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Abstract: Detecting the structural changes caused by volume and pressure overload is critical
to comprehending the mechanisms of physiologic and pathologic hypertrophy. This study
explores the structural changes at the crystallographic level in myosin filaments in volume-
and pressure-overloaded myocardia through polarization-dependent second harmonic
generation microscopy. Here, for the first time, we report that the ratio of nonlinear
susceptibility tensor components ds;/d;s increased significantly in volume- and pressure-
overloaded myocardial tissues compared with the ratio in normal mouse myocardial tissues.
Through cell stretch experiments, we demonstrated that mechanical tension plays an
important role in the increase of ds;/d;s in volume- and pressure-overloaded myocardial
tissues.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The crystallographic structure of cardiac myosin filaments is a major determinant of the
strong binding of myosin heads to actin filaments and the accurate conformational changes in
myosin heads mediating cardiac muscle-cell contraction. For example, the structural changes
in myosin filaments under pathological hypertrophy have been thought to contribute to a
binding mismatch between myosin and actin filaments. Second harmonic generation (SHG)
microscopy is used to visualize myosin filaments without labeling [1,2]. The basic principle
of this visualization is that the SHG signal is directly determined by the nonlinear
susceptibility tensor, which is an optical property of the biomolecule (noncentrosymmetric
biomolecules including, for example, myosin, collagen type I, and microtubule) associated
with its crystal structure [3-5]. Polarization-dependent SHG microscopy is unique: It can
retrieve the values of nonlinear susceptibility tensor components of a biomolecule and thus
can be used to explore its crystallographic structure [3,6]. The relationship between the
nonlinear susceptibility of myosin filaments and their crystallographic structures has been
extensively studied. The values of nonlinear susceptibility tensor components of myosin
filaments in different species are reportedly different [7], as are those values for the same
myosin filaments in different physiological states (relaxed or contracted) [8,9].
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Here, we report results of our study of the response of cardiac myosin filaments to
pregnancy-induced volume overload and transverse-aortic constriction-induced pressure
overload using polarization-dependent SHG microscopy. Compared with the values obtained
in normal myocardia, the values of nonlinear susceptibility tensor components of myosin
filaments in both volume- and pressure-overloaded myocardia increased significantly,
suggesting changes in their crystallographic structure.

Because stretch reportedly can lead to structural changes in myosin filaments [10], we
hypothesized that the value changes in the nonlinear susceptibility tensor components of
myosin filaments in the two overload models would be triggered by mechanical tension.
Mechanical tension in vivo can be decomposed into a longitudinal component (parallel with
the long axis of the cells) and a lateral component (perpendicular to the long axis of the cells).
Thus, we tested the above hypothesis using a cell stretch model. Our data demonstrated that
the changes in the nonlinear susceptibility tensor values in myosin filaments observed in our
cell-stretch models are compatible with those we detect in the volume- and pressure-
overloaded myocardia.

2. Methods and materials

2.1 SHG and extraction of the components of the nonlinear susceptibility tensor
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Fig. 1. (A) Experimental setup of the polarization-dependent SHG microscope. (B) Illustration
of geometric arrangement of a single myofibril relative to the polarization of the applied
excitation light field. a: the angle between the incident polarization of the excitation light and
the z-axis (orientation of the myofibril). (C) The SHG signal intensity versus the polarization
angle of the excitation light.
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Conventionally, myosin is known to possess cylindrical symmetry (class C6) [4,7,11], which
reduces the number of independent nonzero tensorial components of }[;k ; d;s, dz;, and dz; are

the only nonzero elements. If the Kleinman condition (the nonresonant character of the SHG
scattering process) applies, only two tensor components among d;s, ds;;, and dj; are
independent: d;5; = d;3; and d; [12]. Figure 1(B) depicts the geometry that we consider for a
single myosin myofibril relative to an applied excitation optical field. The SHG intensity (/)
and the polarization angle of the excitation light (o in Fig. 1(B)) satisfy the following C6-
symmetry model [7,8]:

2
1*° ~| (sin2e)” + Dot sin? ar+ B cos’ (1)
dlS 15
Figure 1(C) is the polarization profile: The SHG signal intensity versus the polarization
angle of the excitation light, which was plotted according to Eq. (1) (the specific tensor
component settings are d,, /d,s =0.97, d,; /d,5; =0.69 (Ref[7].)).

