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Abstract—Mining from a big graph those subgraphs that
satisfy certain conditions is useful in many applications such as
community detection and subgraph matching. These problems
have a high time complexity, but existing systems to scale them
are all IO-bound in execution. We propose the first truly CPU-
bound distributed framework called G-thinker that adopts a
user-friendly subgraph-centric vertex-pulling API for writing
distributed subgraph mining algorithms. To utilize all CPU cores
of a cluster, G-thinker features (1) a highly-concurrent vertex
cache for parallel task access and (2) a lightweight task scheduling
approach that ensures high task throughput. These designs well
overlap communication with computation to minimize the CPU
idle time. Extensive experiments demonstrate that G-thinker
achieves orders of magnitude speedup compared even with the
fastest existing subgraph-centric system, and it scales well to
much larger and denser real network data. G-thinker is open-
sourced at http://bit.ly/gthinker with detailed documentation.

Index Terms—graph mining, subgraph-centric, CPU-bound,
compute-intensive, clique, triangle, subgraph matching

I. INTRODUCTION

Target Problem. Given a graph G = (V,E) where V (resp.
E) is the vertex (resp. edge) set, we consider the problem of
finding those subgraphs of G that satisfy certain conditions. It
may enumerate or count all these subgraphs, or simply output
the largest subgraph. Examples include maximum clique find-
ing [31], quasi-clique enumeration [17], triangle listing and
counting [12], subgraph matching [15], etc. These problems
have a wide range of applications including social network
analysis and biological network investigation. These problems
have a high time complexity (e.g., finding maximum clique
is NP-hard), since the search space is the power set of V :
for each subset S ⊆ V , we check whether the subgraph of G
induced by S satisfies the conditions. Few existing algorithms
can scale to big graphs such as online social networks.

Subgraph mining is usually solved by divide and conquer. A
common solution is to organize the giant search space of V ’s
power set into a set-enumeration tree [17]. Fig. 1 shows the set-
enumeration tree for a graph G with four vertices {a,b,c,d}
where a < b < c < d (ordered by ID). Each node in the tree
represents a vertex set S, and only vertices larger than the
last (and also largest) vertex in S are used to extend S. For
example, in Fig. 1, node {a,c} can be extended with d but not
b as b < c; in fact, {a,b,c} is obtained by extending {a,b}
with c. Edges are often used for the early pruning of a tree

{}

{a} {b} {c} {d}

{a, b} {a, c} {a, d} {b, c} {b, d} {c, d}

{a, b, c} {a, b, d} {a, c, d} {b, c, d}

{a, b, c, d} Figure 1. Set-Enumeration Tree

branch. For example, to find cliques, one only needs to extend
a vertex set S with those vertices in (V −S) that are common
neighbors of every vertex of S, since all vertices in a clique are
mutual neighbors. Also, [17] shows that to find γ-quasi-cliques
(γ ≥ 0.5), one only needs to extend S with those vertices that
are within 2 hops from every vertex of S.

Problem Not Targeted. The problems we consider above
share two common features: (1) pattern-to-instance: the struc-
tural or label constraints of a target subgraph (i.e., pattern)
are pre-defined, and the goal is to find subgraph instances in
a big graph that satisfy these constraints; (2) there exists a
natural way to avoid redundant subgraph checking, such as by
comparing vertex IDs in a set-enumeration tree, or partitioning
by different vertex instances of the same label as in [27], [34].

Some graph-parallel systems attempt to unify the above
problems with frequent subgraph pattern mining (FSM), in
order to claim that their models are “more general”. However,
FSM is an intrinsically different problem: the patterns are
not pre-defined but rather checked against the frequency of
matched subgraph instances, which means that (i) the problem
is in an instance-to-pattern style (not our pattern-to-instance).
Moreover, frequent subgraph patterns are usually examined
using pattern-growth, and to avoid generating the same pattern
from different sub-patterns, (ii) expensive graph isomorphism
checking is conducted on each newly generated subgraph, as
in Arabesque [29], RStream [32] and Nuri [13]. This is a bad
design choice since graph isomorphism checking should be
totally avoided in pattern-to-instance subgraph mining. After
all, FSM is a specific problem whose parallel solutions have
been well-studied, be it for a big graph [28] or for many graph
transactions [37], [16], and they can be directly used.

Motivations. A natural solution is to utilize many CPU cores
to divide the computation workloads of subgraph mining, but
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there is a challenge intrinsic to the nature of subgraph mining
algorithms: the number of subgraphs induced from vertex sets
can be exponential to graph size and it is impractical to
keep/materialize all of them in memory; however, out-of-core
subgraph processing can be an IO bottleneck that reduces CPU
core utilization. In fact, as shall be clear in Sec. II, all existing
graph-parallel systems have an IO-bound execution engine,
making them inefficient for the subgraph mining.

We propose G-thinker for CPU-bound parallel subgraph
mining while keeping memory consumption low. As an il-
lustration, it takes merely 252 seconds in total and 3.1 GB
memory per machine in our 15-node cluster to find the
maximum clique (with 129 vertices) on the big Friendster
social network of [11] containing 65.6 M vertices and 1,806 M
edges. Note that the clique decision problem is NP-complete.

The success of G-thinker lies in a design that keeps CPU
cores busy. Specifically, it divides the mining problem into
independent tasks, e.g., represented by different tree branches
in Fig. 1. Note that each tree node represents a vertex set
S that are already assumed to be in an output subgraph,
and incorporating more vertices into S (i.e., going down the
search tree) reduces the number of other candidate vertices
to consider as more structural constraints are brought by the
newly added vertices. If the mining of tree branch under S
is expensive, we can further divide it into child branches for
parallel mining; otherwise, the whole branch can be mined by
a conventional serial algorithm to keep a CPU core busy.

Each tree node in Fig. 1 thus corresponds to a task that
finds qualified subgraphs assuming vertices in S are already
incorporated. For such a task, let us denote g as the subgraph
induced by S plus other candidate vertices (not pruned by
vertices in S) to be considered for forming an output subgraph;
we can thus consider the task as a mining problem on the
smaller subgraph g rather than the input graph. Using divide
and conquer, g shrinks as we move down the set-enumerate
search tree. Now consider Fig. 2, where we denote the size of g
by |g|: (1) the IO cost of materializing g by collecting vertices
and edges is linear to |g|; and (2) the CPU cost of mining g
increases quickly with |g| since the mining algorithm has a
high time complexity. Thus, even though network is slower
than CPUs, the CPU cost of mining g surpasses the IO cost to
construct g when |g| is not too small. This enables hiding IO
cost inside the concurrent CPU processing when overlapped.

To overlap computation and communication, G-thinker
keeps a pool of active tasks for processing at any time, so
that while some tasks are waiting for their data (to construct
subgraph g), other tasks (e.g., with g already constructed)
can continue their computation (i.e., mining) to keep CPU

cores busy. This approach also bounds memory cost as only a
bounded pool of tasks is in memory, refilled with new tasks
only when there are insufficient tasks to keep CPU cores busy.
Contributions. The contributions of G-thinker are as follows:
• The framework design satisfies all 7 desirabilities estab-

lished in Sec. III necessary for scalability and efficiency.
• A novel vertex cache design is proposed to support

highly-concurrent vertex accesses by tasks.
• A lightweight task scheduling workflow is designed with

low scheduling overhead, which is able to balance the
workloads and minimize CPU idle time.

• An intuitive subgraph-centric API allows programmers to
use task-based vertex pulling to write mining algorithms.

• We open-sourced G-thinker at http://www.cs.uab.edu/
yanda/gthinker with detailed documentation, and have
conducted extensive experiments on Microsoft Azure to
evaluate its superior scalability and efficiency.

