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Abstract

Animacy is a necessary property for a referent to be an agent, and thus animacy detection is
useful for a variety of natural language processing tasks, including word sense disambiguation,
co-reference resolution, semantic role labeling, and others. Prior work treated animacy as a
word-level property, and has developed statistical classifiers to classify words as either animate or
inanimate. We discuss why this approach to the problem is ill-posed, and present a new approach
based on classifying the animacy of co-reference chains. We show that simple voting approaches
to inferring the animacy of a chain from its constituent words perform relatively poorly, and then
present a hybrid system merging supervised machine learning (ML) and a small number of hand-
built rules to compute the animacy of referring expressions and co-reference chains. This method
achieves state of the art performance. The supervised ML component leverages features such as
word embeddings over referring expressions, parts of speech, and grammatical and semantic
roles. The rules take into consideration parts of speech and the hypernymy structure encoded in
WordNet. The system achieves an F of 0.88 for classifying the animacy of referring expressions,
which is comparable to state of the art results for classifying the animacy of words, and achieves
an Fp of 0.75 for classifying the animacy of coreference chains themselves. We release our
training and test dataset, which includes 142 texts (all narratives) comprising 156,154 words,
34,698 referring expressions, and 10,941 co-reference chains. We test the method on a subset of
the OntoNotes dataset, showing using manual sampling that animacy classification is 90%=+2%
accurate for coreference chains, and 92%4-1% for referring expressions. The data also contains
46 folktales, which present an interesting challenge because they often involve characters who
are members of traditionally inanimate classes (e.g., stoves that walk, trees that talk). We show
that our system is able to detect the animacy of these unusual referents with an F7 of 0.95.

1 Introduction

Animacy is the characteristic of being able to independently carry out actions (e.g., movement, commu-
nication, etc.). For example, a person or a bird is animate because they move or communicate under their
own power. On the other hand, a chair or a book is inanimate because they do not perform any kind of
independent action.

Animacy is a useful semantic property for different NLP systems, including word sense disambigua-
tion (WSD), semantic role labeling (SRL), coreference resolution, among many others. Animacy can be
used to distinguish different senses and thus help a WSD systems assign senses to different words. As
an example, animacy has been applied in grouping senses from WordNet (Palmer et al., 2004; Palmer et
al., 2007). Animacy can also be used directly in a WSD system to decide thematic assignment, which is
useful for assigning senses: for example, Carlson and Tanenhaus (1988) used the presence of an animate
subject in a sentence to determine if a the verb is transitive, which is a useful for thematic role assign-
ment. Another task where animacy can play an important role is semantic role labeling (SRL). Agentive
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There wasi|the apple tree! "Apple tree, |apple tree, little mother, hide|me|!"|the girl|begged. "If you eat|my wild apple}"'She ate

quickly. The apple tree|covered|her witl‘[branches] and[leaves]l and|the geese|flew by.

Figure 1: Example text containing animate and inanimate coreference chains. Colored boxes represent
referring expressions, while links between them signify coreference. Animate chains are green, while
inanimate chains are red. The text is drawn from Story #113 The Magic Swan Geese (Guterman, 1975,
p- 350) and has been slightly modified for clarity. The figure is adapted from (Jahan et al., 2017).

or semantic subject roles must often be filled by animate entities, whereas goal, theme, patient, instru-
ment and location roles are often filled by inanimate entities (Kittila et al., 2011). In some works (Connor
et al., 2013; Kittild, 2006, for example), animacy is used as a feature that helps to identify agents, and
Ferreira (1994) showed how knowing the animacy of roles allows one to better identify the passive voice.
In many coreference resolution systems (Raghunathan et al., 2010; lida et al., 2003; Cardie and Wagstaf,
1999, for example) animacy is used as an semantic feature to determine co-referents of an expression.

