimizes social welfare.

Proof. Maximizing social welfare is equivalent to solving the following problem
max 3" vi(xi) — c(y)
X1,..0,Xm €C
yemC m (4)
st i X =Y.

The Lagrangian is L(X1, ..., Xm, ¥, P) = Y 1oy 0i(%3) — c(y) + (P, Y — Doiey Xi)-
Equation (4) equals

max min L(X1,...,Xm,Y,P)
X1,..sXm EC,yEmC peR?
= min max L(x1,...,Xm,¥,P)
PER™ x1,...,xm EC,yemC (5)

=min [ ¢*(p) = > v} (p)
=1

pER™
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Here the second line is due to Slater’s condition, and the third line is due to the
definition of convex conjugate and concave conjugate.

Due to the continuity of v;’s and ¢ and the compactness of C, the optimal
primal solution (x7,...,x% ,y*) exists. By Slater’s condition, the dual optimal
solution p* also exists. By the minimax property, we know that y* = >"1" | x},
and x; maximizes v;(x) — (x,p*), 1 <i < m.

For the second part, due to the monotonicity of ¢, maximizing social welfare
is equivalent to

max S wi(x) — ely)
X1yeeesXm €C
yemC m (6)
sty 1% <y.
The Lagrangian is still L(x1,...,Xm,y,P) = > g vi(xi) — c(y) + P,y —
>t x;). Equation (6) equals

max min  L(X1,...,Xm,y,P)
X1, Xm €C,y€MC p>0,||pll2<A
= min max L(x1,.-,Xm,y,P)
PZ(LHPHZS)\XlwwmeC’yemC (7)
m
_ . * *
= _ min ¢(p) =Y _vi(p)
p>0,pll2<A ‘

Here the first line is due to the Lipschitz continuity of ¢, the second line is due
to Sion’s theorem [31]. 0

m

Lemma 4 tells us that the minimizer p* of f(p) = ¢*(p)—>_,~, v; (p) induces
SW*, and thus it is natural to try to solve this dual optimization problem.
However, v;’s are unknown to us, and so are v;’s and f. The second observation
is that the revealed preference, x;(p), actually gives a supergradient of v} at p.
Formally, given a concave continuous valuation v : C — R, for any x € C, by
Lemma 1,

X € arg max (v(x')—(x',p)) < x € argf}é% ((x',p) —v(x')) <= x € Ov*(p).

(8)
Similarly, given a convex continuous cost ¢ : mC — R4, for any y € R%,
y € 9c*(p) <= y € argmaxy ((y',p) — c(y’)). In other words, the subgradi-
ent of ¢* at p gives a bundle which maximizes the producer’s profit, assuming
everything produced can be sold.

As a result, we can run subgradient-based optimization algorithms to mini-
mize f. (¢ is known to the algorithm, and so is ¢*; the computation of subgra-
dients of ¢* is another problem, but does not require access to the consumer
demand oracles.) Since v; is a-strongly concave, by Lemma 2, v} is !/a-strongly
smooth and concave. However, there is no guarantee on ¢*, and thus in general, f
is not strongly smooth. In this case the standard optimization algorithm is sub-
gradient descent. However, for strongly smooth and convex functions, acceler-
ated gradient descent converges much faster than subgradient descent. To invoke



Social Welfare and Profit Maximization from Revealed Preferences 273

accelerated gradient descent, the smoothing technique given in [24] is used. We
minimize f,, as given in Algorithm 1 and tune the parameter p, which finally
gives Theorem 4. The detailed proof is given in the full version of this paper at
https://arxiv.org/abs/1711.02211.

4 Online Social Welfare Maximization

Problem Description. In online social welfare maximization, m consumers come
one by one and the producer/algorithm can post prices dynamically. Specifically,
at step ¢, prices p; are posted, and then consumer ¢ comes and makes a pur-
chase x;(p;). Then the algorithm updates p; to p;+1, based on past information.
The goal is to maximize the online social welfare SW(x1(p1),. .., Xm(Pm)) =
Z?Ll vi(xi(Ps)) — C(Z;ll x;(Pi))-