The rest of this paper is organized as follows. Sec. II reviews
existing graph-parallel systems and explains why they are IO-
bound. Sec. III then establishes 7 desirable features for a
scalable and efficient subgraph mining system, and overviews
G-thinker’s system architecture that meets all the 7 features.
Sec. IV introduces the adopted subgraph-centric programming
API, and Sec. V describes the system design focusing on the
two pillars to achieve CPU-bound performance, i.e., vertex
cache and task management. Finally, Sec. VI reports the
experimental results and Sec. VII concludes this paper.

II. RELATED WORK

This section explains the concepts of IO-bound and CPU-
bound workloads, and reviews existing graph-parallel systems.
IO-bound v.s. CPU-bound. The throughput of CPU compu-
tation is usually much higher than the IO throughput of disks
and the network. However, existing Big Data systems dom-
inantly target IO-bound workloads. For example, the word-
count application of MapReduce [10] emits every word onto
the network, and for each word that a reducer increments
its counter, the word needs to be received by the reducer
first. Similarly, in the PageRank application of Pregel [18],
a vertex needs to first receive a value from its in-neighbor,
and then simply adds it to the current PageRank value. IO-
bound execution can be catastrophic for computing problems
beyond low-complexity ones. For example, even for triangle
counting whose time complexity O(|E|1.5) is not very high, [9]
reported that the state-of-the-art MapReduce algorithm uses
1,636 machines and takes 5.33 minutes on a small graph, on
which their single-threaded algorithm uses < 0.5 minute.

In fact, McSherry et. al [20] have noticed that existing
systems are comparable and sometimes slower than a single-
threaded program. In another recent post by McSherry [1], he
further indicated that the current distributed implementations
“scale” (i.e., using aggregate IO bandwidth) but performance
does not get to “a simple single-threaded implementation”.
Categorization of Graph-Parallel Systems. Our book [33]
has classified graph-parallel systems into vertex-centric sys-
tems, subgraph-centric systems and others (e.g., matrix-based).



Vertex-centric systems compute one value for each vertex
(or edge), and the output data volume is linear to that of
the input graph. In contrast, subgraph-centric systems output
subgraphs that may overlap, and the output data volume can be
exponential to that of the input graph. Note that based on this
categorization, block-centric systems such as Blogel [35] and
Giraph++ [30] are merely extensions to vertex-centric systems.

Vertex-Centric Systems. Pioneered by Google’s Pregel [18],
a number of distributed systems have been proposed for
simple iterative graph processing [19]. They advocate a think-
like-a-vertex programming model, where vertices communi-
cate with each other by message passing along edges to
update their states. Computation repeats in iterations until
the vertex states converge. In these systems, the number of
messages transmitted in an iteration is usually comparable
to the number of edges in the input graph, making the
workloads communication-bound. To avoid communication,
single-machine vertex-centric systems emerge [14], [25], [7]
by streaming vertices and edges from disk to memory for
batched state updates; their workloads are still disk IO-bound.
The vertex-centric programming API is also not convenient for
writing subgraph mining algorithms that operate on subgraphs.

Subgraph-Centric Systems. Recently, a few systems began
to explore a think-like-a-subgraph programming model for
mining subgraphs including distributed systems NScale [23],
Arabesque [29] and G-Miner [6], and single-machine systems
RStream [32] and Nuri [13]. Despite more convenient pro-
gramming interfaces, their execution is still IO-bound.

Assume that subgraphs of diameter k around individual ver-
tices need to be examined, then NScale (i) first constructs those
subgraphs through BFS around each vertex, implemented as
k rounds of MapReduce computation to avoid keeping the
numerous subgraphs in memory; (ii) it then mines these
subgraphs in parallel. This design requires that all subgraphs
be constructed before any of them can begin its mining,
leading to poor CPU utilization and the straggler’s problem.

Arabesque [29] is a distributed system where every ma-
chine loads the entire input graph into memory, and subgraphs
are constructed and processed iteratively. In the i-th iteration,
Arabesque expands the set of subgraphs with i edges/vertices
by one more adjacent edge/vertex, to construct subgraphs with
(i+1) edges/vertices for processing. New subgraphs that pass
a filtering condition are further processed and then passed to
the next iteration. For example, to find cliques, the filtering
condition checks whether a subgraph g is a clique; if so, g is
passed to the next iteration to grow larger cliques. Obviously,
Arabesque materializes subgraphs represented by all nodes in
the set-enumeration tree (recall Fig. 1) in a BFS manner which
is IO-bound. As an in-memory system, Arabesque attempts to
compress the numerous materialized subgraphs using a data
structure called ODAG, but it does not address the scalability
limitation as the number of subgraphs grows exponentially.

The current paper is the conference submission of our G-
thinker preprint [34] with the execution engine design signif-
icantly improved. Our preprint has briefly described our task-

based vertex pulling API, where tasks are spawned from indi-
vidual vertices, and a task can grow its associated subgraph by
requesting adjacent vertices and edges for subsequent mining.
The API is then followed by G-Miner [6], as indicated by the
statement below Figure 1 of [6]: “The task model is inspired by
the task concept in G-thinker”. The old G-thinker prototype
is to verify that our new API can significantly improve the
mining performance compared with existing systems, but the
execution engine is a simplified IO-bound design that does
not even consider multithreading; it runs multiple processes
in each machine for parallelism which cannot share data.

G-Miner adds multithreading support to our old prototype
to allow tasks in a machine to share vertices, but the design
is still IO-bound. Specifically, the threads in a machine share
a common list called RCV cache for caching vertex objects
which becomes a bottleneck of task concurrency. G-Miner also
requires graph partitioning as a preprocessing job, but real big
graphs often do not have a small cut and are expensive to
partition; we thus adopt the approach of Pregel to hash vertices
to machines by vertex ID to avoid this startup overhead.

All tasks in G-Miner are generated at the beginning (rather
than when task pool has space as we do) and kept in a
disk-resident priority queue. Each task t in the queue is
indexed by a key computed via locality-sensitive hashing
(LSH) on its set of requested vertices, to let nearby tasks in the
queue share requested vertex objects to maximize data reuse.
Unfortunately, this design does more harm than good: because
tasks are not processed in the order of their generation (but
rather LSH order), an enormous number of tasks are buffered
in the disk-resident task queue since some partially computed
tasks are sitting at the end of the queue while new tasks
are dequeued to expand their subgraphs. Thus, reinserting a
partially processed task into the disk-resident task queue for
later processing becomes the dominant cost for a large graph.

RStream [32] is a single-machine out-of-core system which
proposes a so-called GRAS model to simulate Arabesque’s
filter-process model, utilizing relational joins. Their exper-
iments show that RStream is several times faster than
Arabesque even though it uses just one machine, but the im-
provement is mainly because of eliminating network overheads
(recall that Arabesque materializes subgraphs represented by
all nodes in a set-enumeration tree). Also, the execution of
RStream is still IO-bound as it is an out-of-core system.

Nuri [13] aims to find the k most relevant subgraphs using
only a single computer, by prioritized subgraph expansion.
However, since the subgraph expansion is in a best-first
manner (Nuri is single-threaded), the number of buffered sub-
graphs can be huge, and their on-disk subgraph management
can be IO-bound. As Sec. VI shall show, RStream and Nuri are
not anywhere close to G-thinker running on a single machine.

III. G-THINKER OVERVIEW

Fig. 3 shows the architecture of G-thinker on a cluster of 3
machines. We assume that a graph is stored as a set of vertices,
where each vertex v is stored with its adjacency list Γ(v) that
keeps its neighbors. G-thinker loads an input graph from the
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Figure 3. G-thinker Architecture Overview

Hadoop Distributed File System
(HDFS). As Fig. 3 shows, each ma-
chine only loads a fraction of ver-
tices along with their adjacency lists
into its memory, kept in a local
vertex table. Vertices are assigned
to machines by hashing their vertex
IDs, and the aggregate memory of all
machines is used to keep a big graph.
The local vertex tables of all ma-
chines form a distributed key-value
store where any task can request for
Γ(v) using v’s ID.