In addition to these broad uses of animacy, our own research group is particularly interested in de-
tecting animacy with a view toward identifying characters in stories. Most definitions of narrative ac-
knowledge the central role of character, for example: “a representation of a possible world .. .at whose
centre there are one or several protagonists of an anthropomorphic nature . .. who (mostly) perform goal-
directed actions ...” (emphasis ours) (Fludernik, 2009, p. 6). If we are to achieve the long-term goal of
automatic story understanding, it is critical that we be able to automatically identify a story’s characters,
distinguishing them from non-character entities. All characters are necessarily animate—although not
all animate things are necessarily characters—and so detecting animacy will immediately narrow the set
of possibilities for character detection.

Prior work treated animacy as a word-level phenomenon, marking animacy as an independent feature
on individual words (Ordsan and Evans, 2007; Bowman and Chopra, 2012; Karsdorp et al., 2015). But
word-level animacy is not always sufficient to identify an animate or an inanimate object. For example,
horse is normally animate, but a dead horse is obviously inanimate. On the other hand, free is an
inanimate word but a talking tree is definitely an animate thing. So, assigning animacy at the word level
confuses the issue and makes it more difficult classify these type of complex cases.

Furthermore, referents are expressed in texts as coreference chains comprised of referring expressions,
and so conceiving of animacy as a word-level phenomenon requires an additional method for computing
chain animacy from word animacy. One way to do this is to combine word-level animacy markings—
say, using majority vote—into referring expressions animacy and then coreference chains. As it turns
out, this does not work all that well and we used this method as our baseline. Alternatively, we can
attempt to compute animacy directly on the referring expressions and then use majority vote of referring-
expression-level animacy to compute animacy of coreference chains, the approach we pursue here.

Although detecting animacy might seem to be straightforward, it presents a number of subtleties. For
example, some theorists have proposed closed lists of linguistic expressions that should be automatically
considered animate entities, such as titles, animals, or personal pronouns (Quirk et al., 1985; Yamamoto,
1999). However, texts, especially stories about unreal worlds, can arbitrarily introduce characters that
would not be animate in real life, for example, walking stoves or talking trees. Figure 1 shows an
example sentence from a Russian fairytale which contains three animate chains, one of which is a tree
that talks: trees would not be normally be considered animate according to canonical lists of animate
entities. Therefore some context sensitivity in detection is needed.

In our work, we compute animacy directly on referring expressions, and transfer those markings up to
the coreference chain level, to get a direct classification of the animacy of the whole chain. We present
a hybrid system combining statistical machine learning (ML) and hand-built rules for classifying the
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# Texts # Tokens # Referring # Coref.

Text Types Expressions Chains
Russian Folktales 46 109,120 20,391 4,950
Islamist Extremist Texts 32 26,557 8,041 3,684
Islamic Hadiths 64 20,477 6,266 2,307

Table 1: Counts of various text types in the corpus.

animacy of referring expression, and also present a voting model to identify the animacy of coreference
chains based on the animacy of the chain’s constituent referring expressions. The paper proceeds as fol-
lows. First we discuss our data sources and annotation procedures (§2). Next we discuss the experimental
setup including the ML features, rules, and classification models (§3), and then describe our results (§4).
We analyze the error patterns of the system and mention potential future work (§5), and also discuss
work that is related to this study (§6). We finish with a discussion of the contributions of the paper (§7).

2 Data

We started this project seeking to use existing data annotated for animacy, as there have been a number
of studies on animacy detection already (as we discuss in §6). However, no prior data in English was
readily available to use; the best performing prior work on word-level animacy was done on a corpus
of 74 stories comprising 74,504 words in Dutch (Karsdorp et al., 2015). Ordsan and Evans (2007) did
their work in English but their data was not available. Therefore we sought other data (specifically
stories, because of our interest in story understanding), and our annotated data was a corpus comprising
a variety of Russian folktales, Islamist Extremist stories, and Islamic Hadiths that are freely available
and assembled for other work, and had been annotated for referring expressions and coreference chains
(Finlayson, 2017; Finlayson et al., 2014). The composition of the corpus is shown in Table 1.

