
PrefixFPM: A Parallel Framework for
General-Purpose Frequent Pattern Mining

Da Yan∗1.1, Wenwen Qu+∗1.2, Guimu Guo∗3, Xiaoling Wang+†4

Note: Da Yan and Wenwen Qu are parallel first authors. This work was done during Wenwen Qu’s internship at UAB.

∗University of Alabama at Birmingham (UAB), {1.1yanda, 1.2wenwenqu, 3guimuguo}@uab.edu
+East China Normal University (ECNU), 1.2wenwenqu@sei.ecnu.edu.cn, 4xlwang@cs.ecnu.edu.cn

†Shanghai Institute of Intelligent Science and Technology, Tongji University

Abstract—Frequent pattern mining (FPM) has been a focused
theme in data mining research for decades, but there lacks a
general programming framework that can be easily customized
to mine different kinds of frequent patterns, and existing solutions
to FPM over big transaction databases are IO-bound rendering
CPU cores underutilized even though FPM is NP-hard.

This paper presents, PrefixFPM, a general-purpose framework
for FPM that is able to fully utilize the CPU cores in a multicore
machine. PrefixFPM follows the idea of prefix projection to
partition the workloads of PFM into independent tasks by divide
and conquer. PrefixFPM exposes a unified programming interface
to users who can customize it to mine their desired patterns,
and the parallel execution engine is transparent to end-users
and can be reused for mining all kinds of patterns. We have
adapted the state-of-the-art serial algorithms for mining frequent
patterns including subsequences, subtrees, and subgraphs on
top of PrefixFPM, and extensive experiments demonstrate an
excellent speedup ratio of PrefixFPM with the number of cores.

A demo is available at https://youtu.be/PfioC0GDpsw; the code
is available at https://github.com/yanlab19870714/PrefixFPM.

Index Terms—frequent pattern mining, prefix projection,
compute-intensive, CPU-bound, sequence, subgraph, tree.

I. INTRODUCTION

Frequent patterns are substructures that appear in a dataset
with frequency no less than a user-specified threshold. Fre-
quent pattern mining (FPM) has been at the core of data
mining research [3], where numerous serial algorithms have
been proposed for mining various types of substructures, and
they are widely used in real applications [5], [6].

With the popularity of Big Data and Hadoop, and the
need of FPM over Big Data, many distributed solutions to
FPM emerge such as those based on MapReduce [7], [9],
[4] and other dedicated ones [10], [11]. However, all these
works adopt an Apriori approach where frequent patterns of
size (i+ 1) are generated from all frequent patterns of size
i, leading to an iterative algorithm where Iteration i mines
all frequent patterns of size i. This straightforward approach
has a catastrophic performance impact when implemented
in a distributed environment. For example, data instances
that contain size-i patterns need to be transmitted across the
network to various machines for growing size-(i+1) patterns,
and to get their frequency, another round of communication
is needed for pattern frequency aggregation. This basically
associates a data movement with each computing operation,
but the former is the performance bottleneck rendering CPU
cores underutilized. The performance is further exacerbated by

the fact that the frequent patterns found in each iteration often
need to be dumped to Hadoop Distributed File System (which
replicates data) and then loaded back in Iteration (i+1).

Researchers have begun to realize the issue that IO-bound
Big Data frameworks can be ill-suited for compute-heavy
problems such as our FPM. In [1], McSherry indicates that
“the current excitement about distributed computation (e.g.
Hadoop, Spark) produced implementations ... whose perfor-
mance never quite gets to where you would be with a simple
single-threaded implementation on a laptop”. There is no
exception in the context of FPM. For example, in SOSP 2015,
Arabesque [10] is proposed as a distributed system that can
handle frequent subgraph mining, but later in OSDI 2018,
RStream [11] follows Arabesque’s programming model but
utilizing relational joins to run out-of-core on a single ma-
chine, and is found to beat Arabesque in performance.