G-thinker computes in the unit of
tasks, and each task is associated
with a subgraph g that it constructs and mines upon. For
example, consider the problem of mining maximal γ-quasi-
cliques (γ ≥ 0.5) for which [17] shows that any two vertices
in a γ-quasi-clique must be within 2 hops. One may spawn a
task from each individual vertex v, request for its neighbors
(in fact, their adjacency lists) in Iteration 1, and when receiving
them, request for the 2nd-hop neighbors (in fact, their adja-
cency lists) in Iteration 2 to construct the 2-hop ego-network of
v for mining maximal quasi-cliques using a serial algorithm
like that of [17]. To avoid double-counting, a vertex v only
requests those vertices whose ID is larger than v (recall from
Fig. 1), so that a quasi-clique whose smallest vertex is u must
be found by the task spawned from u.

Such a subgraph mining algorithm is implemented by speci-
fying 2 user-defined functions (UDFs): (1) spawn(v) indicating
how to spawn a task from each individual vertex in the
local vertex table; (2) compute(frontier) indicating how a task
processes an iteration where frontier keeps the adjacency list
of the requested vertices in the previous iteration. In a UDF,
users may request the adjacency list of a vertex u to expand
the subgraph of a task, or even decompose the subgraph by
creating multiple new tasks to divide the mining workloads.

As Fig. 3 shows, each machine also maintains a remote ver-
tex cache to keep the requested vertices (and their adjacency
lists) that are not in the local vertex table, for access by tasks
via the input argument frontier to UDF compute(frontier). This
allows multiple tasks to share requested vertices to minimize
redundancy, and once a vertex in the cache is no longer
requested by any task in the machine, it can be evicted to make
room for other requested vertices. In UDF compute(frontier),
a task is supposed to save the needed vertices and edges in
frontier into its subgraph, as the vertices in frontier are released
by G-thinker right after compute(.) returns.

To maximize CPU core utilization, each mining thread
keeps a task queue of its own to stay busy and to avoid
contention. Since tasks are associated with subgraphs that may
overlap, it is infeasible to keep all tasks in memory. G-thinker
only keeps a pool of active tasks in memory at any time by
controlling the pace of task spawning. If a task is waiting
for its requested vertices, it is suspended so that the mining
thread can continue to process the next task in its queue; the

suspended task will be added back to the queue once
all its requested vertices become locally available, in which
case we say that the task is ready.

Note that a task queue can become full if a task generates
many subtasks into its queue, or if many waiting tasks become
ready all at once (due to other machines’ responses). To keep
the number of in-memory tasks bounded, if a task queue is
full but a new task is to be inserted, we spill a batch of tasks
at the end of the queue as a file to local disk to make room.

As the upper-left corner of Fig. 3 shows, each machine
maintains a list of task files spilled from the task queues of
mining threads. To minimize the task volume on disks, when
a thread finds that its task queue is about to become empty,
it will first refill tasks into the queue from a task file (if it
exists), before choosing to spawn more tasks from vertices
in local vertex table. Note that tasks are spilled to disks and
loaded back in batches to minimize the number of random IOs
and lock-contention by mining threads on the task file list.

For load balancing, machines about to become idle will steal
tasks from busy ones (could be spawned from their local vertex
table) by prefetching a batch of tasks and adding them to the
task file list on local disk. The tasks will be loaded by a mining
thread for processing when its task queue needs a refill.

Desirabilities. Our design always guarantees that a mining
thread has enough tasks in its queue to keep itself busy (unless
the job has no more tasks to refill), and since each task has
sufficient CPU-heavy mining workloads, the linear IO cost of
fetching/moving data is seldom a bottleneck.

Other desirabilities include: (1) bounded memory consump-
tion: only a pool of tasks is kept in memory at any time,
local vertex table only keeps a partition of vertices, and
remote vertex cache has a bounded capacity; (2) tasks spilled
from task queues are written to disks (and loaded back)
in batches to achieve serial disk IO, and spilled tasks are
prioritized when refilling task queues of mining threads so
that the number of tasks kept on disks is minimized (in fact
negligible according to our experiments); (3) threads in a
machine can share vertex data in the remote vertex cache,
to avoid redundant vertex requesting; (4) in contrast, tasks
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are totally independent (due to divide-and-conquer logic) and
will never block each other; (5) we also batch vertex requests
and responses for transmission to combat round-trip time and
to ensure throughput; (6) if a big task is divided into many
tasks, these tasks will be spilled to disks to be refilled to the
task queues of multiple mining threads for parallel processing;
moreover, work stealing among machines will send tasks from
busy machines to idle machines for processing.

We remark that G-thinker is the only system that achieves
these desirabilities and hence CPU-bound mining workloads.
Table I summarizes how existing subgraph-centric systems
compare with G-thinker in terms of these desirabilities.

Challenges. To achieve the above desirabilities, we address the
following challenges. For vertex caching, we need to ask the
following questions: (1) how can we ensure high concurrency
of accessing vertex cache by mining threads, while inserting
newly requested vertices and tracking whether an existing
vertex can be evicted; (2) how can we guarantee that a task
will not request for the adjacency list of a vertex v which has
been requested by another task in the same machine (even if
response Γ(v) has not been received) to avoid redundancy.

For task management, we need to consider (1) how to
accommodate tasks that are waiting for data, (2) how can those
tasks be timely put back to task queues when their data become
ready, and (3) how to minimize CPU occupancy due to task
scheduling. We will look at our solution to the above issues
in Sec. V, after we present G-thinker API in Sec. IV below.

IV. PROGRAMMING MODEL

Without loss of generality, assume that an input graph G =
(V,E) is undirected. Throughout this paper, we denote the
set of neighbors of a vertex v by Γ(v), and denote those in
Γ(v) whose IDs are larger than v by Γ>(v). We also abuse
the notation v to mean the singleton set {v}. Below, we first
introduce concepts including pull, task, comper and worker.

Recall from Fig. 3 that G-thinker loads an input graph from
HDFS into a distributed memory store where a task can request
Γ(v) by providing v’s ID. Here, we say that the task pulls v.

Different tasks are independent, while each task t performs
computation in iterations. If t needs to wait for data after an
iteration, it is suspended to release CPU core. Another iteration
of t will be scheduled once all its responses are received.

Vertex<KeyT, ValueT>
KeyT id;
ValueT value;

Comper<TaskT>
UDFs:
task_spawn(VertexT*	v)
compute(TaskT & t, array<VertexT *> & frontier)
Other Functions:
add_task(TaskT*	t)

Task<VertexT, ContextT>
Fields:
Subgraph<VertexT> g;
ContextT context;
Function:
pull(KeyT id)

Subgraph<VertexT>
Functions:
addVertex(VertexT & v)
getVertex(KeyT id)

Figure 4. Programming Interface

A process called worker is run on each machine, which
in turn runs multiple mining threads called compers. Fig. 3
shows that each comper maintains its own task queue, denoted
by Qtask hereafter. Given these concepts, let us see the API.

Programming Interface. G-thinker is written in C++. Its
programming interface hides away execution details, and users
only need to properly specify the data types and implement
serial user-defined functions (UDFs) with application logic.

Fig. 4 sketches the core API including four classes to
customize. (1) Vertex: each Vertex object v maintains an ID
and a value field (which usually keeps v’s adjacency list).
(2) Subgraph provides the abstraction of a subgraph. (3) Task:
a Task object maintains a subgraph g and another field context
for keeping other contents. A task also provides a function
pull(v) to request Γ(v) for use by the task in the next iteration.

