


testbed. Experiment results on the cost-performance trade-offs

presented in this paper have the potential to pave the way

for deployment of scalable VRLEs with seamless delivery of

learning content. It also characterizes analytical model-based

adaptive control involving processing/visualization of large-

scale user emotion data within either cloud-only, edge-only or

edge-cloud system architectures.

The main contributions of this paper are:

• To suit the purpose of monitoring user emotion data and

providing real-time feedback, we have developed an IoT-

based application for VRLEs; the IoT-based application

automates data collection, real-time analysis and visual-

ization through coordination of cloud/fog resources.

• Performance validation of the IoT-based application with

three different system architectures: (i) edge only, (ii)

edge-cloud, and (iii) cloud only, for large-scale IoT data

processing, analytics, and visualization requirements.

• An adaptive closed-loop feedback control mechanism

that can modify system behavior by adjusting system

parameters and cloud resource allocations according to

the system performance level, and thus maximizes the

users’ QoE while keeping the associated costs in the

cloud at a minimum level.

The remainder of the paper is organized as follows: Section

II discusses prior related works. Section III discusses the

VRLE system infrastructure, implementation of the functional

modules and their flow interactions. Section IV discusses the

modeling and implementation of our rule-based adaptive feed-

back control scheme. Section V highlights the evaluation of

the IoT-based application with testbed details and experiment

results to compare the cost-performance trade-off for the three

system architectures and benefits of the model-based adaptive

feedback control. Section VI concludes the paper.

II. RELATED WORK

A. Cloud and Sensing Integration

A large network of IoT sensor devices could generate

massive volume of data whose use requires scalable cloud/fog

storage systems and data analytics/visualization applications.

Cloud computing offers services that can scale to IoT storage

and processing requirements with elasticity and hardware di-

versity. Authors in [5] present an IoT system configuration and

a method of EEG sensor data collection from smart helmets

to a cloud-hosted server, which analyzes and visualizes data

to predict soldiers state. Similarly, authors in [6] propose a

suicide risk scouting prototype. In this system, patients’ vital

diseases symptoms are collected through wireless body sensors

and then analyzed in a cloud platform with patient’s historical

records of diseases, habits, rehabilitation and genetics. In the

work in [7], authors propose a cloud-supported Cyber-Physical

localization system using smart phones to acquire voice and

EEG signals for patient monitoring.

In the above exemplar works, cloud platforms are used to

provide large-scale computation and communication for geo-

graphically distant users. However, these works do not provide

real-time data analysis/visualization and feedback capabilities

to the users as done in our work by considering low-latency

data processing offered by fog platforms or a combination of

cloud/fog resources.

B. Computing Architectures

Cloud platforms provide highly available computing re-

sources, distributed storage, and offer more flexibility to users

with easily customizable and configurable features. However,

they are proprietary and require higher resource costs over time

for using their services. Depending upon the services used and

the usage level, the cost considerations for the “pay-as-you-go”

can vary drastically. In this sense, both performance and cost

need to be considered when evaluating system architectures

that involve public cloud services such as Amazon Web

Services (AWS) or local edge resources.

Similar to the focus of this study, the ability of cloud

platforms to host scientific applications and the related costs

for running such applications were investigated in [9]. Authors

in [4] presented an elastic adaptive controller framework that

can continuously detect and self-adapt to workload changes in

an AWS cloud testbed. However, the tests and the proposed

frameworks in these works assume operation with cloud-only

services, and do not take into consideration of alternative

cloud/fog system architectures.

The emergence of edge computing has particularly provided

a scope for competent solutions that enable context-aware,

real-time and low-latency response services for users. By

leveraging the potential of edge computing, the authors in [8]

propose an autonomic framework designed to process big data

as part of a decision support system. When compared to cloud

computing, edge computing could foster faster data analysis,

lower costs, lower network traffic and better application speed

which ultimately translates to better Quality of Service (QoS).

In comparison, our work involves processing of large-scale

IoT-based application workloads with low-latency demands by

considering the relevant cost-performance trade-offs.