The corpus contains 46 Russian folktales, originally collected in Russian in the late 1800’s but trans-
lated into English in the mid-twentieth century (Finlayson, 2017). The other portion (the N2 corpus) con-
tains 96 stories of relevance to Islamist Extremists (Finlayson et al., 2014). All but 31 of the texts in the
corpus already contained gold-standard annotations for token and sentence boundaries, parts of speech,
referring expressions, and coreference chains (as well as other layers of annotation. We processed these
31 un-annotated texts using the Stanford CoreNLP suite (Manning et al., 2014), automatically generating
tokens, sentences, parts of speech, referring expressions, and coreference chains.

We annotated the whole corpus for animacy of coreference chains, and the first fifteen stories for
animacy at the word level. We propagated the animacy annotations from the chains to their constituent
referring expressions to generate animacy annotations at that level. Because we had to automatically
compute referring expression and coreference chains on 31 of the texts, and the CoreNLP coreference
resolution is somewhat noisy, we hand-corrected the chains. We did this hand-correction using the Story
Workbench annotation tool (Finlayson, 2008; Finlayson, 2011) that allows for the manipulation and
correction of referring expression and coreference chains.

The annotation of the animacy of coreference chains and referring expressions for the first fifteen sto-
ries was performed by the first two co-authors. Disagreements were discussed and corrected to generate a
gold-standard annotation. Agreement for the coreference-level was 0.99 F; and 0.99 Cohen’s kappa co-
efficient (x), which represents near-perfect overall agreement (Landis and Koch, 1977). The annotation
of the rest of the stories was performed by only the first author.

We also annotated first fifteen Russian tales for word-level animacy so that we could test via reim-
plementation the existing best performing word animacy model (Karsdorp et al., 2015). This annotation
was done under the following guidelines. First, all nouns that would refer to animate entities in real life,
such humans or animals, as discussed in (Quirk et al., 1985, pp. 314 & 345) were marked animate. We
marked gendered pronouns as animate, e.g., he, she, his, hers, etc. We also marked adjectives suggest-
ing animacy as animate, e.g., alive, vital, kindlier, etc., whereas adjectives implying inanimacy, such as
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Total Animate Inanimate Unique Unique

entity  entity entity Animate Inanimate
Token (15 stories) 23,291 3,896 19,395 291 2,221
Referring Expression (142 stories) 34,698 22,052 12,646 1,104 2,249

Coreference-chain (142 stories) 10,941 3,832 7,109 - -

Table 2: Total number of animate and inanimate tokens, referring expressions, and coreference chains,
with breakdowns of number of unique items in each class.

Referring Expression Class Explanation
Muslims, the dragon, Abu Bakr Animate ~ Normally animate entities
walking stove, talking tree Animate  Normally inanimate but are animate in context

“those who do not know what it is” Inanimate Discourse acts, when marked as referents
the mosque, this world, every house Inanimate Normally inanimate objects

dead horse Inanimate Normally animate but are inanimate in context
her eyes, his hands , horse tail Inanimate Inanimate parts of animate entities

Word

princess, dragon, Abdullah Animate  Nouns denoting animate entities

he, she, his, her Animate  Personal pronouns referring to animate objects
kind [prophet], stronger [dragon] Animate  Adjectives that suggest animacy

Morning, Evening, [talking] stove Animate  Usually inanimate but are animate in context
Kiev, world, mosque Inanimate Nouns denoting inanimate entities

it, that, this Inanimate Personal pronouns referring to inanimate objects

Table 3: Examples of annotation of coreference- and word-level animacy. At the word level, only an
adjectives suggesting animacy or nouns referring to an animate object are marked animate. Everything
else (including verbs, adverbs, determiners, and so forth) are marked inanimate.