The classes introduced so far have no UDF and users only
need to specify the C++ template arguments and to rename
the new type using “typedef” for ease of use. In contrast,
(4) Comper is a class that implements a comper thread, and
provides two UDFs: (i) task spawn(v), where users may
create tasks from a vertex v, and call add task(t) to add
each created task t to Qtask. (ii) compute(t, frontier), which
specifies how an existing task t is processed for one iteration;
compute(.) returns true if another iteration of it should be
called on task t, and false if the task is finished; input argument
frontier is an array of previously requested vertices. When
compute(.) is called, the adjacency lists of vertices in frontier
should have been pulled to the local machine, and a task may
expand its subgraph g by incorporating the pulled data and
then continue to pull the neighbors of a vertex in frontier.

If g is too big, in compute(.) users may further decompose
the task and add the generated tasks to the comper’s Qtask by
calling add task(.). These tasks may be spilled to disk due to
Qtask being full, and then fetched by other compers or workers.

There are also additional customizable classes omitted in
Fig. 4. For example, (5) Worker<ComperT> implements
a worker process, and provides UDFs for data import/export
(e.g., how to parse a line on HDFS into a vertex object).
(6) Aggregator allows users to aggregate results computed by
tasks. In Comper::compute(.), users can let a task aggregate
data to the aggregator or get the current aggregated value. If



aggregator is enabled, each worker runs an aggregator thread,
and these threads at all workers synchronize the aggregated
values periodically at a user-specified frequency (1 s by
default). Before job terminates, another synchronization is
performed to make sure data from all tasks are aggregated.

We use aggregator in many applications: to find maximum
cliques, aggregator tracks the maximum clique currently found
for compers to prune search space; while in triangle counting,
each task can sum the number of triangles currently found to
a local aggregator in its machine; these local counts are peri-
odically summed to get the current total count for reporting.

Users can also trim the adjacency list of each vertex using
a (7) Trimmer class. For example, for subgraph matching,
vertices and edges (i.e., items in Γ(v)) in the data graph whose
labels do not appear in the query graph can be safely pruned.
Also, when following a search tree as in Fig. 1, we can trim
each vertex v’s adjacency list Γ(v) into Γ>(v) since a vertex
set S is always expanded by adjacent vertices with larger IDs.

If enabled, trimming is performed right after graph loading,
so that later during vertex pulling, only trimmed adjacency
lists are responded back in order to reduce communication.

An Application: Maximum Clique Finding. We next illus-
trate how to write a G-thinker program for the problem of
finding a maximum clique following the search tree in Fig. 1.

We denote a task by 〈S,ext(S)〉, where S is the set of vertices
already included in a subgraph g, and ext(S) is the set of
vertices that can extend g into a clique. Since vertices in a
clique are mutual neighbors, a vertex in ext(S) should be the
common neighbor of all vertices in S. Initially, top-level tasks
are 〈S,ext(S)〉= 〈v,Γ>(v)〉, one for each vertex v.

Let us generalize our notations to denote the common neigh-
bors of vertices in set S by Γ(S), and denote those in Γ(S) with
IDs are larger than all vertices in S by Γ>(S). Since vertices in
a clique are mutual neighbors, we can recursively decompose
a task 〈S,Γ>(S)〉 (note that ext(S) = Γ>(S)) into |ext(S)| sub-
tasks: 〈S∪u, Γ>(S)∩Γ>(u)〉, one for each u ∈ ext(S).

To process task 〈S,ext(S)〉, one only needs to mine the
subgraph induced by ext(S) (denoted by g) for its cliques,
because for any clique C found in g, C∪S is a clique of G.

Based on the above idea, Comper’s 2 UDFs are sketched
in Fig. 5, where we denote the vertex set of a subgraph g by
V (g). Also, for a task t = 〈S,ext(S)〉 in our problem, t.context
keeps S, i.e., the set of vertices already assumed to be in a
clique to find. We thus directly use t.S instead of t.context.
We assume that an aggregator maintains the maximum clique
currently found, and we denote its vertex set by Smax. We also
assume that for any vertex v, Γ(v) has been trimmed as Γ>(v).

First consider task spawn(v) in Fig. 5, which directly exits
if v cannot form a clique larger than Smax even if all v’s
neighbors are included (Line 1), where Smax is obtained from
the aggregator. If not pruned, a task t is created (Line 2) which
corresponds to a top-level task 〈S,ext(S)〉= 〈v,Γ>(v)〉. Line 3
sets t.S set as {v}. To construct t.g as the subgraph induced
by Γ>(v), t requires the edges of vertices in Γ>(v) and thus it

Comper::task_spawn(v)
1: if |Smax| ≥  1 + |Γ>(v)| then return
2: create a task t    // t = <v, Γ>(v)>
3: t.S← {v}
4: for each u� Γ>(v) do t.pull(u)
5: add_task(t)

Comper::compute(t, frontier)
1 : if |t.S| = 1 then // t.S = {v}

// frontier contains Γ>(u) for all u�Γ>(v)
2 : construct t.g as the subgraph of G induced by Γ>(v)

// now consider a general task t = <S, Γ>(S)>
3 : if |V(t.g)| > τ then
4 : for each u� V(t.g) do
5 : create a task t’
6 : t’.S← t’.S�{u}
7 : construct t’.g as the subgraph of t.g induced by Γ>(t.S�u)

// here, Γ>(t.S�u) is u’s “filtered” adjacency list Γ>(u) in t.g
8 : if |t’.S| + |V(t’.g)| > |Smax| then add_task(t’)
9 : else delete t’
10: else // t.g has no more than τ vertices
11: if |t.S| + |V(t.g)| ≤ |Smax| then return false
12: S’max← run serial algorithm on t.g,

with current maximum clique size = |Smax| – |t.S|
13: if |S’max| > |Smax| – |t.S|) then Smax ← t.S� S’max
14: return false

Figure 5. Application Code for Finding Maximum Clique

pulls these vertices (Line 4). Finally, the task is added to task
queue Qtask of the comper that calls task spawn(v) (Line 5).

Next consider compute(t, f rontier). If |t.S| = 1 (Line 1),
then t is a newly spawned top-level task with S = {v} and
frontier containing all pulled vertices ∈ Γ>(v). Line 2 thus
constructs t.g using vertices (and their adjacency lists) in
frontier. When constructing t.g, we filter any adjacency list
item w if w 6∈Γ>(v) since w is 2 hops away from v. In contrast,
if the condition in Line 1 does not hold, then the current task
t was generated by decomposing a bigger upper-level task,
which should have already constructed t.g and we skip Line 2.

If t.g is too big, e.g., has more than τ vertices (Line 3),
we continue to create next-level tasks that are with smaller
subgraphs (Lines 4–9). Here, τ is a user-specified threshold
(set as 400,000 by default which works well). Let the current
task be t = 〈S, Γ>(S)〉, then Lines 5–7 create a new task
t ′ = 〈S∪u,Γ>(S)∩Γ>(u)〉 for each u∈ Γ>(S). If t ′.S extended
with all vertices in t ′.g, namely ext(t ′.S), still cannot form a
clique larger than Smax, then t ′ is pruned and thus freed from
memory (Line 9); otherwise, t ′ is added to Qtask (Line 8) so
that the system will schedule it for processing.

If t.g is small enough (Line 10), it is mined and Smax is
updated if necessary (Lines 11-13). Specifically, we prune t
if t.S extended with all vertices in t.g, namely ext(t.S), still
cannot form a clique larger than Smax (Line 11). Otherwise, we
run the serial mining algorithm of [31] on t.g assuming that a
clique of size ∆ = |Smax|−|t.S| is already found (for pruning).
This is because vertices of t.S are already assumed to be in
a clique to find, and to generate a clique larger than Smax,
t.S should be extended with a clique of t.g with more than
∆ vertices. Line 13 updates Smax if a larger clique is formed
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with t.S plus the largest clique of t.g, denoted by S′max.
Here, compute(t, f rontier) always returns false (Lines 11

and 14) to indicate that t is finished and can be freed from
memory. In other applications like mining quasi-cliques, t may
need to pull neighbors of vertices in frontier to further grow
t.g, in which case compute(t, f rontier) should return true.

