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Abstract—This paper presents an estimation framework to
assess the performance of the sorting function over data that is
perturbed. In particular, the performance is measured in terms of
the Minimum Mean Square Error (MMSE) between the values of
the sorting function computed on the data without perturbation
and the estimate that uses the sorting function applied to the
perturbed data. It is first shown that, under certain conditions
satisfied by the practically relevant Gaussian noise perturbation,
the optimal estimator can be expressed as a linear combination of
estimators on the unsorted data. Then, a suboptimal estimator is
proposed, and its performance is evaluated and compared to the
optimal estimator. Finally, a lower bound on the desired MMSE is
derived when data is i.i.d. and has a Gaussian distribution. This is
accomplished by solving a new problem that consists of estimating
the norm of an unsorted vector from a noisy observation of it.

I. INTRODUCTION

Sorting is a widely used function and a benchmark for sev-
eral modern recommender and distributed computing systems
(e.g., Hadoop MapReduce). Today, sorting is often performed
over massive amounts of data, which might be sensitive (e.g.,
clinical/genomic health) and hence it is required to remain
confidential/private. For instance, in a recommender system,
a user may not wish to fully reveal her interests or previous
purchases. In order to ensure data confidentiality, one solution
would consist of perturbing the data with some noise. This
gives rise to a natural question: How does data perturbation
affect the performance of the sorting function?

In this paper, we focus on assessing the performance of the
sorting function over data that is perturbed (e.g., because of
data privacy purposes). Our goal is to quantify the performance
loss of the sorting function versus different levels of noise
perturbation. Towards this end, we pose the problem within
an estimation framework. In particular, as a metric, we adopt
the Minimum Mean Square Error (MMSE) between the values
of the sorting function computed on the original data (i.e., with
no perturbation) and the estimate that uses the sorting function
applied to the noisy version of the data.

We first analyze the optimal estimator, i.e., the conditional
expectation of observing the original data as sorted, given the
observation of the noisy sorted data. We show that, under
certain conditions satisfied by the practically relevant Gaussian
noise perturbation, the optimal estimator can be expressed as a
linear combination of estimators on the unsorted data. Then, by
leveraging the structure of the optimal estimator, we propose
a suboptimal estimator and prove that, with Gaussian noise
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perturbation, it is asymptotically optimal in the low noise
regime, and its MMSE performance is always to within a
constant gap of the optimal MMSE. Finally, we derive a lower
bound on the desired MMSE term, when the original data is
ii.d. and has a Gaussian distribution. This consists of another
MMSE term obtained by estimating the norm of an unsorted
vector from a noisy observation of it. As such, this new MMSE
term, beyond providing a closed-form lower bound on the
desired MMSE, might also be of independent interest since
it provides the solution to another estimation problem.
Related Work. Recently, sorting with noisy data has gained
significant traction. For instance, in [[1] the authors focused
on estimating the permutation structure of the original sorted
vector given a noisy observation of it. In [2f], the authors
considered the estimation of the unknown deterministic but
randomly permuted vector, which is also perturbed by addi-
tive noise. Different from these works, we are interested in
estimating the values of the components of the original sorted
vector, by performing joint estimation and sorting.

The estimation of parameters of a family of distributions
from an ordered vector has received considerable attention.
For example, for a location-scale family of distributions with
density function % f (%) the best linear unbiased estimator
(BLUE) of ¢ and p has been found in [3]. In particular, the
BLUE was shown to be a function of only the covariance
matrix and the mean vector of the order statistics. However,
note that the computation of the covariance matrix and the
mean vector of the order statistics is often a formidable task.
Explicit expressions for moments of order statistics are in
fact known only for some specific distributions and have
been tabulated in [4]. A rich body of literature also exists
on universal bounds on moments of order statistics [3]].

Having observed a partial sample of the first r order
statistics from a sample of size n, the best linear unbiased
predictor (BLUP) of the remaining n — r terms has been
characterized in [6]]. Specifically, the predictor in [6] was
shown to depend only on the covariance matrix and the mean
of the order statistics. Interesting connections between the
BLUE and BLUP have been derived in [[7]].