dead in the noun phrase dead horse, were marked inanimate. Second, we marked as animate any words
directly referring to entities that acted animately in a story, regardless of the default inanimacy of the
words. For example, we marked stove animate in the case of a walking stove, or free animate in the case
of a talking tree. This also covered proper names that might normally be marked as inanimate because
of their ostensible class, such as those underlined in the next example:

All of them were born in one night—the eldest in the evening, the second at midnight, and
the youngest in the early dawn, and therefore they were called Evening, Midnight, and Dawn.
(Guterman, 1975, Tale #140, p. 458)

The word-level annotation was done by the first two co-authors. Disagreements were discussed and
corrected to generate a gold-standard annotation. We annotated every word in the corpus for animacy
directly (marking each word as either animate or not). Agreement was 0.97 F} and 0.97 Cohen’s kappa
coefficient (), which represents near-perfect overall agreement (Landis and Koch, 1977).

A summary of the counts of animate and inanimate words, referring expressions, and coreference
chains is given in Table 2. Examples of animate and inanimate words are given in Table 3. The data is
included in the supplementary materials archive for the paper, which is publicly available'.

3 Approach

Our hybrid system comprises two parts: a rule-based classifier that can mark the animacy of roughly 50%
of the referring expressions, followed by a statistical classifier trained on the annotated data that can be

"https://dspace.mit.edu/handle/1721.1/116172
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applied to the remaining referring expressions. Once all referring expressions are marked for animacy,
the animacy of a coreference chain is inferred from the animacy of its constituent referring expression.

3.1 Rules

We implemented five rules that considered semantic subjects parsed from the semantic role labeler as-
sociated with the Story Workbench annotation tool (Finlayson, 2008; Finlayson, 2011), the named en-
tities computed using the classic API of Stanford dependency parse (Manning et al., 2014, v3.7.0), and
knowledge from WordNet (Fellbaum, 1998). These rules were inspired by existing rule-based animacy
systems. We also considered the last word of a referring expression in most of the rules because it helps
to mark quotes as inanimate, as well as to detect the regular animate and inanimate referring expression.

1. If the last word of a referring expression is a gendered personal, reflexive, or possessive pronoun
(i.e., excluding it, its, itself, etc.), we marked it animate.

2. If the last word of a referring expression is the semantic subject to a verb, we marked it animate.

3. If areferring expression contains a proper noun we marked it animate. We excluded anything tagged
as location, organization, or money, as determined by the Stanford CoreNLP NER system.

4. If the last word of a referring expression is a descendant of living_being in WordNet, we marked it
animate.

5. If the last word of a referring expression is a descendant of entity WordNet, we marked it inanimate.

3.2 Features

We explored seven different binary and vector features to train the statistical classification model, some
of which are drawn from prior work.

1. Word Embeddings (WE): We computed pre-trained word embeddings in 300 dimensions for all
the words in the stories using the skip-gram architecture algorithm (Mikolov et al., 2013). We used the
DeepLearning4] library (Deeplearning4j Development Team, 2017), and configured the built-in skip-
gram model with a minimum word frequency of 3, layer width (dimensions) of 300, a window size of 5,
and trained for 10 iterations. We explored a few different combinations of these parameters, but found
that these settings produced the best results. This is a vector feature drawn from (Karsdorp et al., 2015),
and is primarily relevant to classifying word-level animacy. We ran this model on each word of our data
and used the output vector as a feature.

2. Word Embeddings on Referring Expressions (WER): We calculated pre-trained word embed-
dings in 450 dimensions for just the words within the referring expressions, again using the skip-gram
approach as above, except with a minimum word frequency of 1. Again, this is a vector feature. 450
dimensions worked better for this feature (rather than 300), which we discovered after doing a small
amount of parameter exploration. We ran this model on each referring expression of our data used the
output vector as a feature.