So far, there lacks a parallel FPM solution that scales
with the number of CPU cores. We propose such a system
called PrefixFPM for running in a multicore machine. Instead
of checking patterns in breadth-first order using Apriori al-
gorithms, PrefixFPM adopts the prefix projection approach
pioneered by PrefixSpan [8] and followed by numerous later
works. As we shall explain in Section II, prefix projection
partitions the workloads of pattern checking by divide and
conquer, which naturally fits in a task-based parallel execution
model; also, depth-first pattern-growth order allows a small
memory footprint as one do not have to keep all size-i patterns
for pattern growth, and it allows a pattern α that is grown from
β to only examine the subset of data that contain β (called
a projected database by β). PrefixFPM also features a user-
friendly programming model where users can customize it to
mine different kinds of patterns by adapting existing serial
algorithms. The parallel execution details are handled by the
framework itself and are transparent to users. As far as we
know, PrefixFPM is the first parallel framework that unifies the
mining of different types of frequent patterns. We adapt state-
of-the-art serial mining algorithms for frequent subsequences,
subgraphs and subtrees to run on top of PrefixFPM, which
show an excellent speedup with CPU cores in experiments.

In the sequel, Sec. II overviews the idea of prefix projection
and how PrefixFPM utilizes it for task parallelism. Sec. III in-
troduces our programming model for unifying FPM problems.
Sec. IV concludes by summarizing our experimental results.

SID Sequence
s1 ABCBC
s2 BABC
s3 AB
s4 BC (b) D|A

(a) D

SID Sequence
s1 _BCBC
s2 _BC
s3 _B

SID Sequence
s1 _CBC
s2 _C
s3 _

SID Sequence
s1 _BC
s2 _

BA C

(c) D|AB
(d) D|ABC

Figure 1. Illustration of PrefixSpan

6 M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees

mine different types of tree patterns, which include FreeTreeMiner [5] which mines induced, unordered,
free trees (i.e., there is no distinct root); and PathJoin [21], uFreqt [17], uNot [4], and HybridTreeM-
iner [6] which mine induced, unordered trees. CMTreeMiner [7] mines maximal and closed induced,
unordered trees. TreeFinder [19] uses an Inductive Logic Programming approach to mine unordered,
embedded subtrees, but it is not a complete method, i.e, it can miss many frequent subtrees, especially as
support is lowered or when the different trees in the database have common node labels. Our focus here
is on an efficient algorithm to mine the complete set of frequent, embedded, unordered trees.

There has also been recent work in mining frequent graph patterns. The AGM algorithm [12] dis-
covers induced (possibly disconnected) subgraphs. The FSG algorithm [15] improves upon AGM, and
mines only the connected subgraphs. Both methods follow an Apriori-style level-wise approach. Re-
cent methods to mine graphs using a depth-first tree based extension have been proposed in [22, 23].
Another method uses a candidate generation approach based on Canonical Adjacency Matrices [11].
The work by Dehaspe et al [10] describes a level-wise Inductive Logic Programming based technique
to mine frequent substructures (subgraphs) describing the carcinogenesis of chemical compounds. Work
on molecular feature mining has appeared in [14]. The SUBDUE system [9] also discovers graph pat-
terns using the Minimum Description Length principle. An approach termed Graph-Based Induction
(GBI) was proposed in [24], which uses beam search for mining subgraphs. However, both SUBDUE
and GBI may miss some significant patterns, since they perform a heuristic search. In contrast to these
approaches, we are interested in developing efficient, complete algorithms for tree patterns.

4. Generating Unordered, Embedded Trees

There are two main steps for enumerating frequent subtrees in . First, we need a systematic way of
generating candidate subtrees whose frequency is to be computed. The candidate set should be non-
redundant to the extent possible; ideally, each subtree should be generated as most once. Second, we
need efficient ways of counting the number of occurrences of each candidate tree in the database , and
to determine which candidates pass the minsup threshold. The latter step is data structure dependent, and
will be treated later. Here we are concerned with the problem of candidate generation.