Due to its application to life-testing experiments, inference
of censored (i.e., incomplete data) order statistics has received
significant attention. Interestingly, for various types of censor-
ing protocols, closed-form expressions for maximum likeli-
hood estimators of parameters are available. A comprehensive
survey of several censoring scenarios can be found in [8].

Order statistics also appear in the study of outliers since
these are expected to be a few extreme order statistics. Several
effective tests are formed from extreme order statistics that



seek to compute the deviation of the candidate outliers from
the rest of the data [9]]. Another application of order statistics
is on the goodness-of-fit tests. The most classical example of
such a test is the Shapiro and Wilk’s test for normality [[10].
Paper Organization. Section introduces the notation,
presents some definitions and describes the system model.
Section studies the MMSE of estimating a sorted vector
from a noisy sorted observation of it, and proposes a subop-
timal estimator. Section considers the practically relevant
Gaussian noise case and derives a lower bound on the desired
MMSE. Finally, Section [V] concludes the paper.

II. NOTATION, DEFINITIONS AND SYSTEM MODEL

Boldface upper case letters X denote vector random vari-
ables; the boldface lower case letter x indicates a specific real-
ization of X; X is X ordered in ascending order; X; and X (%)
specify the i-th entry of X and X, respectively; ||x|| denotes
the £5-norm of the vector x; the set K, = {x : X € Ry }: 6(z)
is the Dirac delta function; 1;x,(x;) is the indicator function
of X, taking value x;; [n]is the set of integers {1,...,n}; P,
is the matrix of dimension n! x n containing in each row a
permutation of the elements of [n], and P,, (%, :) is the i-th row
of P,,; ¥, is a vector whose components are ordered according
to the n-length vector v, ie., ¥y, < Yy, < ... <y 5 Iy 18
the identity matrix of dimension n.

We next provide three definitions, which will be used in the
proof of our main results.

Definition 1. A sequence of random variables U,,Us, ..., U,
is said to be exchangeable (or interchangeable) if the distribu-
tion of the random vector (U1, Us, ..., U,,) is the same as that
of UnyyUny,...,Uyr) for any permutation (mwy, 7o, ..., Ty)

of the elements of [n]. More formally,

(U1>U2a---7Un) g (U‘/T17U7T2""7U7rn)’

d e
where = denotes equality in distribution.

Note that any convex combination or mixture distribution of
independent and identically distributed sequences of random
variables is exchangeable.

Definition 2. The confluent hypergeometric function is given
by

(a + k) ok
Fia(a,b;z) = ZI‘ b—i—k) k!,mm{a,b,x}>0, (D

where T'(+) is the gamma function.
Definition 3. The modified Bessel function of the first kind of
order v > 0 is defined as

l(z) = v

VA ()

We consider the framework shown in Fig. [I] where an
n-dimensional random vector X is generated according to
a probability density function (PDF) fx(-) and then passed
through a noisy channel with a transition probability equal

/ e® 59 (sin0)>*dh, x € R. (2)
0

to fyx(:]-). In particular, this is assumed to be a parallel
channel, i.e.,

H fY | X yz|xz)

i=1

The output of the channel — denoted as Y — is finally sorted
in ascending order, i.e.,\? is the sorted version of Y.

In this work, as thoroughly explained in Section [T} we
are interested in characterizing the MMSE of estimating X -
which denotes the sorted version of X (i.e., the ground truth)
— when Y is observed.

fY|x (ylx) =

III. ON THE OPTIMAL MMSE ESTIMATOR

The objective of this section is to study the MMSE of
estimating X from an observation Y. The MMSE is given by

s|[% - [x9][]

It is well known that the conditional expectation [E [XD?} is

mmse(i|? 3)

the optimal estimator under the square error criterion. The next
theorem provides a characterization of [E {X|Y} in terms of
the distribution of (X,Y) under certain symmetry conditions.
Theorem 1. Let (X,Y) be continuous random vectors. As-

sume that X is exchangeable (see Definition |I|) and that

n! n!

ol ZZfY\X Yp.G1XP.(e,)
l= 1] 1

= wax Ve, (5.0/%), V(X 9). )
Jj=1

Then, for any k € [n]
E[X (k) |Y' =Yl

_ Z Jx( YP j ) [Xk . 1]1%" (X)Y = yP,L(j,:)} . (5)

In addition, if Y is exchangeable (see Definition [I)), then for
any k € [n]

n!