2.2 Polarization-dependent SHG imaging system

The construction of polarization-dependent SHG microscopy with an on-stage incubator is
described in Fig. 1(A). The excitation laser beam was generated from a Ti:Sapphire laser (100
fs and 80 MHz, Tsunami 3960-X1BB pumped by a 9.5 W Millennia, Spectra-Physics) and
was tuned to 830 nm. The beam was then steered onto the XY scanner (6210H, Cambridge
Tech.). Before the beam was focused onto the sample using a 1.0 NA water immersion
objective (60X LUMPIlanFLN, Olympus), it passed a polarization state generator for rotating
the polarization angle of the excitation light. The polarization state generator was composed
of a polarizer (LPNIRE100-B, ThorLabs) that was mounted with an arbitrarily fixed
polarization axis and a half-wave plate (WPHO5M-830, ThorLabs) that was mounted on a
motorized rotator (PRM1Z8, ThorLabs). By rotating the half-wave plate an angle of v
relative to the fixed axis of the polarizer, the polarization of the excitation light would be
rotated an angle of 2y without change in the intensity of the excitation light. During our
experiments, at each imaging point, the half-wave plate was rotated to an orientation at which
the SHG signal reached its minimum value. This orientation was selected as 0 degrees. The
half-wave plate would be rotated to 85 degrees at every 5 degree interval so that the
polarization of the excitation light would be rotated from 0 degrees to 170 degrees at every 10
degree interval. After the objective, the polarization ellipticity of the excitation light is >50:1,
and the power of the excitation laser beam was set at 21 mw. This power is a little high for
live cell culture; it was selected to ensure a high signal to noise ratio at the polarization
corresponding to the spectral valley where in certain cases, the SHG is weak. The SHG
signals were collected from the forward scattering direction through an Olympus 1.4 NA oil
immersion condenser and recorded by a photomultiplier tube (H7422p-40, Hamamatsu). An
IR filter was place in line before the photomultiplier tube and was used in addition to a 415 +
15 nm bandpass filter (FF01-415/10-25, Semrock). The microscope stage and the objective
mount were facilitated with motorized control mechanisms (MP-285, Sutter). In this study,
the scan rate and the pixel dwell time were set to 500 lines/s and 3.2 us, respectively, to
achieve a 2D imaging rate of approximately one frame per second, where each frame
contained 512 X 512 pixels with a pixel size of 0.16 um. The lateral and axial resolution
were experimentally estimated to be 0.47 and 1.26 um, respectively [13].

All live cell imaging was performed in an on-stage incubator, which was composed of an
electronically heated aluminum frame with feedback control and two covers (H301-TCl1-
HMTC, 2GF-MIXER, Okolab SRL, Ottaviano). A mixture of 95% air and 5% CO, was
pumped through the heater unit, which contained deionized water, and the humidified air
mixture (~37°C, 95% humidity) was supplied to the chamber of the on-stage incubator. By



Vol. 10, No. 7 | 1 Jul 2019 | BIOMEDICAL OPTICS EXPRESS 3186 I
Biomedical Optics EXPRESS

design, the 5% CO, and 95% humidity mixture were maintained by adjusting the balance
between the leakage and the supply through a feedback system. The 37°C temperature inside
the culture dish was maintained by adjusting the balance between heat loss and gain through a
feedback system including a temperature sensor placed inside the culture dish.