 B

 C B A

 BD

 B

 C B A

 B D

 B

 A

 B D

 C B

 B

 A

 B D

 B C

0

1 2 3

4 5

0

1 2 3

4 5

0

1

2 3

4 5

0

1

2 3

4 5

T1 T2 T3 T4

Figure 4. Some Automorphisms of the Same Graph

Automorphism Group An automorphism of a tree is a isomorphism with itself. Let denote
the automorphism group, i.e., the set of all label preserving automorphisms, of . Henceforth, by auto-
morphism, we mean label preserving automorphisms. The goal of candidate generation is to enumerate
only one canonical representative from . For an unordered tree , there can be many automor-
phisms. For example, Figure 4 shows some of the automorphisms of the same tree.

Let there be a linear order defined on the elements of the label set . Given any two trees and
, we can define a linear order , called tree order between them, recursively as follows: Let and

Figure 2. Tree Patterns from Figure 4 of [13]

II. PREFIXFPM SOLUTION OVERVIEW

PrefixSpan Review. To understand the idea of prefix projec-
tion, let us first briefly review the PrefixSpan [8] algorithm for
mining frequent sequential patterns from a sequence database.

We denote αβ to be the sequence resulted from concatenat-
ing sequence α with sequence β . We also use α v s to denote
that sequence α occurs as a subsequence of data sequence s.

Given a sequential pattern α and a data sequence s, the α-
projected sequence s|α is defined to be the suffix γ of s such
that s = βγ with β being the minimal prefix of s satisfying
α v β . To highlight the fact that γ is a suffix, we write it as

γ . To illustrate, when α = BC and s = ABCBC, we have β =
ABC and s|α = γ = BC. Given a sequential pattern α and a
sequence database D, the α-projected database D|α is defined
to be the set {s|α | s ∈ D∧α v s}. Consider the sequence
database D shown in Figure 1(a). The projected databases D|A,
D|AB and D|ABC are shown in Figure 1(b), (c) and (d).

Let us define the support of a pattern α as the number
of sequences in D that contain α as a subsequence, then the
support of α is simply the size of D|α . PrefixSpan finds the
frequent patterns (with support at least τsup) by recursively
checking the frequentness of patterns with growing lengths. In
each recursion, if the current pattern α is checked to be fre-
quent, it will recurse on all the possible patterns α ′ constructed
by appending α with one more element. PrefixSpan checks
whether a pattern α is frequent using the projected database
D|α , which is constructed from the projected database of the
previous iteration. Figure 1 presents one recursion path when
τsup = 2, where, for example, s1|ABC in D|ABC is obtained by
removing the element C from s1|AB in D|AB.

Prefix Projection. The above algorithm actually generalizes
to other patterns such as subgraphs and subtrees though
some additional processing is necessary. The key idea is that
we can establish a one-to-one correspondence between each
subgraph/subtree pattern and its sequence encoding, so that
we can examine the pattern encodings by a PrefixSpan-style
algorithm. The tricky issue is that different patterns that are
isomorphic to each other have different encodings, but they
actually refer to the same pattern and growing larger patterns
from them leads to a lot of redundant computation.

For example, consider the 3 subtrees shown in Figure 2.
The Sleuth algorithm [13] encodes a tree T by adding vertex

0-edge�

...�

G�0� G�1�
2-edge�

1-edge�

Pruned�
n�-edge�

...�

Figure 3. Pattern Search Space from Figure 1 of [12]

8 M. Zaki / Efficiently Mining Frequent Embedded Unordered Trees

Prefix Extension Let denote the rightmost path in tree , i.e., the path from root
to the rightmost leaf in . Given a seed frequent tree , we can generate new candidates obtained

by adding a new leaf with label to any vertex on the rightmost path . We call this process as
prefix-based extension, since each such candidate has as its prefix tree.