Also note that set-enumeration tree is not the only way
to avoid redundancy. More algorithms can be found in our
preprint [34] where a graph matching algorithm partitions the
search space using different instances of the same vertex label.

V. SYSTEM DESIGN & IMPLEMENTATION

As Sec. III indicates, G-thinker has 2 key modules that
enable CPU-bound execution: (1) a vertex cache for accessing
by tasks with a high concurrency and (2) a lightweight task
generation and scheduling module which delivers a high task
throughput while keeping memory consumption bounded. We
shall discuss them in Sec. V-A and V-B, respectively. Now,
we first overview the components and threads in G-thinker.

Refer to Fig. 3 again. Each worker machine maintains a
local vertex table (denoted by Tlocal hereafter), and a cache
for remote vertices (denoted by Tcache hereafter). When a
task t requests v 6∈ Tlocal , the request is sent to the worker
holding 〈v,Γ(v)〉 in Tlocal ; the received response 〈v,Γ(v)〉 is
then inserted into Tcache. Refer to Task::pull(v) from Fig. 4
again. If v ∈ Tlocal , t.pull(v) obtains v directly; otherwise, t
has to wait for v’s response to arrive and we say that t is
pending. When all vertices that t waits for are received into
Tcache, we say that t is ready. In Comper::compute(t, f rontier),
each element in f rontier is actually a pointer to either a local
vertex in Tlocal , or a remote vertex cached in Tcache.

Each machine (or, worker) runs 4 kinds of threads: (1) com-
pers which compute tasks by calling Comper’s 2 UDFs;
(2) communication threads which handle vertex pulling;
(3) garbage collecting thread (abbr. GC) which keeps Tcache’s
capacity bounded by periodically evicting unused vertices;
(4) the main thread which loads input data, spawns all other
threads, and periodically synchronizes job status to monitor
progress, and to decide task stealing plans among workers.

G-thinker’s communication module sends requests and re-
sponses in batches to guarantee throughput while keeping
latency low. Compers append pull-requests to the sending

module, and the receiving module receives responses, inserts
the received vertices to Tcache, and notifies pending tasks.
A. Data Cache for Remote Vertices

In a machine, multiple compers may concurrently access
Tcache for vertices, while the received responses also need
to be concurrently inserted into Tcache; also, GC needs to
concurrently evict unused vertices to keep Tcache bounded.

To support high concurrency, we organize Tcache as an array
of k buckets, each protected by a mutex. A vertex object v
is maintained in a bucket Bi where i is computed by hashing
v’s ID. Operations on two vertices v1 and v2 can thus happen
together as long as v1 and v2 are hashed to different buckets.

Fig. 6 illustrates the design of Tcache with k = 10 buckets
and hash(v) = v mod 10, where each row corresponds to a
bucket. In reality, we set k = 10,000 which exhibits low bucket
contention. As Fig. 6 shows, each bucket (row) consists of 3
hash tables (column cells): a Γ-table, a Z-table and an R-table:
• Γ-table keeps each cached vertex 〈v,Γ(v)〉 for use by

compers. Each vertex entry also maintains a counter lock-
count(v) tracking how many tasks are currently using v,
which is necessary to decide whether v can be evicted.

• Z-table (or, zero-table) keeps track of those vertices in Γ-
table with lock-count(v) = 0, which can be safely evicted.
Maintaining Z-table is critical to the efficiency of GC,
since GC can quickly scan each Z-table (rather than the
much larger Γ-table) to evict vertices, minimizing the
time of locking a bucket to allow access by other threads.

• R-table (or, request-table) tracks those vertices already
requested but whose responses with Γ(v) have not been
received yet, and it is used to avoid sending any duplicate
request. Each vertex v in the R-table also maintains lock-
count(v) to track how many tasks are waiting for v, which
will be transferred into Γ-table when Γ(v) is received.

Atomic Operations on Tcache. We now explain how each
bucket of Tcache is updated atomically by various threads (e.g.,
compers, response receiving thread, and GC) with illustrations
using Fig. 6. There are 4 kinds of operations OP1–OP4:
(OP1) First, a comper may request for Γ(v) to process a task.
In this case, v’s hashed bucket is locked for update. Case 1: if
v is found in Γ-table, lock-count(v) is incremented and Γ(v) is
directly returned (see Vertices 10 and 11 in Fig. 6). Moreover,
if lock-count(v) was 0, it should be erased from Z-table (e.g.,



Vertex 10). Otherwise, Case 2.1: if v is not found in R-table
(see Vertex 21 in Fig. 6), then it is requested for the first time,
and thus v is inserted into R-table with lock-count(v) = 1, and
v’s request is appended to the sending module for batched
transmission. Otherwise, Case 2.2: v is already requested, and
thus lock-count(v) is incremented to indicate that one more
task is waiting for Γ(v) (see Vertex 20).
(OP2) When a response receiving thread receives response
〈v,Γ(v)〉, it will lock v’s hashed bucket to move v from R-table
to Γ-table (see Vertex 22 in Fig. 6). Note that lock-count(v)
is directly transferred from v’s old entry in R-table to its new
entry in Γ-table, which also obtains Γ(v) from the response.
(OP3) When a task t finishes an iteration, for every requested
remote vertex v, t will release its holding of Γ(v) in the Γ-
table of v’s hashed bucket. This essentially locks the bucket to
decrement lock-count(v) in the Γ-table (see Vertices 12 and 13
in Fig. 6), and if lock-count(v) becomes 0, v is inserted into the
bucket’s Z-table to allow its eviction by GC (see Vertex 12).
(OP4) When GC locks a bucket to evict vertices in Z-table, GC
removes their entries in both Γ-table and Z-table. Imagine, e.g.,
evicting Vertex 12 from Tcache shown on the right of Fig. 6.

As a bucket is protected by a mutex, only one of the above
4 operations OP1 – OP4 may proceed at each time.

Lifecycle of a Remote Vertex. Let us denote the total number
of vertices in both Γ-tables and R-tables by scache, GC aims
to keep scache bounded by a capacity ccache. By default, we set
ccache = 2M which takes a small fraction of machine memory.

We include entries in R-tables into scache because if v is in
an R-table, Γ(v) will finally be received and added to Γ-table.
In contrast, we ignore entries in Z-tables when counting scache
since they are just subsets of entries in Γ-tables. The number
of buffered messages is also bounded by scache since a request
for v (and its response) implies an entry of v in an R-table.

We now illustrate how OP1–OP4 update scache by consid-
ering the lifecycle of a remote vertex v initially not cached in
Tcache. When a task t requests v, the comper that runs t will
(1) insert v’s entry into R-table (we refer to the R-table of the
bucket where v is hashed, but omit the mentioning of bucket
hereafter for simplicity), hence scache = |Γ-tables|+ |R-tables|
is incremented by 1, and (2) trigger the sending of v’s request.

When response 〈v,Γ(v)〉 is received, the receiving thread
moves v’s entry from R-table to Γ-table (hence scache remains
unchanged). Finally, when v is released by all related tasks,
GC may remove v from Tcache (hence scache is decremented
by 1), including v’s entries in both Γ-table and Z-table. If a
subsequent task requests v again, the above process repeats.