C. Model-based Resource Adaptation

For service-centered cloud applications, QoE metric plays

an important role as it conveys a measure for the customer

convenience and satisfaction. Since it is difficult to quantify

human-subject experience in real-time due to the subjective

nature of QoE, many prior studies rely on QoS metrics as

an indirect measure for overall user satisfaction level[12],

[10], [11]. Although the above works provide exemplar QoE-

QoS correlation models, their main consideration for the QoS

metrics is at network layer with limited focus on the Quality of

Application (QoA) metrics at the application layer. Our work

addresses this issue for IoT-based application data processing

by proposing a model-based adaptation mechanism to vary

QoS and QoA in order to meet the satisfactory QoE levels.

In other words, our work leverages the interplay between the

QoE and QoS, and applies adaptation rules that improve the

VRLE user QoE by using best practices.





and visualize the results [16]. Our IoT-based application for

streaming, processing and visualizing users’ emotion data is

based on the framework of this application, however extended

into three system architecture designs defined above. Figure 3

shows the four modules we implemented to evaluate suitable

system architecture configurations:

Module 1: includes an EEG sensor application component that

detects a headset and collects EEG data from the user. Based

on the architecture configuration, this module either sends data

to Kinesis stream (in the cloud-only architecture), or processes

EEG emotion data and delivers the data to Module 3 (in the

other two configurations).

Module 2: is only in the cloud-only configuration. It includes

an AWS Kinesis module that consumes data from the Kinesis

stream, processes the data, and then delivers the processed

data to Module 3.

Module 3: accepts the data from either Module 1 or Module

2, transforms processed data into our desired data structure,

and persists the transformed data into a DynamoDB table.

Module 4: creates an HTTP web server, retrieves data from

the DynamoDB table, and renders data into a dynamically

updated diagram to visualize the student’s emotional states in

a real-time manner.

IV. MODEL-BASED ADAPTIVE FEEDBACK CONTROL

Cloud-hosted applications and services need to be highly

scalable so that they can satisfy QoE requirements with

large number of users with the least cost. In this section,

we present a QoE-QoS-QoA (3Q) based feedback control

mechanism that captures the dynamics of the data processing

and adaptively allocates required cloud resources to satisfy

users’ QoE requirement (i.e., perceived visualization delay)

while keeping costs at a minimum level.

A. QoE-QoA-QoS (3Q) Interplay Model

QoE-driven services have become the main focus of many

cloud providers due to the vast growing cloud-based platforms

and applications. In the social VRLE system, we model the

performance of our IoT-based application using the 3Q factors,

i.e., QoE, QoA, and QoS.

QoE is a measure of the perceived satisfaction or annoyance

of a customers experiences with a service. In this work, we

use objective QoE to evaluate users’ QoE level. The metrics

include: perceived delay in visualization of user emotion data,

which indirectly also relates to the perceived system adaptation

response time. QoS comprises of requirements on all the

aspects of a connection, such as network bandwidth, packet

loss, jitters, and delays. To simplify the complexity of our

feedback control mechanism implementation, we use network

bandwidth, the most deterministic metrics of network quality,

to evaluate the QoS level. QoA reflects the key characteristics

of an application or service in terms of processing capacity.

Our QoA metrics include: the number of users, data rate, data

size, exceeded write/read throughput in Kinesis stream, maxi-

mum age of data records (IteratorAgeMilliseconds) in Kinesis

stream, and throttled write/read requests in DynamoDB.

These 3Q factors and their measurements are inter-related

and have successions of impact to each other. The interplay

among these factors help us to implement an adaptation control

mechanism that is discussed in detail in the following section.

B. Cost-aware Adaptive Feedback Control Scheme

Based on the 3Q metrics, we present our rule-based adap-

tation control scheme for management of our IoT-based

application at high loads in a social VRLE. This scheme

promotes intelligent decision-making and on-demand service

provisioning to ensure satisfactory user QoE with relevant

cost-performance considerations.

As shown in Figure 4, when VRLE learning sessions start

to operate, our IoT-based application first runs in a lower

cost/performance scheme for real-time visualization. This vi-

sualization of emotion data acts as the QoE feedback to the

application. Then our adaptive feedback control evaluates the

objective QoE metrics to see if the visualization is satisfactory.

If not, the feedback control then identifies QoA or QoS issues,

such as delays in data streaming, processing or visualization

rendering. Based on the identified issues, the feedback con-

trol takes appropriate adaptation action to solve the issues.