3. Composite Word Embedding (CWE): We computed a composite pre-trained word embedding
for the neighborhood of each word, adding together the word embedding vectors for three words before
and three words after the target word (excluding the target). This is also a vector feature, and is again
partially drawn from (Karsdorp et al., 2015). The idea of this feature is that it estimates the similarities
of the context among all animate words (or all inanimate words) as well as the dissimilarities of animate
from inanimate, and vice versa.

4. Parts of Speech (POS): By analogy with the other embeddings, we computed an embedding over
part of speech tags in 300 dimensions, with the same settings as in feature #1 (WE). This feature models
the tendency of nouns, pronouns, and adjectives to refer to animate entities.

5. Noun (N): We checked whether a given referring expression contained a noun and encoded this as
a boolean feature because we observed that in the first 15 stories 43% of nouns are animate. Thus this
feature explicitly captures the tendency of nouns to refer to animate entities. We used dependency parses
generated by the classic API of Stanford dependency parser (Manning et al., 2014, v3.7.0).
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6. Grammatical Subject (GS): Animate references tend to appear as the grammatical subjects of
verbs (Ovrelid, 2005). We used dependency parses generated by the classic API of Stanford dependency
parser (Manning et al., 2014, v3.7.0) to check if the last word of a given referring expression was used
as a grammatical subject relative to any verb in the sentence, and encoded this as a boolean feature.

7. Semantic Subject (SS): We also computed whether or not a referring expression appeared as a
semantic subject to a verb. We used the semantic role labeler associated with the Story Workbench
annotation tool (Finlayson, 2008; Finlayson, 2011) to compute semantic roles for all the verbs in the
stories. We then checked whether the last word of a given referring expression contained an ARGO for a
verb (an exact match was not required), and encoded this as a boolean feature.

3.3 Classification Models

We implemented our classification models using SVM (Chang and Lin, 2011), with a Radial Basis
Function Kernel. The features used to train the different models are shown in Table 4. We trained each
model using cross validation, and report macroaverages across the performance on test folds.

We have three models for animacy: referring expressions, coreference chains, and words. For our
referring expression animacy model, we implemented two approaches. The first is a ML-only approach,
in which we explored different combinations of features: word embedding over referring expressions
(WER), noun (N), grammatical subject (GS), and semantic subject (SS). We configured the SVM with
~v=1,C = 0.5 and p = 1. We measured the performance of the classifier using 10-fold cross validation.
The second approach is the hybrid system where we we first applied the rules, then applied the ML
classifier for referring expressions not covered by the rules. In our prior work we only implemented the
first approach (Jahan et al., 2017) on a small data set.

For the coreference chain animacy model, we implemented a majority voting approach for combining
the results of the referring expression animacy model to obtain a coreference animacy prediction. In the
case of ties, the chain was marked inanimate.

To compare with prior work, we also implemented a word animacy model, adapting an existing system
with the best performance (Karsdorp et al., 2015). That model used features based on word N-grams,
parts of speech, and word embeddings. Similarly, we implemented our classifier using word embeddings
over words (WE), combined word embeddings (CWE), and parts of speech (POS). The SVM was config-
ured with v = 5, C' = 5000 and p = 1, and we measured the performance with 20-fold cross validation.
This model performed very close to the prior state of the art with our small data set of 15 stories.

4 Results & Discussion

We calculated two baselines for referring expression animacy. The first baseline is to choose the majority
class (animate). The second baseline combines word-level animacy predictions generated by our word
animacy model via a majority vote; we measured the upper bound for this over the 15 texts for which we
have gold-standard word animacy annotations.

We evaluated our models by measuring accuracy, precision, recall, F7, and Cohen’s kappa (x) com-
pared to the gold-standard annotations. Table 4 shows the results for both classes. Our word animacy
model achieved an F; of 0.98, whereas the prior state of the art achieved £} of 0.99 for marking inani-
macy. On the other hand, for marking animacy our model achieved F; of 0.90 where the state of the art
achieved F; of 0.93. For referring expression animacy we varied the features to determine the optimal
set. We obtained the best result (F} of 0.84) using different combinations of three features: noun (N),
grammatical subject (GS) and semantic subject (SS). Our hybrid model for referring expression animacy
performed better (£} of 0.88) than the statistical model (F; of 0.84). The rule-based model achieved 0.88
F when we applied the rules first, and marked any remaining referring expressions as majority class.
Our rule based model performed similarly to the hybrid model, but the hybrid model is more consistent.