Keeping scache Bounded. Since scache is updated by compers
and GC, we alleviate contention by maintaining scache ap-
proximately: each comper (resp. GC) thread maintains a local
counter that gets committed to scache when it reaches a user-
specified count threshold δ (resp. −δ ), by adding it to scache
and resetting the counter as 0. We set δ = 10 by default, which
exhibits low contention on scache, and a small estimation error
compared with the magnitude of scache: bounded by ncomper×δ

where ncomper is the number of compers in a machine.

We try to keep the size of Tcache, i.e., scache, bounded by
capacity ccache, and if Tcache overflows, compers stop fetching
new tasks for processing, while old tasks still get processed
after their requested vertices are received in Tcache, so that
these vertices can then be released to allow GC to evict them
to reduce scache. To minimize GC overhead, we adopt a “lazy”
strategy which evicts vertices only when Tcache overflows. To
remove δcache = (scache−ccache) vertices, the buckets of Tcache
are checked by GC in a round-robin order: GC locks one
bucket Bi at a time to evict vertices tracked by Bi’s Z-table
one by one. This process goes on till δcache vertices are evicted.

In our lazy strategy, compers stop fetching new tasks only if
scache > (1+α) ·ccache, where α > 0 is a user-defined overflow
tolerance parameter. GC periodically wakes up to check this
condition. If scache ≤ (1+α) · ccache, GC sleeps immediately
to release its CPU core. Otherwise, GC attempts to evict
up to δcache = (scache− ccache) > α · ccache vertices, which is
good since batched vertex removal amortizes bucket locking
overheads. GC may fail to remove δcache vertices since some
tasks are still holding their requested vertices for processing,
but enough vertices will be released finally for GC to remove.
This is because these tasks will complete their current iteration
and release their requested vertices. We set α = 0.2 by default
which works well (see Sec. VI Table V (b) for the details).

B. Task Management
G-thinker aims to minimize task scheduling overheads.

Tasks are generated and/or fetched for processing only if
memory permits; otherwise, G-thinker focuses on finishing the
current active tasks to release resources for taking more tasks.

Task Containers. At any time, a pool of tasks are kept in
memory, which allows CPU cores to process ready tasks when
pending tasks are waiting for requested vertices. Specifically,
each comper maintains in-memory tasks in 3 task containers:
a task queue Qtask that we already see, a task buffer Btask and
a task table Ttask. We now introduce why they are needed.

Fig. 7 (right side) summarizes the components in a comper,
and its interaction with other worker components shared by all
compers in a machine (left side). The upper-left corner shows
the local vertex table Tlocal that holds locally loaded vertices,
which are used to spawn new tasks. The next vertex in Tlocal
to spawn new tasks is tracked by the “next” pointer.
(1) Task Queue Qtask. We have introduced it before: for
example, a task t is added to Qtask when add task(t) (c.f.,
Fig. 4) is called. Since compers do not share a global task
queue, contention due to task fetching is minimized, but it is
important to keep Qtask not too empty so that its comper is
kept busy computing tasks. To achieve this goal, we define a
task-batch to contain C tasks, and try to keep Qtask to contain
at least C tasks (i.e., one batch). By default, C = 150 which is
observed to deliver high task throughput. Whenever a comper
finds that |Qtask| ≤ C, it tries to refill Qtask with a batch of
tasks so that |Qtask| gets back to 2C.

Also, the capacity of Qtask should be bounded to keep
memory consumption bounded, and we set it to contain at
most 3C tasks. When Qtask is full and another task t needs to
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be appended to Qtask, the last C
tasks in Qtask are spilled as a batch
into a file on disk for later process-
ing, so that t can then be appended
rendering |Qtask|= 2C+1. This de-
sign allows tasks to be spilled to
disk(s) in batches to ensure sequen-
tial IO. Each machine tracks the
task files with a concurrent linked
list [21] L f ile of file metadata for
later loading, as shown in Fig. 7
with the list head and tail marked.

Recall that tasks are refilled when
|Qtask| ≤C. To refill tasks, (i) L f ile
is examined first and a file is di-
gested (if it exists) to load its C
tasks; (ii) if L f ile is empty, a comper then tries to generate
new tasks from those vertices in Tlocal that have not spawned
tasks (using UDF Comper::task spawn(v)), by locking and
forwarding the “next” pointer of Tlocal .

This strategy prioritizes partially-processed tasks over new
tasks, which keeps the number of disk-buffered tasks minimal,
and encourages data reuse in Tcache. While task spilling only
seldom occurs due to our prioritizing rule, it still needs to be
properly handled since (1) many pending tasks may become
ready together to be added to Qtask, and (2) a task with a big
subgraph may generate many new tasks and add them to Qtask.

While refilling sources like L f ile and Tlocal are shared by all
compers in a machine, lock contention cost is amortized since
a batch of tasks are fetched each time a resource is locked.
(2) Task Buffer Btask. Since Qtask needs to be refilled from
the head of the queue and to spill tasks from the tail, both
by its comper, Qtask is designed as a deque only updated by
one thread, i.e., its comper. Thus, when a response receiving
thread finds that a pending task t becomes ready, it has to
append t to another concurrent queue Btask (see Fig. 7) to be
later fetched by the comper into Qtask for processing.

(3) Task Table Ttask. Recall that pending tasks are suspended
and properly notified when responses arrive. A comper keeps
its pending tasks in a hash table Ttask (see Fig. 7). Since
each machine runs multiple compers, when response Γ(v) is
received, the receiving thread needs to update the status of
those tasks from all compers that are waiting for v, i.e., for
each pending task t, it needs to track which comper holds t.

For this purpose, each comper maintains a sequence number
nseq. Whenever it inserts a task t into Ttask, it associates t with
a 64-bit task ID id(t) which concatenates a 16-bit comper ID
with the 48-bit nseq, and nseq is then incremented for use by
the next task to insert. Given id(t), the receiving thread can
easily obtain the comper that holds t, to get its Ttask for update.

In Fig. 6, we simplified vertex v’s entry in an R-table
as maintaining only a counter lock-count(v), but it actually
maintains the ID list of those tasks that requested v (see Fig. 7).

Assume that a task t requests a set of vertices P(t) in an
iteration. In Ttask in Fig. 7, an entry for a task t maintains key

id(t) and value 〈met(t),req(t)〉, where req(t) denotes
the number of requested vertices |P(t)|, and met(t) denotes
how many of them are already available. Both met(t) and
req(t) are properly set when a comper inserts t into its Ttask.

When the receiving thread receives Γ(v), v’s entry is moved
from R-table in Tcache to Γ-table as operation OP2 in Sec. V-A
is described. The receiving thread also retrieves v’s pending
task list from its R-table entry, and for each id(t) in the list,
it updates t’s entry in the task table Ttask of the comper that
holds t, by incrementing met(t); if met(t) = req(t), t becomes
ready and the receiving thread moves t from Ttask to Btask.
Algorithm of a Comper. Every comper repeats the two
operations pop() and push() (see Fig. 7) each round, and
executes until the job end-signal is set by the main thread.
• If Btask is not empty, push() gets a task t from Btask and

computes for one iteration. Note that since t is in Btask, its
requested remote vertices have all been cached in Tcache.
If t is not finished (i.e., UDF compute(t, frontier) returns
true), t is appended to Qtask along with the IDs of newly
requested vertices P(t) (see Fig. 7). In UDF compute(.),
when a task t pulls v, v is simply added to P(t). The
actual examination of v on Tcache is done by pop() below.

• If Qtask is not empty, pop() fetches a task t along with
P(t) from the head of Qtask for processing. Every non-
local vertex v∈P(t) is requested from Tcache: (i) if at least
one remote v ∈ P(t) cannot be found from Tcache (i.e., in
Γ-table of v’s hashed bucket, recall OP1 in Sec. V-A), t
is added to Ttask as pending; (ii) otherwise, t computes
for more iterations until when P(t) has remote vertices to
wait for (hence t is added to Ttask), or when t is finished.