To model the randomness in the real world, it is usually assumed that val-
uations are sampled i.i.d. from some unknown distribution. Here we consider a
slightly stronger model, called the random permutation model. In the random

permutation model, an adversary chooses m valuations vy, ..., 7, in advance,
which then come in a uniformly random order. Formally, let v = (71,...,7m) be
a random permutation of (1,...,m), then at step 7 the consumer with valuation

v; = ¥, comes and makes a purchase, after p; is posted. Note that in the random
permutation model, the corresponding offline problem is fixed (with valuations
D1, .., Om). We still let SW* = maxy, . x,.ec (3iq 0i(xi) — (312, %)), and

m m
(X5,...,%5) = arg max Zf}i(xi) —c Zx
i=1 i=1

Our goal is to show that the expected online social welfare E.[SW(x1(p1),
oy Xm(Pm))] is close to SW*, where the expectation is taken over the random
permutation .

Note that no more assumption is made; valuations are only required to be
continuous.

Online Convex Optimization. The algorithm for online social welfare maximiza-
tion invokes an online convex optimization (OCO) algorithm as a subroutine.
In an OCO problem, there is a feasible domain D and T steps. At step ¢, the
OCO algorithm determines x; € D, and then a convex function f; : D — R is
chosen (potentially by an adversary) and a loss of fi(x;) is induced. Based on
the past information (formally, x1,...,x¢ and fi,..., fi), the algorithm updates
Xy t0 X441, and tries to minimize the regret

The regret of an OCO algorithm A is denoted by R4(T).
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The online (sub)gradient descent algorithm performs the following update at
step t:

Xt+1 = HD[Xt - ntgt(xt)]a

where 7, is the step size, g¢(x;) € 0fi(x;), and IIp is the ¢2 projection onto D.

Lemma 5 ([18] Theorem 3.1). Let D = max{||x1 — X2l|2|X1,%2 € D}, G =
max{||0f;(x)|2|]1 <t < T,x € D}, and n; = D/GNT. Then

T T
Rocp(T) =Y _ fu(xt) — min > fi(x) < DGVT.
t=1 t=1

4.1 Algorithm and Analysis

Algorithm 2 is proposed to solve the online social welfare maximization problem.
The idea of Algorithm 2 comes from [2].

Algorithm 2. Online SW Maximization
P —{p > 0lllpll2 < A}.
Give P to an OCO algorithm A, and let p1 € P be the initial prices chosen by A.
for i=1tom do
Post prices p;.
Observe x;(p;), the choice of the buyer who shows up in the i-th step.
Give fi(p) = £c*(p) — (xi(p:i), p) with domain P to A, and observe an updated
Pi+1 from ./4
end for

Theorem 5. The expected social welfare of Algorithm 2 with respect to a
uniformly random permutation of continuous valuations, is within R4(m) +
2ADoov/rim from the offline optimum social welfare, where Do, = maxy yec ||[x—
Voo 18 the Loy diameter of C. Specifically, for online gradient descent, the dif-
ference is bounded by 4ADso~/nm.

Proof. For convenience, let x; denote x;(p;). By the regret bound of the OCO
algorithm,

P>0,[[pll2<A

> fip)— _min > fi(p)
=1

1
Z(fz(pz) +vi(x;)) — _ min Z(fz(l)) + vi(xi))

>0, <A
p>0.[pll2 <A £
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First, we examine the second term of Eq. (9):

m

p>0HH1sz</\ Z(fz( )+vi(xi)) = pZOI,Ilei)Ill\zﬁA c*(p) — <Z Xiap> +Z i (X;)

m m
D uilx) —e| D xi
i=1 i=1

The first equality comes from the definition of f, while the second inequality
is due to the definition of ¢* and the monotonicity and Lipschitz continuity of
c¢. Thus the second term of Eq. (9) always equals the social welfare achieved by
Algorithm 2. In the following we show that the first term of Eq. (9) is within
O(y/mn) from the offline maximum social welfare SW™.