However, taking one adaptation action might not be able to

completely solve the issue, as there might be multiple issues

related to a system performance degradation. The iterative

property of the adaptive feedback control scheme will keep

looping these processes until the problem is completely solved

and desired QoE level is achieved. In this feedback control

scheme, we also keep in mind the related cost in using

cloud services. In the figure, we highlighted the adaptation

schemes that are free at the edge locations as well as those

that result in a higher cost in the cloud platform case. If

the cost resulted from the proposed adaptation exceeds user’s

budget, the feedback control scheme can alternatively use

different adaptation schemes when feasible, e.g., reducing the

data size (i.e., changing system architecture from cloud-only

to edge-cloud) or reducing data rate at the edge. However,

such an adaptation will require interrupting the current running

application so that changes can be made at the edge platform

setup.

C. Analytical Model for Estimating Response Time

In our feedback control mechanism, there is a need of

a model to capture the pattern of application performance,

especially with regards to response time, given the workload

in the amount of data records and currently allocated cloud

resources.

The entire time of data record flow and processing in

our IoT-based application can be divided into three parts,

each taken at one of the three system layers, i.e., data input

layer, data processing layer, and visualization rendering layer.

The behavior of data processing represents a queue, we thus

model this layer into an M/M/1/K finite queuing system. This

analytical model is based on the embedded Markov Chain,

featured by states, events, transitions, as described in [18].













(panel A), which resulted in the delays in processing data

record (panel D). Upon detection of the increase in the delay

in processing data, our feedback control mechanism calculated

the required number of processors needed at this stage, which

was 2, by using the analytical queuing model shown in Figure

11. Then a second EC2 processor was initiated to offload

the workload in processing data records (panel B). The CPU

utilization on Processor 2 quickly increased to almost 100%.

With the two processors working together, the delays started

to reduce until there was no significant delay any more. It took

about 3 minutes for the two processors to clean up the delayed

data in the queue. During this time period, no additional data

processor was initiated because the delay was decreasing. At

the end of this period, our application recovered and was

able to visualize all users emotion data in real-time. After

we reduced the number of users back to 20, our algorithm

adaptively stopped one of the two processors according to the

current workload requirement and delay status. Our design and

initial experimental evaluation of the adaptive feedback control

scheme for scaling up cloud resource allocation shows that:

• Our analytical queuing model can be used to effectively

determine the number of data processors required for

scenarios with different number of users in a given IoT-

based system; the model also justified our earlier findings

of system delays with higher number of users;

• Our feedback control scheme is able to predict system

performance levels using selected performance metrics,

and use this knowledge to scale out the processor re-

sources according to the analytical model guided rules;

• To our knowledge, the feedback control scheme presented

in this paper is the first adaptation framework support-

ing social VRLE based IoT application. The merits of

this adaptation scheme include: minimal resource over-

provisioning and thus user costs; fine control by using the

maximum age of records metrics to identify both system

performance issues and progress in adaptation; and high

intelligence enabling the system to wait for adaptation

progress before further scaling-out resources.

VI. CONCLUSION

In this paper, we present an IoT-based application designed

to manage visualization of the sensor data from geographically

distributed users in a social VRLE. Our work addressed the

challenges in handling the cost-performance trade-off analysis

for a distributed system with multiple devices generating real-

time high volume data. The challenges related to configuring a

suitable system architecture amongst options in the fog/cloud

computing: edge-only, edge-cloud and cloud-only. Our cost-

performance analysis results provide insights on the best

practices that need to be followed for obtaining maximum

performance for supporting a large number of users, yet at

minimum cost.

We also described an analytical model-based dynamic per-

formance adaptation scheme that can trigger rules to deal

with high-scale loads to maximize the user experience (i.e.,

perceived visualization delay) by controlling the application

(VRLE) and the system (sensors, network) parameters. Our

analytical queuing model with derived formulas is shown to

be beneficial to monitor the overall system response time and

adapt the edge and cloud resources suitably.

Our future work is to investigate our IoT-based application

within VRLE education content that serves different learning

curriculum objectives, e.g., public safety best practices training

for first responders and incident commanders. In addition, ma-

chine learning based algorithms can be developed to correlate

sensor data and use context in social VRLE systems with

feedback to enhance student-instructor collaboration.
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