2.3 Sample preparation

In the research reported here, all myocardial samples were from three-month-old CD-1 mice.
For the volume overload study, three-month-old pregnant mice was used, which were
euthanized by the third day after delivery. For the pressure overload study, three two-month-
old female mice first underwent the transverse-aortic contraction surgery previously described
by Rockman and associates [14]. The mice were then fed normally for one-month,
euthanized, and the hearts were harvested. The normal myocardial samples were from three-
month-old normal female mice. Fifteen minutes prior to euthanasia, animals were given a 0.5
ml subcutaneous injection of 1:1000 heparin. Inhalation of 5% isoflurane was used to the
animals to induce general anesthesia and 2.5% isoflurane was maintained during euthanasia.
All uses of animals were approved by the Clemson University Institutional Animal Care and
Use Committee.

The harvested hearts were immediately perfused with cardioplegia high k" solution to
ensure all cardiomyocytes in the muscles were in a relaxed state and then fixed by 4%
paraformaldehyde perfusion at zero transmural pressure and embedded in optimal cutting
temperature (OCT) compound at —20 °C. To avoid variations due to possible regional
heterogeneity, all slices were taken from the left ventricle free wall, and sections (10-um
thick) were cut using a cryostat (HM550, Thermo Scientific). The sliced samples were
transferred to histology slides. Then, the OCT compound was washed away with PBS, and
the samples were secured between two glass coverslips. Next, these samples were imaged
under the polarization-dependent SHG microscope.

2.4 Cell culture and stretch

A

Fig. 2. (A) Grooved PDMS substrate for cardiomyocyte alignment and stretch delivery. (B)
PDMS culture chamber, in which the grooved PDMS served as the bottom part. (C) Frame of
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cell stretching device with culture chamber mounted. (D) Cell stretching device housed in the
on-stage incubator.

Three-day-old Sprague-Dawley neonatal rats were euthanized according to a procedure
approved by the Clemson University Institutional Animal Care and Use Committee. The
cardiomyocytes were isolated and collected as previously described [15]. Briefly, the hearts
were minced into 1 mm?® pieces and first digested with trypsin solution (0.14 mg/mL without
EDTA) overnight, then shaken at 75 rpm in a collagenase solution (1 mg/mL collagenase II,
GIBCO; 0.24 U/mL neutral protease, Worthington) for 1.5 h. The fibroblasts were removed
by pre-incubating the cells in a 150-cm’® flask with the culture medium [DMEM solution
containing 10% fetal bovine serum] for 2 h. The purified cardiomyocyte (~90%) suspension
was diluted to 1 million cells/mL and then seeded into grooved PDMS substrate culture
dishes coated with fibronectin (20 mg/mL) (Fig. 2(A)). Plating 2 mL of cells was sufficient to
ensure a confluent monolayer of spontaneously contracting cells.

The stretcher design and the fabrication of the PDMS substrate in the research reported
here are the same as those we used previously (Fig. 2(C)) [16]. The amount and duration of
the stretch are based on papers studying mechanical stretch-induced cardiac hypertrophy
[17,18].

In the study described here, grooved PDMS substrate was used to realize end-to-end cell
alignment to mimic in vivo-like cell morphology, which was demonstrated to cause in vivo-
like hypertrophy under stretch [16]. Two types of grooved PDMS substrate were designed: In
one, the grooves were aligned with the stretching direction; in the other type, the grooves
were perpendicular to the stretching direction. Multiple plates (e.g., PDMS chambers shown
in Fig. 2(C)) of cells were prepared for the longitudinal and lateral stretch groups. After 48
hours of incubation, the plates of each group were instantly stretched 0%, 5%, 10%, 15% and
20%, respectively, and the stretches were sustained for 48 hours before SHG imaging to
measure the values of the nonlinear susceptibility tensor components. For each stretch trial
(e.g., 10% longitudinal stretch), five identical plates were studied with four arbitrarily
selected points being polarization scanned to create 20 measurement points for each trial. In
addition, to study the temporal response of the nonlinear susceptibility tensor components of
myosin filaments, ten extra plates of cardiomyocytes were prepared, five for instant 15%
longitudinal stretch and five for instant 15% lateral stretch after three days of incubation, and
data were collected hourly after the stretch.