For the coreference animacy model, we implemented the majority vote approach to detect animacy
of coreference chain using the best output of referring expression model. Majority vote resulted in an
overall F; of 0.75, which substantially outperforms the result from our prior work of 0.61 F;. Around
3% of coreference chains resulted in a tied vote, and these were marked as inanimate (the majority class).
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Inanimate Animate
Model | Feature Set Ace. | K Prec. Rec. F,q K Prec. Rec. F;
Word (Karsdorp et al., 2015) | - - 098 099 0.99 | - 094 091 093
WE, CWE, POS 9%% | 087 098 098 098|087 091 0.88 0.90
Baseline MFC 61% |00 0.0 00 00 |00 061 1.0 0.76
Baseline Maj. Vot. 75% | 053 059 099 074|053 099 0.62 0.76
Hybrid on Stanford 80% | 0.61 089 0.73 0.79 | 061 074 090 0.81
Ref. WER, N, GS, SS 76% | 047 080 051 062]047 076 092 0.83
Expr. | N, GS 78% | 051 083 054 065]051 077 093 0.84
N, SS 79% | 053 0.80 0.60 068|053 078 091 0.84
N, GS, SS 79% | 053 081 059 068|053 078 091 0.84
Prior best result 8% | 0.70 083 0.77 080|068 087 091 090
Rule Based model 82% | 060 089 0.60 0.72|060 081 096 0.88
Hybrid model 83% | 0.62 084 0.67 074|062 083 093 0.88
Random Sampling 92%* | 0.85 0.87 093 091|085 096 092 0.94
Prior best result 79% | 048 093 080 086|048 050 0.76 0.61
Coref. | Maj. vote on Stanford | 79% | 0.54 091 0.78 0.84 | 0.54 0.60 0.82 0.69
Maj. vote (current) 82% | 0.61 0.87 0.84 086|061 073 077 0.75
Random Sampling 90%' | 0.80 0.86 0.98 092 |0.80 0.97 0.81 0.88

Table 4: Result of different Animacy Models (Bolded according to when our F; measure is higher).
MEC stands for “Most Frequent Class”, and the other abbreviations stand for features as indicated in the
text. *Estimated +2% with 95% confidence. 'Estimated 4-1% with 95% confidence.

We also evaluated our model using direct sampling (Saunders et al., 2009). We ran our hybrid model
over 200 news articles from the OntoNotes (Hovy et al., 2006) data set containing 46,088 referring
expressions and 7,836 coreference chains. We randomly sampled 558 coreference chains and checked
their animacy markings by hand, resulting in a estimated accuracy of 90% +2% at a 95% confidence
level, as well as estimated precision, recall, and F listed in Table 4. Those coreference chains contained
3,543 referring expressions, which allowed us to estimate the accuracy of the referring expression model
at 92% +1% at a 95% confidence level.

The data contains 46 folktales, which have 142 mentions of 12 characters who are members of tra-
ditionally inanimate classes (e.g., stoves that walk, trees that talk). We manually identified those 12
characters and evaluated our model’s performance on them. Our system is able to detect the animacy
of these unusual referents with an I of 0.95. Conversely, there was only one mention of a normally
animate class that was inanimate in context (‘“dead horse”), and this was correctly marked by the system.

S Error Analysis & Future Work

A detailed error analysis of the results revealed at least two major problems for the hybrid model that we
will focus on in future work: short chains, quotes, and exceptions to the rules.