For a permutation (v1,...,7m) of 1,...,m, let I; denote (y1,...,7:). Note
that p; is determined by I;_1 (I'y = @), v; is determined by ~;, and x; depends
on p; and ;. Fix 1 < ¢ < m and I;_1, note that the revealed preference x;
maximizes the quasi-linear utility given p;, we have

E. [fi(pi) +vi(xi)|[li-1] = E,, %C*(Pi) — (xi,pi) + vi(X;) Fi1:|

Lt (02) + By [= (%1 i) + By, (%3)| T

> " (Bi) + By [R5, 90) 50,5
= " (Pi) — (B3, Tl Pi) + B 5,51

(10)

Consider the last term of Eq. (10) and take expectation with respect to I;_1:
]EFi—l |:E’Yi[@%( |FZ 1 :| = Z”l (11)

Then consider the first two terms of Eq. (10):

lC*(pi) —(E, [i;wiq],m)
= (1) — (B[R], + (B [R5, ],Bi) — (5, %5, 1121, o)
> et (pi) — (B (5,0, p0) — A[B 55,] - By 5 T
. (12
- Lopy- L <Zl g;,pi> = A[En %) - a6, 1]
> ——c Zx - )\HE% ] - By [&, FH]HQ.
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Here the first inequality is due to Cauchy-Schwarz inequality, while the second
inequality is given by Fenchel-Young inequality.
Equation (10), (11) and (12) give us

D i) Foilx) | 2w —c| DX

—_AZEQ . [ _ _] . (13)

Furthermore, Lemma 6 shows that the last sum in Eq.(13) is bounded by
2Dso+/nm, and thus Theorem 5 is proved for general OCO algorithms. Finally,
to prove the bound for online gradient descent, it is enough to use step size
1, = 20/ Dy/m (recall that D is the {5 diameter of C) and invoke Lemma 5. O

‘E'Yl i 1[ *'

As we can see from the proof of Theorem 5, it is enough to have continuous
valuations. Furthermore, Algorithm 2 still works if consumers only maximize
their quasi-linear utilities approximately. Formally, if consumer ¢ finds a bundle
x; such that v;(x;) — (P, X;) > maxxee (fui (x) — (pi,x>) — ¢;, then an additive
error of ¢; will be introduced in Eq. (10). However, as long as the total error
>, € is not large, the expected online social welfare of Algorithm 2 will still
be close to the offline optimum.
Finally, we state and prove Lemma 6.

Lemma 6. For any 1 <1i < m, we have

~ % ~ s n
) =B Il < P

Proof. Let S = {s1,...,sn} denote a finite population of real numbers, and
X1,..., X, (1 <n < N) denote n samples from S without replacement. Fur-
thermore, let = + SN s angi o2 = L3N (s —p)? Then X = 150 | X;
has mean p and variance % nT

Now come back the the proof of Lemma 6. By Jensen’s inequality, we have

p_l[ LR )~ B [T 1]” ﬁp [

Note that each coordinate of Ep, , {HEW[ J—E X2

]Eﬂ:—l |:

2
]~ B ]|

Vi
ance of the average of m — i + 1 without-replacement samples. Thus we further

have
- - 2 1—1 D2 n
\/Eﬂl e irial,) < Vo Ty <Py
O

I 4] ||%} equals the vari-
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5 Profit Maximization for Separable Valuations and Cost

Previously, social welfare maximization is solved by reducing to a convex opti-
mization problem on the price space. However, profit maximization may be non-
convex on both the bundle space and the price space.

Ezxample 1. Consider a market where there is only one consumer, one good, and
zero cost. Suppose v’ : [0,2] — Ry is continuous and strictly decreasing, with
V(1) =2,9'(2) =1, and v'(x)x < 2 for any = # 1,2. The integral of v’ gives a
non-decreasing concave valuation v. It can be shown that the maximum profit
is 2, which is attained by price 2 at quantity 1 or price 1 at quantity 2. Thus the
set of optimum prices and optimum bundles are both non-convex.

Here we present an algorithm of profit maximization and a nearly matching
lower bound when all v;’s and ¢ are separable. Formally, for every x € C and every
1 <i<m,v(x) =37 vij(x;), and for every y € mC, c(y) = >;_; ¢;(y;)-
Due to the separability assumption, we restate the assumptions on the feasible
set, valuation functions and cost function:

- C=[0,1]".

— For every 1 <i <m, 1< j < n, vy is a-strongly concave and A-Lipschitz
continuous.

— For every 1 < j <n, ¢; is A-Lipschitz continuous.