2.5 Image collection and analysis

In this study, before the SHG image scan, 16 mmol/L of potassium ions and 1.2 mmol/L of
calcium ions were added to the culture medium to allow cardiomyocytes to be in a relaxed
state. Images were collected at every 10 degree interval of the polarization angle of the
excitation light, which started at 0 degrees and continued until the polarization angle reached
170 degrees. Then, we reversely collected another 18 images at every 10 degree interval
starting at 170 degrees and continuing to the 0 degree polarization state. A stack formed by
the collected images and the region of interest, 3 to 4 sarcomeres around a straight myofibril,
was selected to calculate the average gray value in each image. The obtained data were fit to
the model given by Eq. (1). To retrieve the ratios of the tensor components, we used a
nonlinear least-squares method implemented in MATLAB with three parameters as specified
ds;/d;s and d;3/d;sand a scale-factor. We developed a curve-fitting program based on the work
published by Boulesteix and associates to estimate the length of myosin filaments [19], which
is typically 1.6 pm. We used the full width at 1/e* of the fitted SHG signal in a sarcomere as
an estimation of the length of the myosin filaments. Although this estimation may not have
been accurate, we used it consistently to compare the length of myosin filaments in various
conditions.
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2.6 Statistical analysis

In this paper, data are presented as mean + standard deviation (SD). Statistical analysis was
performed with SAS 9.4 software. One-way analysis of variance (ANOVA) tests were used to
determine mean separation. Two-sample Student’s t-tests were then performed on the average
values. P values of <0.05 were considered to be significant.

3. Results

3.1 Cell and sarcomere morphology
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Fig. 3. (A) The arrangement of myosin filaments in a straight myofibril. The anisotropic band
(A-band) is the region where myosin filaments and part of an actin filament are located; the
isotropic region (I-band) is occupied partially by actin. Actin runs from the Z-disk to the center
of the sarcomere. The Z-line is located in the ends of the sarcomere and defines the lateral
boundaries of the sarcomere and anchors actin. (B)-(D) The linearly polarized SHG images of
cardiomyocytes under (B) normal, (C) volume overload and (D) pressure overload conditions.
(E) Bar plots of the heart weight to body weight ratios for normal, volume overload and
pressure overload models were 3.73 + 0.16 mg/g, 4.86 + 0.21 mg/g and 5.72 + 0.37 mg/g,
respectively (sample size n = 3 mice/model. Bars represent mean + SD. One-way ANOVA
followed by Student’s t-tests were used to compare different groups, *P <0.05 vs. Normal). (F)
Bar plots of sarcomeric length obtained from normal and volume- and pressure-overloaded
myocardial samples: 2.17 £ 0.17 um, 2.22 + 0.20 um and 2.19 + 0.14 pm, respectively.
(sample size n = 60 measurements/model: 10 tissue slides were arbitrarily selected from each
mouse heart; 2 measurements were made for each slide. There was no statistical difference
between the three mice in each group. Bars represent mean = SD. There was no significant
difference between groups (one-way ANOVA)).
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Panels (B)-(D) in Fig. 3 are linear polarized SHG images that show uniformly distributed
SHG intensities at each sarcomere in myocardial tissues from the normal and the volume- and
pressure-overloaded models. A-bands are parallel to each other and evenly separated by I-
bands. There is no significant morphological difference among the linear polarized SHG
images obtained from normal cardiomyocytes and overloaded cardiomyocytes. Figure 3(E)
presents the sample weights obtained immediately before and after heart harvest; the weights
demonstrated significant increase in heart weight to body weight ratio under volume and
pressure overload. Figure 3(D) shows the statistical result of the sarcomeric length
measurements, which, based on Student’s t-tests, demonstrates no significant difference (p =
0.05) although the average sarcomeric lengths in volume- and pressure-overloaded
myocardial tissues showed slight increases.