Task refilling is handled by pop(). Before pop() pops a task
from Qtask as described above, it first checks if |Qtask| ≤C. If
so, it tries to first fill Qtask with tasks from one of the following
sources in prioritized order: (1) a task file from L f ile, (2) Btask,
(3) spawning new tasks from vertices in Tlocal . This prioritizes
tasks that were processed the earliest, which minimizes the
number of spilled tasks on disks.

A task t always releases all its previously requested non-
local vertices from Tcache after each iteration of computation,
so that they can be evicted by GC in time.



Note that pop() generates new requests (hence adds vertices
to Tcache), while push() consumes responses and releases
vertices on hold in Tcache (so that GC may evict them). A
comper keeps running push() in every round so that if there are
tasks in Btask, they can be timely processed to release space
in Tcache. In contrast, comper runs pop() in a round only if
(1) the capacity of Tcache permits (i.e., scache ≤ (1+α)ccache),
and (2) the number of tasks in Ttask and Btask together does
not exceed a user-defined threshold D (= 8C by default which
is found to provide good task throughput). Otherwise, new
task processing will be blocked till push() unlocks sufficient
vertices for GC to evict. Note that it is important to run push()
in every round so that tasks can keep flowing even after pop()
blocks. If both pop() and push() fail to process a task after
a round, the comper is considered as idle: there is no task
in Qtask and Btask, and there is no more new task to spawn
(but Ttask may contain pending tasks). In this case, the comper
sleeps to release CPU core but may be awakened by the main
thread which synchronizes status periodically if there are more
tasks (e.g., stolen from other workers). A job terminates if the
main thread of all machines find all their compers idle.

One problem remains: consider when a comper pulls P(t) =
{v1,v2, . . . ,v`} in pop() for a popped task t, if v1 6∈ Tlocal ∪
Tcache, t will be added to the comper’s Ttask and its request for
v1 is sent. Now assume that v2, . . . ,v` ∈ Tlocal . If the receiving
thread receives Γ(v1) and updates t’s entry in Ttask before the
comper requests v` and increments met(t), then the receiving
thread fails to move t from Ttask to Btask and t will stay in Ttask
forever. To avoid this problem, in pop(), a comper will check
if met(t) = req(t) after requesting all vertices in P(t) against
Tcache, and if so, it moves t from Ttask to Btask by itself.

Task Stealing. To balance workloads among all machines,
we let all the workers synchronize their task processing
progresses, and let those machines that are about to become
idle to prefetch tasks from heavily-loaded ones for processing.
Currently, the main threads of workers synchronize their pro-
gresses which are gathered at a master worker, who generates
the stealing plans and distributes them back to the main threads
of other workers, so that they can collectively execute these
plans before synchronizing progress again. The number of
remaining tasks at a worker is estimated from |L f ile| and the
number of unprocessed vertices in Tlocal . Tasks stolen by a
worker are added to its L f ile to be fetched by its compers.

Fault Tolerance. G-thinker also supports checkpointing for
fault tolerance: Worker states (e.g., L f ile, Qtask, Ttask and Btask,
and task spawning progress) and outputs can be periodically
committed to HDFS as a checkpoint. When a machine fails,
the job can rerun from the latest checkpoint, but tasks in Ttask
and Btask need to be added back to Qtask in order to request
vertices into Tcache again (as Tcache starts “cold”).

VI. EXPERIMENTS

We compared G-thinker with the state-of-the-art graph-
parallel systems, including (1) the most popular vertex-
centric system, Giraph [8] (to verify that vertex-centric model

Table II
GRAPH DATASETS

Dataset |V| |E| Max Degree Avg Degree
Youtube 1,134,890 2,987,624 28,754 5.27
Skitter 1,696,415 11,095,298 35,455 13.08
Orkut 3,072,441 117,184,899 33,313 76.28
BTC 164,732,473 361,411,047 1,637,619 4.39

Friendster 65,608,366 1,806,067,135 5,124 55.06

Table III
SYSTEM COMPARISON

Dataset Arabesque Giraph G-Miner G-thinker
(a) Triangle Counting (TC):
Youtube 60.3 s / 2.8 GB 74.3 s / 1.5 GB 14.7 s / 1 GB 7.1 s / 0.4 GB
Skitter 90.8 s / 4.8 GB 73.9 s / 3.9 GB 17.1 s / 1.1 GB 9.5 s / 0.5 GB
Orkut 533 s / 17.7 GB 197 s / 15 GB 667 s / 2.3 GB 26.6 s / 1.2 GB
BTC x x > 24 hr / 6.7 GB 181 s / 3 GB

Friendster x x 10915 s / 9.2 GB 516 s / 3.1 GB
(b) Maximum Clique Finding (MCF):
Youtube 58.8 s / 4.7 GB 177 s / 6.2 GB 13.7 s / 1 GB 10.4 s / 0.5 GB
Skitter 145 s / 4.9 GB x 26.2 s / 1.2 GB 85.6 s / 0.6 GB
Orkut 2007 s / 44.7 GB x 691 s / 2.5 GB 95.9 s / 1.3 GB
BTC x x > 24 hr / 7.3 GB 1831 s / 3 GB

Friendster x x 10644 s / 7.4 GB 252 s / 3.4 GB
(c) Subgraph Matching (GM):
Youtube – – 13.2 s / 0.8 GB 5.2 s / 0.5 GB
Skitter – – 13.9 s / 1.1 GB 7.8 s / 0.6 GB
Orkut – – 66.2 s / 2.2 GB 46.7 s / 1.5 GB
BTC – – > 24 hr / 6 GB 153 s / 4.4 GB

Friendster – – 3669 s / 9.2 GB 1762 s / 7 GB
Note: (1) x = Out of memory;   (2) “–” means inapplicable. 

does not scale for subgraph mining), (2) G-Miner [6] open-
sourced at [2], and (3) Arabesque [29]. NScale [23] is not
open-sourced. We also tested the single-machine out-of-core
subgraph-centric system such as RStream [32].

We used the 3 applications also used in the experiments
of [34], [6] for performance study: (1) maximum clique
finding (MCF), (2) triangle counting (TC), and (3) subgraph
matching (GM). We compared with Giraph on MCF and TC
as their vertex-centric algorithms exist [24], [5]. Arabesque
also only provided MCF and TC implementations. All relevant
code can be found at http://www.cs.uab.edu/yanda/gthinker.

Table II shows real graph datasets used: Youtube [39], Skit-
ter [26], Orkut [22], BTC [4] and Friendster [11]. They have
different characteristics, such as size and degree distribution.

All our experiments were conducted on a cluster of 16
virtual machines (VMs) on Microsoft Azure. Each VM (model
D16S V3 deployed with CentOS 7.4) has 16 CPU cores, 64
GB RAM, and is mounted with a 512 GB managed disk.
Each experiment was repeated 10 times, and all reported
results were averaged over the 10 runs. We observed in all
our experiments that the disk space consumed by G-thinker is
negligible (since compers prioritize spilled tasks when refilling
their Qtask), and thus we omit disk space report.