It has been shown that prefix-based extension can correctly enumerate all ordered embedded or in-
duced trees [3, 25]. For unordered trees, we only have to do a further check to see if the new extension is
the canonical form for its automorphism group, and if so, it is a valid extension. For example, Figure 5
shows the seed tree , with encoding (omitting trailing ’s). To preserve the prefix tree,
only rightmost branch extensions are allowed. Since the rightmost path is , we can extend

by adding a new vertex with label any of these vertices, to obtain a new tree (). Note,
how adding to node gives a different prefix tree encoding , and is thus disallowed, as shown
in the figure.

Equivalence Class

Element List: (label, attached to position)
 x

 x

 x x

Class Prefix

3

 C

 D

2

1

0

 B A

Prefix String: C D A $ B

 (x, 3) // attached to 3: C D A $ B x $ $ $

 (x, 1) // attached to 1: C D A $ B $ x $ $
(x, 0) // attached to 0: C D A $ B $ $ x $

Figure 5. Prefix Extension and Equivalence Class

In [17] it was shown that for any tree in canonical form its prefix is also in canonical form. Thus
starting from vertices with distinct labels, using prefix extensions, and retaining only canonical forms for
each automorphism group, we can enumerate all unordered trees non-redundantly. For each candidate,
we can count the number of embedded occurrences in database to determine which are frequent.
Thus the main challenges in tree extension are to: i) efficiently determine whether an extension yields a
canonical tree, and ii) determine extensions which will potentially be frequent. The former step considers
only valid candidates, whereas the latter step minimizes the number of frequency computations against
the database.

Canonical Extension To check if a tree is in canonical form, we need to make sure that for each vertex
, for all , where is the list of ordered children of .

However, since we extend only canonical trees, for a new candidate, its prefix is in canonical form, and
we can do better.

Lemma 4.3. Let be a tree in canonical form, and let be the rightmost path in . Let be the
tree extension of when adding a vertex with label to some vertex in . For any ,
let and denote the last two children of 2. Then is in canonical form iff for all ,

.
Proof Sketch: Let be the rightmost path in . By Lemma 4.2, is

in canonical form implies that for every node , we have .
2If is a leaf, then both children are empty, and if has only one child, then is empty

Figure 4. Pattern Extension from Figure 5 of [13]

labels to the encoding in a depth-first preorder traversal of T ,
and by adding a unique symbol “$” whenever we backtrack
from a child to its parent. For example, the encoding of T1
in Figure 2 is BAB$D$$BC, while the encoding of T2 is
BAB$D$$CB. Even though the two encodings are different,
if children order does not matter, T1, T2 and T3 are the same.

To avoid processing redundant patterns, existing serial algo-
rithms define the canonical encoding of a pattern α , denoted
by min(α), as the minimum encoding of all automorphisms
of α . A pattern α is examined if its encoding equals min(α).

Figure 3 illustrates the depth-first pattern search tree of the
gSpan algorithm [12] for subgraph patterns that are grown by
adding adjacent edges, where each node represents a subgraph
pattern α to examine, and the subtree under the node contains
those patterns grown from α . Assume that G0 and G1 are
isomorphic and since only G0’s encoding equals its canonical
encoding, only G0 is checked for frequentness and for further
pattern growth, while G1 (and its potential subtree) is pruned.

A pattern α is extended by one more element to generate
a child pattern β , and in PrefixSpan we simply append α

with all possible labels. However, for a subgraph or subtree
pattern α , we cannot extend it with any adjacent edge since
some extensions have been considered by a prior node in the
depth-first search space tree. For example, in Figure 4, we can
only extend the subtree pattern in the box using an adjacent
edge on its rightmost path CDB, since the extension from
vertex A has a smaller encoding than the subtree pattern itself
(CDAx· · ·<CDA$· · ·) and is considered before in DFS order.

Task-Based Model of PrefixFPM. PrefixFPM associates each
pattern α (which corresponds to a node in the search tree of
Figure 3) with a task tα which checks the frequentness of α

using its projected database D|α , and which grows the pattern
by one more element to generate the children patterns {β} and
their projected databases {D|β} (computed incrementally from
D|α rather from the entire D). These children patterns give rise

to new tasks {tβ} which are added to a shared task queue to
be fetched by computing threads for further processing.