3.2 Ratios of the 2nd-order nonlinear susceptibility tensor components
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Fig. 4. (A) The polarization profiles of normal, volume- and pressure-overloaded myocardial
tissues. (sample size n = 60 measurements/model: 10 tissue slides were arbitrarily selected
from each mouse heart, and 2 measurements were made for each slide.) (B) Bar plots of the
nonlinear susceptibility tensor components (d;/d;s, and d;3/d;s) extracted from the
measurement shown in (A): For myosin filaments from normal tissue, d;;/d;s value lies in the
range of 1.05 + 0.07 and d;3/d;s, 0.69 + 0.06; for volume-overloaded myocardial tissues, ds,/d;s
and ds3/d,s are 1.04 = 0.09 and 0.91 + 0.12, respectively; for pressure-overloaded myocardial
tissues, the corresponding values are 1.10 + 0.10 and 0.93 + 0.13. (There was no statistical
difference between the three mice in each group. Bars represent mean + SD. One-way
ANOVA followed by Student’s t-test were used to compare different groups, *P < 0.05 vs.
Normal.)

Figure 4(A) shows the polarization spectra from normal, volume- and pressure-overloaded
myocardial tissues. The polarization spectra appear as a C6 symmetrical profile in all three
cases. However, comparing the polarization spectrum from normal myocardial tissues with
the spectra from volume- and pressure-overloaded myocardial tissues, we found that when the
polarization angle is equal to 0 and 90 degrees, the corresponding intensities are different.
These differences are reflected in the extracted ratio of the nonlinear susceptibility tensor
components (Fig. 4(B)). The values of d3,/d;s in three cases were all around 1.00, showing no
statistical difference under 0.05 confidence level. The values of ds;/d;; were significantly
different (p = 0.05) between the normal and overloaded myocardial tissues although the
values of dj;/d;s were not statistically different between the two overloaded myocardial
tissues. Among all fits in this study, on average, the matching agreement between the data
points and the fitting curve is R* > 0.90.
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To explore the role of mechanical stretches that occur during volume overload and
pressure overload in the changes in the ratio of the nonlinear susceptibility tensor components
ds3/d;s, we studied the effect of simulated mechanical tension on the ratio of d33/d;s. Figure 5
shows the data acquired from our cell culture model. In the absence of stretch, the value of
dsi/d;s (0.99 + 0.09) obtained from the cell culture was statistically the same as that obtained
from normal myocardial tissues (Fig. 4(B)), while the value of d;;/d,;s was 0.49 = 0.05, which
was significantly smaller than the value retrieved from normal myocardial tissues. With an
increase in the stretch extent, the values of d;i/d;s in both longitudinal and lateral stretch
models remained unchanged statistically, while the values of d;;/d;s increased significantly.
When the stretches were increased to 20%, the values of ds;/d;s eventually reached 0.63 £
0.05 for longitudinal stretch and 0.65 £ 0.06 for lateral stretch. Notably, as the stretch
increased, especially when the stretch reached 20%, cell mortality increased significantly.
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Fig. 5. Bar plot of the extracted ratio values of tensor components (d;/d;s and d;i/d;s) in
myosin filaments from (A) longitudinally stretched cardiomyocytes (ds,/d;s = 0.99 + 0.09, 1.02
+0.08,0.99 £ 0.08, 1.02 £ 0.11 and 1.03 + 0.10; d;3/d;s = 0.49 £ 0.05, 0.52 + 0.04, 0.55 £ 0.04,
0.59 £ 0.05 and 0.63 + 0.05). (B) Laterally stretched cardiomyocytes, (d3/d;s = 0.99 £+ 0.09,
1.02 +£0.08, 1.03 £ 0.10, 1.02 = 0.09 and 1.04 + 0.11; d55/d;5s = 0.49 £ 0.05, 0.52 + 0.04, 0.56 +
0.04, 0.61 = 0.06 and 0.65 + 0.06.). (sample size n = 20 measurements /group: 6 plates of cells
were prepared for each longitudinal and lateral stretch group. 2-4 measurements were made for
each plate. There was no statistical difference between the 6 plates in each group. Bars
represent mean = SD. One-way ANOVA followed by Student’s t-test was used to compare
different groups, *P < 0.05 vs. Control.)