The i-th consumer’s consumption of good j is completely determined by
p; and is denoted by z;;(p;). Furthermore, z;(p;) = Y v, x;j(p;j). Our goal is
thus to maximize Profit;(p;) = Z?:l z;(pj)p; — ¢j(z;(pj)), for each 1 < j <
n. Although we can set prices for different goods independently now, to keep
consistency, we still consider posting new prices p € R’} as one query.

Algorithm 3. Profit Maximization Algorithm for Separable Functions

roe— ’ank()wka)—‘ .
ae

p=(0,0,...,0).
fort=1tordo
Post prices pt = mnt&j_a) ey mnt&j_a)).

for j=1tondo
if Profit;(ps,;) > Profit;(p;) then
Dj = Pt,j
end if
end for
end for
Output p.

Theorem 6. The profit given by Algorithm & is no less than the optimum profit
minus €. The number of queries is [mnA(A + a)/ae].
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Proof. Fix 1 < j < n. Let p; denote the profit-maximizing price for good j.
Suppose p; = m <p; < % By the definition of strong smoothness

and Lemma 2, we have
2 (pj)pj — ¢;(2;(pj))

< a3(05) (S ) = ey ) + My ) = 3 4)

e

= 2(py) (ﬁj + C“) —eslosi)) + A |3 (5 5)) - () )

mn(A + «) i=1
< LEj(f)j) (ﬁj =+ mn()\—i—a)) — Cj(l'j(ﬁj)) + Agm

e n A€
mnA+a)  n(A+a)

= x;(p;)p; — ¢j( (D)) + x;(p;)
074 Ae
P * n(A+a)

< x;(pj)p; — cj(x;(By)) + o

= x;(p;)D; — ¢;(x;(B;)) + %
0

Remark 1. Note that if the cost is 0 and thus revenue maximization i considered,
then we can set 7 = [mnA/e] in Algorithm 3, and it is enough to assume concave
valuations.

Theorem 7 shows that the dependency on n and € cannot be improved, even
for revenue maximization.

Theorem 7. The revenue maximization problem needs 2(n/e€) queries to get an
additive error €, even if the valuations are separable, concave, non-decreasing,
and Lipschitz continuous.

Proof. Let us first consider the case where there is only one consumer and one
good. Given A > 1, consider e such that there exists an integer ¢ satisfying
(14 €)= ), and thus ¢ = ln?{ie) > I,

Now we are going to define concave functions of the amount of good on [0, 1].
It is enough to give a non-decreasing and integrable derivative. Let v'(z) = A on
[0, 1], and L on [},1]. One can verify that v’ is non-decreasing and integrable,
and thus we can integrate it into a concave function v (by shifting, we can ensure
v(0) = 0). The maximum of v’(z)x on [0,1] is 1.

We claim that the algorithm has to make at least ¢ queries to ensure an ¢
additive or multiplicative error. If it is not true, there must exist some integer

z €1]0,g — 1] such that nox € Z = (W, ﬁ] is considered. We can then
set ¥'(x) = o' () outside Z, ¥’ (z) = (1+¢€)** on (W, ﬁ), and f/(ﬁ)

does not exist. ¢’ is still non-decreasing and integrable, but the optimum revenue
is 1 + € now, which is not detected by the algorithm.
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In other words, for A-Lipschitz valuations, at least % queries is required.
W.l.o.g., suppose A = e and thus % queries is needed. Now suppose there are n
goods, Tj different prices are tested for the j-th good, and the profit we get from
good j is within ¢; from the maximum profit. Then T}; > é We have

Z?: 1 Tj n n n

n N Zj:l 1/T; Zj:l € €

In other words, Z?Zl T; > ”72 Since each query can set new prices for n goods,
we need 2(%2) queries. O

6 Conclusion and Open Problems

In this paper, we study social welfare and profit maximization with only revealed
preferences. The social welfare maximization problem can be solved by reducing
to a convex dual optimization problem in both the offline and online case, while
profit maximization is essentially non-convex, for which we give nearly matching
upper and lower bounds on the query complexity when valuations and cost are
separable.

While social welfare maximization is interesting and important, it is still more
reasonable for a producer to maximize profit. However, as shown by Example
1, this problem is in general non-convex. While we give an algorithm for the
separable case, it is a very interesting open problem to design algorithms for
profit maximization in a more general setting or show some hardness result.
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