PrefixFPM runs a number of computing threads that fetch
pattern-tasks from a shared task queue Qtask for concurrent
processing. Since each task tα needs to maintain D|α to
compute the projected databases of the child-patterns grown
from α , a depth-first task fetching priority in the pattern search
tree tends to minimize the memory footprint of patterns in
processing. This is because we tend to grow those patterns
that have been grown deeper, which are larger (and thus with
smaller projected databases) and are closer to finishing their
growth (due to the support becoming less than τsup).

We thus implement the task queue Qtask as a stack where
newly-pushed tasks are popped sooner for processing. Note
that PrefixFPM processes the pattern search tree in a near-
depth-first order but not strictly depth-first: when the leftmost
pattern-node α is being processed as a task by some com-
puting thread, its next sibling pattern-node will be popped for
processing by another available computing thread (rather than
the children of pattern-node α). This allows idle computing
threads to fetch patterns for processing ASAP to keep CPU
cores busy, but may require more memory than a serial depth-
first solution. In fact, the memory cost is the same as a serial
algorithm if there is only one computing thread (as tasks are
fetched in DFS order), but it is expected to increase with the
number of threads. Queue Qtask is protected by a lock (mutex)
so that only one thread can push or pop a task at a time.

Since fetching tasks from Qtask and adding tasks to Qtask
incur locking overheads, this is only worthwhile if each task
contains sufficient computing workloads such that the locking
cost of fetching it and inserting child-pattern tasks is negligi-
ble. Therefore, when processing a task tα , we only add child-
pattern tasks to Qtask if the number of projected data instances
in D|α is above a size threshold τsplit , so that the workloads
can be divided by other computing threads; otherwise, tα is not
expensive and the current computing thread simply processes
its entire search space subtree in depth-first order directly.

III. PREFIXFPM PROGRAMMING MODEL

PrefixFPM is written as a set of C++ header files defining
some base classes and their virtual functions for users to inherit
in their subclasses and to specify the application logic. We call
these virtual functions as user-defined functions (UDFs). The
base classes also contain C++ template arguments for users to
specify with the proper pattern and data structures.

We now introduce these base classes as shown in Figure 5.

Trans. The Trans class implements a transaction (i.e., a data
instance in the input database) with a predefined transaction ID
field. Users implement their transaction subclass by inheriting
Trans and including additional fields to store the target data
instance such as a sequence or a graph. Initially, the input
dataset is read into an in-memory transaction database D which
is simply an array of objects whose type is the Trans subclass.

ProjTrans. The ProjTrans class implements a projected trans-
action s|α in a projected database D|α . A ProjTrans object
also has a transaction ID field indicating which transaction

Trans
int transaction_id
// transaction data

ProjTrans
int transaction_id
// transaction match

Pattern
// α and D|α
UDF: print(ostream& fout)

Task <PatternT, ChildrenT, TransT>
PatternT pattern
ChildrenT children
UDF: setChildren()
UDF: Task* get_next_child() //”new” a task from a child pattern
UDF: bool pre_check(ostream& fout)
UDF: bool needSplit()
Entry Function: run(ostream& fout)

Worker <TaskT>
ifstream input_file
UDF: readNextTrans(vector<TransT>& D)
UDF: setRoot(stack<TaskT*>& Qtask)
Entry Function: run()

Figure 5. PrefixFPM Programming Interface

s ∈ D this projected transaction corresponds to. The user-
defined ProjTrans subclass should also indicate how s|α is
currently matched on s, so that the matching status can be
incrementally updated as the pattern α grows.