3.3 Dynamic response of cardiomyocytes to mechanical tension
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Fig. 6. Linearly polarized SHG images of cells before and after stretch: (A-C) longitudinal
stretch and (E-G) lateral stretch. (D) The temporal response of the nonlinear susceptibility
tensor components of myosin filaments after the cells were stretched by 15%. (Sample size n =
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20 /group: 5 plates of cells were prepared for each longitudinal and lateral stretch group. 4
measurements were made for each plate. Bars represent mean + SD).

The dynamic changes in the ratio of the nonlinear susceptibility tensor components over time
in response to mechanical tension were studied. In view of the high mortality rate at 20%
stretch, the cardiomyocytes were stretched to 15% either longitudinally or laterally. Figures
6(A) and 6(C), respectively, show the linearly polarized SHG images of cardiomyocytes after
longitudinal and lateral stretch. After being stretched longitudinally and laterally, the cells had
an instant increase in sarcomeric length and cross-sectional width, respectively, and the
sarcomeric length and cross-sectional width gradually recovered under sustained stretch. The
value of d;;/d;s remained virtually unchanged at approximately 1.00; however, the value of
ds;/d;s obviously increased over time in both longitudinal and lateral stretch. When
cardiomyocytes were stretched longitudinally, the value of d3;/d;s gradually increased from
0.50 + 0.04 to 0.62 + 0.05 in contrast to the immediate increase followed by a gradual
recovery of sarcomeric length. When cardiomyocytes were stretched laterally, the value of
ds33/d;s had an instant increment from 0.50 = 0.04 to 0.70 + 0.04, and the value decreased to
0.65 £+ 0.04 during stretch sustained for 720 minutes. When cardiomyocytes were stretched
laterally, the decrease in the value of d;3/d;s with time was consistent with the gradual
recovery of the cross-sectional width of cells. By using the curve-fitting method, we also
estimated the length of myosin filaments from the SHG images obtained from our cell stretch
experiment. The results show that the length gradually increased after longitudinal stretch:
The length of myosin filaments was 1.69 £ 0.11 um, 1.74 + 0.14 um, and 1.83 + 0.14 um
before stretching, 0 minutes after stretching, and 720 minutes after stretching, respectively.

4. Discussion

Heart weight to body weight ratios (Fig. 3(E)) increased significantly in our volume and
pressure overload models. According to current thinking on hypertrophy, the increase in mass
and volume during hypertrophy is due to the addition of new sarcomeres, without any change
in sarcomeric length [20,21]. Our data agree with this thinking, showing no significant
changes in sarcomeric length in hypertrophic hearts. Our data mainly revealed the structural
differences in the polarization spectra by permitting a comparison between the ratios of the
tensor components. The values of d3,/d;s (Fig. 4(B)) remained approximately 1.00 in normal
and volume and pressure overload animal models, demonstrating that the Kleinman condition
was valid in both the normal and the overload models. Our retrieved values (ds;/d;s and
ds3/d;5) in normal myocardial tissues were close to the data reported by Odin and Tiaho [4,7].
However, the values of d;3/d;s were significantly increased in both volume- and pressure-
overloaded myocardial tissues. The latest findings in the literature show that there is not
necessarily a connection between sarcomeric length and the ratio of the nonlinear
susceptibility tensor components [9]. Our findings demonstrate that in volume and pressure
overloaded myocardia, the ratio of the nonlinear susceptibility tensor components may change
in myosin filaments without changes in sarcomeric lengths.

The relationship between the ratio and the crystallographic structure of the myosin
filaments has been reported in the literature: According to the theory of hyperpolarizability,
bulk susceptibility is derived from the coherent summation of molecular hyperpolarizability
[22]. Myosin filaments can be considered as cylindrically symmetrical molecules. The bulk
susceptibility tensor components are related to the characteristic orientation angle 6 (Fig.