Determining the animacy of short coreference chains was challenging for our system: approximately
11% of short chains are incorrectly marked. As the length of a chain tends toward a single referring
expression, the coreference classifier should converge to the referring expression classifier performance.
However, for chains between two and four referring expressions long, the majority voting approach
seems to fall short. We suspect this is because many referring expressions are themselves quite short,
and can contain false alarms: e.g., our system classifies “his hands” as animate because of the animate
word “his” in the expression. We believe another approach to solving this problem is to generate new
rules in our hybrid model so that it can handle these type of special cases.

Second, many quotes are full of animate words, e.g., “the fate of the tsar’s daughter to go to the
dragon” is a phrase that is itself a referring expression in one story, and should be inanimate according

7



to our animacy annotation rule. However, the classifier marks the quote as animate because it finds three
animate words: tsar, daughter, and dragon. In our data, approximately 2.5% of quotes that are referring
expressions are incorrectly marked, and handling this likely will require rule-based processing.

Finally, a common error type was exceptions to the rules. In the hybrid system we combined together
a large number of similar referring expressions under one rule so that we can handle them under a similar
animacy class. But there are always exceptions for every rule: for example, we define “it” as inanimate
but of course sometimes “it” can refer to an animate object. For the most part these individual instances
will be out-voted by animate referring expressions in long chains, so it is a relatively small problem. One
approach to solving this would to implement the idea of Ordsan and Evans (2001; 2007) to use supervised
machine learning to mark unseen WordNet senses by their animacy rather using specific rules.

6 Related Work

We divide the related work into two sections: first animacy detection in English, followed by animacy
detection in other languages. The work reported here is in English (thus the related work of the first
section), but the material covered in non-English second section makes clear both that our approach had
not attempt before in any language, and also that no language-specific features have been used in any
prior work. There have been both rule-based and machine learning methods to classify the animacy of
words, but to the best of our knowledge, no one has combined both techniques, and no one has tackled
animacy classification at the referring expression or coreference level.

6.1 Animacy Detection in English

Evans and Ordsan (2000) performed animacy classification to improve anaphora resolution using a rule-
based method to identify animate WordNet hypernym branches. In later work they used supervised
machine learning to mark unseen WordNet senses for their animacy (Ordsan and Evans, 2001; Ordsan
and Evans, 2007). The rule-based method uses the unique beginners in WordNet for classification of
sense animacy using a statistical chi-squared method, while the machine learning method uses k-nearest
neighbors in a multi-step procedure, along with careful feature engineering, to determine noun ani-
macy. They achieved an F} of 0.94 for animacy, and also performed an extrinsic evaluation using the
MARS anaphora resolution system and a word sense disambiguation algorithm. Similarly, Moore et al.
(2013) combined a majority vote model using rule-based methods, features from WordNet, and a SVM
to achieve an accuracy of 89% for majority voting and 95% for SVM (no F7j score was reported).
Bowman and Chopra (2012) used a maximum entropy classifier to predict multiple classes for noun
phrases as human, vehicle, time, animal, etc., with an overall accuracy of 85%. A binary animacy
classification could be derived from each of these classes, with a performance of 94% accuracy.
Additionally, there are others that have used pure rule-based and pattern matching methods. Ji and
Lin (2009) generate n-grams and performed pattern matching using the Google n-gram corpus to label
gender and animacy properties for words for to assist in person mention detection. With these gender and
animacy markings, they applied a confidence estimation which is compared against the test document
using fuzzy matching. The highest Fj they achieved for animacy was 0.67, with an F; of 0.46 for gender.
Declerck et al. (2012) used an ontology-based method to detect characters in folktales. Their ontology
consists of family relations as well as elements of folktales such as supernatural entities. After looking at
the heads of noun phrases and comparing them with labels in the ontology, they added the noun phrase
to the ontology as a potential character if a match was found. Then, they applied inference rules to
the candidate characters in order to find two strings in the text that refer to the same character. They
discarded strings that are related to a potential character only once and are not involved in an action.
They obtained an accuracy of 79%, a precision of 0.88, a recall 0.73, and an F} of 0.80.
Wiseman et al. (2015) used a mention-ranking approach for coreference resolution, using animacy as
a feature, derived from the Stanford Coreference System (Lee et al., 2013). The Stanford Coreference
System set animacy attributes using a static list for pronouns, named entity labels, and a dictionary.
Finally, a marginally related rule-based system was implemented by Goh et al. (2012) using verbs and
WordNet in order to determine the protagonists in fairy tales (where protagonists must of necessity be
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animate). They used the Stanford parser’s phrase structure trees to obtain the subjects and objects of the
verbs and used the dependency structure to obtain the head noun of compound phrases. Additionally,
they used WordNet’s derivationally_related relation to find verb associated with a particular nominal
action. They achieved a precision of 0.69, a recall of 0.75, and an F7 of 0.67.