Pattern. The Pattern class specifies the data structure of a
pattern α , and contains a (pure) virtual function print(fout)
specifying how to output the object of a Pattern subclass into
an output file stream fout. Recall that PrefixFPM runs multiple
task computing threads, and each thread actually appends the
frequent patterns found by it to a file of its own (with file
handle fout). When a job finishes, frequent patterns are simply
recorded by the files written by all task computing threads.

A Pattern subclass usually also includes the projected
database D|α as a field. In print(fout), users may choose to
output D|α along with α , to capture the matched transactions.

Task. This class is to specify the algorithmic logic. Recall that
a task tα checks the frequentness of pattern α using D|α , and
grows α by one more element to generate children patterns
{β} and their projected databases {D|β} for further min-
ing. Here, an object of base class Task<PatternT, ChildrenT,
TransT> implements a task tα with 3 template arguments:
• PatternT: the user-defined Pattern subclass (with D|α);
• ChildrenT: the type a table children that keeps {D|β};
• TransT: the user-defined Trans subclass.
A Task object tα maintains 2 fields: a pattern α of type Pat-

ternT (often containing D|α), and the children table children
that keeps {D|β}, which is typically implemented as std::map
with children[e] = D|β if β is grown from α with element e.

TransT is needed since the Task class provides a function
to access the global static transaction database D for users
to call in their Task UDFs, which is useful since a projected
transaction si|α usually only keeps a compact matching status
towards si ∈ D, and to extend it with one more element e in
si to generate si|β , we need to access si as D[i] where i is the
transaction ID field of si|α whose type is a ProjTrans subclass.

For example, the projected transaction of PrefixSpan only
keeps the position of the last match, i.e., ‘ ’ in Figure 1, to
minimize the memory consumed by projected databases.

void run(ostream& fout){
if(!pre_check(fout)) return;
//generate new patterns
setChildren(children);
//run new child tasks
while(Task* t= get_next_child()){

if(needSplit()){
q_mtx.lock();
queue().push(t);
q_mtx.unlock();

}
else{

t->run(fout);
delete t;

}
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Figure 6. The run(fout) function of base class Task

Task has an internal function run(fout) which executes the
processing logic of the task tα . The behavior of run(.) is
specified by Task UDFs which are called in run(.).

Figure 6 shows run(.). In Line 2, tα first runs UDF
pre check(fout) to see if α is frequent (and its encoding is
canonical if applicable), and if so, to output α to fout. If α

is not pruned, Line 4 then runs UDF setChildren(children) to
scan D|α and compute {D|β} into the table field children. In
this step, every infrequent child pattern β should be removed
from the table children as a post processing after {D|β} are
constructed. Line 6 then wraps each child pattern β in table
children as a task tβ , and calls the UDF needSplit() to check if
tβ is time consuming (e.g., D|β is big). If so, we add tβ to the
task queue Qtask (Lines 8–10) to be fetched by available task
computing threads (recall that Qtask is a global last-in-first-out
task stack protected by a mutex), which divides the computing
workloads by multithreading. Otherwise, we recursively call
tβ ’s run(fout) to process the entire checking and extension of
β by the current thread, which avoids contention on Qtask.

Worker. A PrefixFPM program is executed by subclassing the
Worker<TaskT> base class, and call its run() function. Here,
TaskT refers to the user-defined Task subclass, from which
Worker derives the other necessary types such as TransT.

The run() function (1) keeps calling UDF getNextTrans() to
read transactions and appends them to the transaction database
D, (2) calls the UDF setRoot() to generate root tasks (where
α contains only one element) into Qtask, and (3) creates k task
computing threads to concurrently process the tasks in Qtask.

Implementing Worker::setRoot(.) should be similar to im-
plementing Task::setChildren(.): instead of constructing {D|β}
form D|α , we construct {D|e} form D. Each seed task te =
〈e,D|e〉 is added to Qtask to initiate parallel computation.

At the beginning of Worker::setRoot(.), we also need to
get the element frequency statistics and eliminate infrequent
elements (i.e., they are not considered when growing patterns).