Comparison among Distributed Systems. Table III reports
the (1) running time and (2) peak VM memory consumption
(taking the maximum over all machines) of our 3 applications
over the 5 datasets shown in Table II. We can see that
Arabesque and Giraph incurred huge memory consumption



Table IV
MCF OVER FRIENDSTER: SCALABILITY RESULTS

# VMs G-Miner G-thinker

1 Partitioning Error 1526 s / 16.2 GB

2 Partitioning Error 2694 s / 8.9 GB

4 52755 s / 14 GB 1275 s / 6 GB

8 27458 s / 9 GB 449 s / 4.3 GB

16 10644 s / 7.8 GB 252 s / 3.5 GB

# threads G-Miner G-thinker

1 > 24 hr / 7.8 GB 822 s / 3.5 GB

2 68248 s / 7.8 GB 471 s / 3.5 GB

4 22417 s / 7.9 GB 300 s / 3.5 GB

8 11004 s / 7.9 GB 262 s / 3.5 GB

16 10644 s / 7.8 GB 252 s / 3.5 GB

# threads G-Miner G-thinker

1 Partitioning Error 8970 s / 16.2 GB

2 Partitioning Error 4910 s / 16.2 GB

4 Partitioning Error 2892 s / 16.2 GB

8 Partitioning Error 1938 s / 16.2 GB

16 Partitioning Error 1526 s / 16.2 GB
(a) Horizontal Scalability (b) Vertical Scalability (16 VMs) (c) Vertical Scalability (1 VM)

and could not scale to large datasets like BTC and Friendster,
since they keep materialized subgraphs in memory.

G-Miner is memory-efficient as it keeps tasks (containing
subgraphs) in a disk-resident task priority queue; it is also
more efficient than Arabesque and Giraph. However, while G-
Miner scales to large datasets, its performance is very slow on
them. This is caused by its IO-bound disk-resident task queue,
where task insertions are costly when the data size and hence
task number become large. G-Miner also failed to finish any
application on BTC within 24 hours, which is likely because
of the uneven vertex degree distribution of BTC where the
dense part of BTC incurs enormous computation workloads,
and G-Miner is not able to handle such scenarios efficiently.

As Table III shows, G-thinker consistently uses less memory
than G-Miner and is faster from a few times to 2 orders
of magnitude (e.g., see TC and MCF on Friendster). One
exception is MCF over Skitter, where we find that this is
because of the different task processing order of G-Miner
and G-thinker. Specifically, G-thinker processes tasks approx-
imately in the order of how the vertices in Tlocal are ordered
(as tasks are spawned from vertices in Tlocal on demand
when memory permits), while G-Miner prioritizes tasks using
locality sensitive hashing over P(t), which is the set of vertices
to pull by a task t. MCF uses the latest maximum clique found
to prune search space, and G-Miner happens to process the
maximum clique much earlier. However, this is irrelevant to
system design and really depends on how vertices are ordered
in the input file (and hence in Tlocal after graph loading).

Comparison with Single-Machine Systems. We also ran
RStream whose code for TC and clique listing are pro-
vided [3]. However, their clique code does not output correct
results. For triangle counting, RStream takes 53s on Youtube,
283s on Skitter, and 3713s on Orkut; in contrast, our G-thinker
running with a single machine takes only 4s on Youtube, 30s
on Skitter, and 210s on Orkut. This is no wonder as RStream
runs out-of-core and is IO-bound. For the 2 big graphs BTC
and Friendster, RStream used up all our disk space, while G-
thinker takes 1223s and 4282s, respectively, on one machine.

Nuri is also not competitive with G-thinker, since Nuri
is implemented as a single-threaded Java program while G-
thinker can use all CPU cores for mining. As Figure 11
of [13] shows, Nuri takes over 1000s to find the maximum
clique of Youtube, while our G-thinker demo video on http:
//www.cs.uab.edu/yanda/gthinker shows that running 8 threads
on one machine takes only 9.449s to find the maximum clique.

Scalability. Since both G-thinker and G-Miner can scale to
Friendster, we compare their scalability using the applica-
tion MCF. G-Miner additionally requires vertices to be pre-
partitioned before running the subgraph-centric computation.
Unfortunately, we are not able to partition Friendster when
there are only 2 machines or less, as G-Miner’s partitioning
program reports an error caused by sending more data than
MPI Send allows (the data size becomes negative as it exceeds
the range of “int”), and we denote these results as “Partitioning
Error” in Table IV on system scalability results.

Table IV(a) reports the horizontal scalability when we vary
the number of VMs as 1, 2, 4, 8, 16. We can see that additional
machines generally improves the performance, and G-thinker
is round 50 times faster than G-Miner. The only exception is
when the VM number goes from 1 to 2: running G-thinker
on 1 machine is faster which is because in a single machine,
tasks do not need to request remote vertices and hence wait.

Table IV(b) reports the vertical scalability when we use 16
VMs but vary the number threads (compers for G-thinker) on
each VM as 1, 2, 4, 8, 16. We can see that additional threads
improves the performance of both systems but G-thinker is
significantly faster. However, the improvement from 8 VMs to
16 is not significant because tasks spawned from many low-
degree vertices do not generate large enough subgraphs to hide
IO cost in the computation, but this can be solved by bundling
tasks of low-degree vertices into big tasks as done in [38] (a
potential future work); also, our machines were connected by
GigE and the problem may disappear if 10 GigE is used.

Execution with a single machine is also interesting to
explore when studying vertical scalability, since there are no
remote data to request. Table IV(c) shows the results when we
vary the number of threads (compers for G-thinker) as 1, 2,
4, 8, 16. We observe almost linear speedup for G-thinker (i.e.,
computation is perfectly divided among CPU cores), which is
expected since a task never needs to wait for remote vertices.
System Parameters. G-thinker uses our well-tested stable
system parameters. For example, the capacity of Tcache (i.e.,
ccache) is 2M; while GC evicts vertices only when the size
of Tcache overflows, i.e., scache > (1+α) · ccache with overflow
tolerance parameter α = 0.2. We have conducted extensive
experiments to find the default parameters and to verify that
the performance is insensitive to changes nearby them in
various applications and datasets. Due to space limit, here we
illustrate parameter stability with 2 representative experiments
on parameters ccache and α , respectively. For each parameter
that we change, all other parameters are fixed as default values.



Table V
MCF OVER FRIENDSTER: SYSTEM PARAMETERS (M = 1,000,000)

Ccache Time Memory
20M 210 s 8.4 GB
2M 252 s 3.5 GB

0.2M 451 s 2 GB
0.02M 829 s 1.5 GB

α Time Memory
0.002 262 s 3 GB
0.02 257 s 3.2 GB
0.2 252 s 3.5 GB
2 221 s 3.7 GB

(a) Effect of ccache (b) Effect of α

Table V(a) shows the performance of G-thinker when we
change vertex cache capacity ccache. We can see that while
as small value of ccache such as 0.2M and 0.02M makes the
performance much slower, the improvement from 2M to 20M
is not significant (still between 200s and 300s); in contrast,
to get this small improvement, the memory cost is more than
doubled (from 3.5 GB to 8.4 GB), which is not worthwhile.

Table V(b) shows the performance of G-thinker when we
change overflow-tolerance parameter α . Recall that GC keeps
evicting unused vertices when vertex cache overflows, and a
larger α means that GC is “lazier” and acts only when a large
capacity overflow occurs (hence more memory usage). We
can see that larger α only slightly improves the performance.
In fact, when α = 2, Tcache may contain 3 · ccache vertices
as compared with the default α where Tcache may contain
1.2 · ccache vertices, but the speed up is not obvious (despite
almost 3× more memory used). This justifies that α = 0.2 is
a good tradeoff between memory usage and task throughput.

Other system parameters are similarly chosen with extensive
tests, and the results are omitted due to space limit.

VII. CONCLUSION

We presented a distributed system called G-thinker for
large-scale subgraph mining, featuring its CPU-bound design
in contrast to existing IO-bound Big Data systems.

To the best of our knowledge, G-thinker is the first truly
CPU-bound graph-parallel system for subgraph mining, and it
provides a user-friendly subgraph-centric programming inter-
face based on task-based vertex pulling where users can easily
write distributed subgraph mining programs. This is the first of
a series of CPU-bound systems we plan to develop following
our task-based T-thinker paradigm [36]. Another one is [37].
Acknowledgements. This work is partially supported by NSF
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