6.2 Animacy Detection in Other Languages

Ngklestad (2009) implemented animacy detection for Norwegian nouns, using this along with Named
Entity Recognition to improve the performance of anaphora resolution. They explored various pattern
matching methods, using web data to extract lists of animate nouns as well as to check the animacy of
a particular noun. For example, if a noun co-referred frequently with han (he) or hun (she), then it was
characterized as animate. This method achieved an accuracy of 93%. The main problem here, from our
point of view, is that using data from the web makes the problem too general: you only measure the
typicality of animacy, not the animacy of an item in context. In the case of folktales, we have unusual
animate entities (e.g., talking stoves) that will on the whole be seen by the web as inanimate.

Bloem and Bouma (2013) developed an automatic animacy classifier for Dutch nouns by dividing
them into Human, Nonhuman and Inanimate classes. They use the k-nearest neighbor algorithm with
distributional lexical features—e.g., how frequently the noun occurs as a subject of the verb “to think”
in a corpus—to decide whether the noun was predominantly animate. Prediction of the Human category
achieved 87% accuracy, and the large inanimate class was predicted correctly 98% of the time. But,
again, this work focuses on individual noun phrases, not coreference chains, and is concerned with the
default animacy of the expression, not its animacy in context.

Another implementation of word-level animacy for Dutch was performed by Karsdorp et al. (2015)
on folktale texts. Because this work was the highest performing word-level system, many of our features
were inspired by their approach. They used lexical features (word forms and lemmas), syntactic features
(dependency parses to check which word is a subject or an object), part of speech tags, and semantic
features (word embedding using a skip-gram model to vectorize each word). They implemented a Max-
imum Entropy Classifier to classify words according to their animacy and obtained a good result of 0.93
F for the animate class, by just using the words, parts of speech, and embedding features.

Baker and Brew (2010) performed animacy classification on a multilingual dataset containing English
and Japanese. They used Bayesian logistic regression with morphological features, WordNet semantic
categories, and frequency counts of verb-argument relations. They obtained 95% classification accuracy.
In sum, all the prior work has been for word-level animacy (usually nouns, sometimes noun phrases). In
contrast, we focus on characterizing the animacy of referring expressions and coreference chains.

7 Contributions

This paper makes four major contributions. First, we have redefined the problem of animacy classifica-
tion as one of marking animacy on coreference chains, in contrast to all prior work that seeks to mark
the animacy at the world level. Second, we have presented a hybrid system merging an SVM classifier
and hand-built rules to predict the animacy of referring expressions directly, achieving performance of
0.90 F1, which is comparable to the state of the art for word-level animacy detection. Third, we used a
majority voting approach to obtain the animacy of coreference chains. The overall performance of this
approach is substantially improved in comparison with our prior work. Our error analysis further sug-
gests several potentially profitable ways forward to improving the performance. Finally, we provide 15
texts annotated for word-level animacy and 142 texts annotated for coreference chain animacy, as well
as the code reproducing the results, in the supplementary materials archive?.
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