During parallel task computation, each computing thread
keeps fetching a task tα from Qtask to call its run(fout)
function, and gets hanged to release CPU core when it cannot
find a task in Qtask. Note that while Qtask is currently empty,
another thread may be processing a task and could add more
subtasks back to Qtask. The job terminates only if all k task
computing threads are hanged and no task is found in Qtask.

Thread # Time (sec) Speedup
1 5750.37 1.00
2 2177.47 2.64
4 953.23 6.03
8 456.48 12.60
16 279.02 20.61
32 231.09 24.88

0.00

2000.00

4000.00

6000.00

8000.00

1 2 4 8 16 32

Co
m
pu
ta
tio
n
Ti
m
e

(s
ec
on
ds
)

Number of Task Computing Threads

Figure 7. Scale-up Results on NCI

IV. EXPERIMENTS AND CONCLUSION

We have used PrefixFPM to parallelize 3 state-of-the-art
prefix-projection algorithms for mining 3 different kinds of
frequent patterns, i.e., sequences, subgraphs and subtrees. Due
to space limit, we refer interested readers to https://github.com/
yanlab19870714/PrefixFPM for their implementation. We plan
to describe them in detail in a complete journal paper.

We tested those 3 programs (parallel versions of PrefixSpan,
gSpan and Sleuth) on large real datasets and found that in
all experiments, an ideal speedup is obtained for at least 16
cores, and performance continues to improve till all 32 cores
in our machine are used. As an illustration, Figure 7 shows
the scalability results of gSpan’s parallel implementation with
PrefixSpan on the NCI [2] molecular structure dataset with
265,242 subgraphs where we set τsup = 60,000.

Acknowledgments: The research of Da Yan and Guimu
Guo is supported by NSF OAC 1755464 and NSF DGE
1723250. The research of Wenwen Qu and Xiaoling Wang is
supported by NSFC grant (No. 61532021) and Zhejiang Lab
(No. 2019KB0AB04).

REFERENCES

[1] COST in the Land of Databases. https://github.com/frankmcsherry/blog/
blob/master/posts/2017-09-23.md.

[2] NCI Dataset. https://cactus.nci.nih.gov/download/nci/.
[3] C. C. Aggarwal and J. Han, editors. Frequent Pattern Mining. Springer,

2014.
[4] M. Bhuiyan and M. A. Hasan. An iterative mapreduce based frequent

subgraph mining algorithm. IEEE Trans. Knowl. Data Eng., 27(3):608–
620, 2015.

[5] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards verification-
free query processing on graph databases. In SIGMOD, pages 857–872,
2007.

[6] T. Kudo, E. Maeda, and Y. Matsumoto. An application of boosting to
graph classification. In NIPS, pages 729–736, 2004.

[7] W. Lin, X. Xiao, and G. Ghinita. Large-scale frequent subgraph mining
in mapreduce. In ICDE, pages 844–855, 2014.

[8] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M. Hsu. Prefixspan: Mining sequential patterns by prefix-projected
growth. In Proceedings of the 17th International Conference on Data
Engineering, April 2-6, 2001, Heidelberg, Germany, pages 215–224,
2001.

[9] Z. Peng, T. Wang, W. Lu, H. Huang, X. Du, F. Zhao, and A. K. H.
Tung. Mining frequent subgraphs from tremendous amount of small
graphs using mapreduce. Knowl. Inf. Syst., 56(3):663–690, 2018.

[10] C. H. C. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki,
and A. Aboulnaga. Arabesque: a system for distributed graph mining.
In SOSP, pages 425–440, 2015.

[11] K. Wang, Z. Zuo, J. Thorpe, T. Q. Nguyen, and G. H. Xu. Rstream:
Marrying relational algebra with streaming for efficient graph mining
on A single machine. In OSDI, pages 763–782, 2018.

[12] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In
ICDM, pages 721–724, 2002.

[13] M. J. Zaki. Efficiently mining frequent embedded unordered trees.
Fundam. Inform., 66(1-2):33–52, 2005.