7(B)).

2

dy, =Ny <cos’ 0>
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Ns is the number density of active harmonophores, £ is the molecule’s hyperpolarizability,

and the brackets <> indicate an orientation average. If the distribution of the effective
molecular orientation is very narrow, the <> can be removed to obtain [23,24]:

D:<cos3¢9>: dy,/ds s 6 3)
<cos®> 2+d,/d, ¢
where 6, is an experimentally retrievable molecular orientation modeled as the helical pitch
angle of the SHG source molecule (Fig. 7(B)). Equation (3) enables us, at the crystallographic
level, to evaluate the helical pitch angle through d;;/d;s extracted from the polarization
spectra. The value of the fitting parameter ds;/d;s in the normal myocardial tissues was
measured to be 0.68 in this research, and the corresponding helical pitch angle was 61°, which
is a close approximation of the angle of each helix relative to the main axis as obtained by X-
ray diffraction [7,23,24]. Based on the single myosin spiral parameters (helix pitch P = 0.55
nm and diameter R = 0.44 nm) and using tan 6 = n*R /P, the pitch angle obtained by X-ray
diffraction is calculated to be about 68°. Therefore, our animal experiment results
demonstrate that the volume or pressure overload-related structural changes in myosin
filaments at the crystallographic level can be studied dynamically by calculating the ratio of
the nonlinear susceptibility tensor components (d3;/d;s) obtained from PR-SHG microscopy.

Using a cell stretch-based hypertrophic model, our coauthor Dr. Thomas Borg observed
an increase in the expression of protein turnover in stretched cardiomyocytes [25]. Recently,
using a similar model, we captured sarcomeric addition under stretch. The means of
sarcomeric addition in our model are similar to the behavior assumed from observation of in
vivo hypertrophic models [16]. Therefore, our cell culture and stretch model can simulate the
mechanics in the process of real cardiac hypertrophy.

The cell stretch data (Fig. 5 and Fig. 6) demonstrate the changes in d;3;/d;s under
mechanical tension. Our data show that the volume and pressure overload mimicked by
mechanical stretch can lead to a significant increase in the value of d;3/d;s. It is worth noting
that when no stretch was applied, the value of d;;/d;s was significantly smaller in stretch-free
cardiomyocytes (0.49 + 0.05) than the value in normal myocardia (0.69 + 0.06) (Fig. 5). This
may have been because the cardiomyocytes cultured on grooved PDMS substrate lacked the
mechanical tension found in real myocardium. There is evidence that neonatal rat ventricular
cardiomyocytes cultured on a soft substrate will show reduced contraction amplitude and
frequency compared with the cells in vivo [26,27].

Mechanical tension mediates the structural remodeling of myosin filaments through
intracellular cytoskeleton complexes associated with the sarcomeres (e.g., a-actinin, paxillin,
titin and myosin binding protein C) [28,29]. The extensibility of the myosin filaments we
observed in our overload-mimicking stretching model has been confirmed [10,30]: Changes
in myosin filament length in volume- and pressure-overloaded myocardium were reported
[31]. Although this length cannot be measured accurately, our previous discussion suggests
that changes in the mean harmonophore orientation angle (Fig. 7(B)), which is related to the
length changes, can be quantified by PR-SHG microscopy.

As 15% stretch was applied (Fig. 6), the value of d;3/d;s increased over time in both
longitudinal and lateral stretch, but the responses of cardiomyocytes to longitudinal and
lateral stretch differed. When cardiomyocytes were stretched longitudinally, the sarcomeric
length immediately increased, but the value of ds;/d;s; increased slowly over time. This
suggests that the structural changes at the crystallographic level in the myosin filaments
caused by longitudinal mechanical tension do not occur instantaneously, and the value of
dss3/d;s 1s not related to sarcomeric length (This result is consistent with the reports by
Sebastian and associates [9]). When cardiomyocytes were stretched laterally, an instantaneous
increase of d;3/d;s was detected, and the trend of change in ds;/d;s was synchronized with the
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change of cell cross-sectional width. This indicates that the crystallographic structure of
myosin filament was more sensitive to lateral stretch than longitudinal stretch.

In our cell culture experiments when the cardiomyocytes were longitudinally stretched,
titin, as a part of the stress responsive machinery, was the first sarcomeric component to
respond to the tension. Titin elongated due to its spring-like property; the immediate increase
in the sarcomeric length was attributable to titin [32]. The viscoelastic myosin filaments are
typically modeled as a mechanical component aligned in series with titin. The delayed
response of the myosin filaments was reflected in the delayed increase in the value of d;3/d;s,
as shown in Fig. 6(D). As titin and the cytoskeleton gradually transferred the tension to
myosin [33,34], the myosin coil was gradually stretched (the pitch angle was reduced
correspondingly) and thus caused a gradual increase in the value of d;3/d;s from 0.49 to 0.64.
The model is consistent with the experimental data in Fig. 6: The value of d33/d;s did not
increase immediately after cells were stretched, but gradually increased as the tension shifted.
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Fig. 7. (A) Schematic of a single sarcomere structure. (B) The myosin coil is made up of two
alpha-intertwined helices. The @ is the mean harmonophore orientation angle. (C) The
structure of a full-length myosin molecule was composed of the myosin coil (static parts), and
a hinge region (S2) connects the two myosin heads (S1) with the myosin coil; S1 and S2 form
the dynamic part. The model of double-headed rigor S1 extends from the myosin filament
backbone to attach to actin to form the crossbridge.

Yoshikaway and associates reported that the passive stiffness of cardiomyocytes in the
transverse direction increased significantly in hypertrophied rat hearts, and that the (residual)
crossbridge is the main factor leading to increased passive stiffness [35]. This report suggests
that the cross-bridge contributes to support the transverse mechanical load. When the
cardiomyocytes were laterally stretched, the tension was directly exerted on the cross-bridge
formed between myosin filaments and the actin filaments. The myosin molecule can be
modeled with a static part (the myosin coil, which lies on the backbone of the myosin
filament) and a dynamic part (S1 and S2, which extend from the main myosin filament body
to attach to the actin filament) (Fig. 7). An angle ¢ is formed between the static part and the
dynamic part, and the angle varies with different physiological states [36]. The sliding of
myosin heads on actin changes the angle between the static and the dynamic parts. It has been
demonstrated that the PR-SHG microscope is sensitive to the physiological states of a myosin
molecule that are characterized by different angles of ¢ [8,9]. According to numerical
simulation results, a 20-degree increment of the angle ¢ can trigger a significant increase in
dsy/d;s [8]. Consequently, we hypothesize that during hypertrophy, the changes in the myosin
head orientation in response to the mechanical tension is one of the causes of changes in the
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value of ds3/d;s. An instantaneous change in the value of d;3/d;s demonstrates that there is no
sarcomeric component like titin that can buffer the initial lateral tension.

Our data cannot be used to distinguish the effects of the changes in angle 6 and ¢ during
hypertrophy; however, our data demonstrate that hypertrophy may cause permanent changes
at the crystallographic level in the myosin filaments. These changes cannot be revealed using
conventional microscopic techniques and thus have not been reported in the literature. But
these changes may be used to explore the transition from physiological to pathological
hypertrophy; the latter has the potential to lead heart failure.

5. Conclusion

According to our experimental data, both pregnancy-induced volume overload and
transverse-aortic constriction-induced pressure overload led to a significant increase in the
ratio value of the d;3/d;s in myosin filament. And we have proved by cell stretch experiment
that mechanical tension is the cause that leads to the increase of ds3/d;s. In addition, we
explored the relationship between the structural changes in myosin filament and the changes
in the ratio of the nonlinear susceptibility tensor components under mechanical tension.
Considering that the volume overload and pressure overload are important causes of cardiac
hypertrophy, the findings in this paper can be used for early diagnosis of cardiac hypertrophy
induced by volume or pressure overload.
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