EX Y =§]=> E [Xk g (XY = »‘7Pn<j,:>} )
j=1

Proof: We have
E [ XY =]
- / e fg g (t19)dt

(a) n!
= /R” tkif?(y) Ix(t)

 tefyx(Yp,

n!
ZfY\X(?m(j,:)“)dt
j=1

(o[t fx (t)dt
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Fig. 1: Graphical representation of the proposed framework.
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where the equalities follow from: (a) the identity
o n! e . .
fxe(XlY) = — fx(X) ZfY\X(YPn(j,:)|X)7
f+ () =

whose proof can be found in [[11, Lemma 6]; (b) using Bayes’
rule; and (c) using the definition of the conditional expectation.
This concludes the proof of (3). To show that () holds observe
that, if Y is exchangeable, then

NFegy) @)1

A @)
%) (&) n

where the last equality follows by [L1, Lemma 5]. This

concludes the proof of Theorem [I] u

Remark 1. Examples of noisy transformations that satisfy
the condition in include the practically relevant case of
a Gaussian noisy channel transition probability fvx(-|-).

Theorem E] allows to express the optimal estimator of
elements of X from an observation Y as a linear combination
of estimators of the original unsorted X from the unsorted
channel observation Y. This has the potential of significantly
simplifying the computation of the conditional expectation as
there is no need to find the joint distribution of ()_i, 3?)

Observe that the conditional expectation in (5) and (€) can
be written as follows

E {Xk g (XY = yP,,,(j,:)}
:E[Xk|x €R,Y = }_”Pn(j#)}P[X < @"’|Y - wa,(j,:)} ’
We now use this identity to propose and study the following

suboptimal estimator of Xz,

n!

T#) = SB[ XlY = Y,

j=1

P|X eR,|Y = ypn(j,:)} . (8a)
and the following suboptimal estimator of X
(Y) = [11(Y),... [, (Y)). (8b)

Observe that the only difference between the optimal esti-
mator in () and the suboptimal estimator in is that in
the latter the conditioning on X € @n has been dropped.
In other words, we are implicitly using the approximation
E LXk|X € I@.n,Y] ~ E[X4]Y].

he next theorem, whose proof can be found in [11, Ap-
pendix B], compares the performances of the optimal estimator
in (6) and the proposed suboptimal estimator in (8a).

Theorem 2. Suppose that X and Y are exchangeable and the
assumption in @) holds. Let

’2] — mmse(i|?)’ . 9)

Then,
n!
A<Ay =Y E[IX|2g (Ye,(0) | Y €R,],  (10)
=1
where

9(y) = P[X eR,|Y = y} : (1 —P{X eR,|Y = yD (11

In Section[[V] under the assumption of an additive Gaussian
noise, the estimator in (a) will be shown to be optimal in a
small noise regime. Moreover, in the very noisy regime the
mean squared error (MSE) of the estimator in will be
shown to be within a constant gap of the MMSE (i.e., the
error attained by the optimal estimator in (6)).

IV. ANALYSIS WITH GAUSSIAN STATISTICS

In this section, we consider the practically relevant case of
Gaussian noise, i.e., we assume that Y|X = x ~ N (x,02L,).
We start by noting that, under the additional assumption that
the input X ~ N(0,1,,), the proposed suboptimal estimator
in takes the form of a weighted linear function given by

Je3) = Y0 ) [Fraon)], (12)
j=1

where [?Pn(j7:)h is k-th component of the vector ¥p ;.
and where

i a

a; () = 7 3P [X cR,|Y = ypn(j7:)} . (13)



Fig. ] compares the performance, in terms of the MSE, of
the estimator in (I2)) (dashed lines) and the optimal estimator
in () (solid lines), versus different values of the noise standard
deviation o. From Fig. 2] we observe that the suboptimal
estimator performs closely to the optimal estimator for small
values of o, whereas for higher values of o Fig. [2] suggests
that the MSE of the estimator in (I2) is to within a constant
gap of the MSE of the optimal estimator. We next formalize
these observations in Theorem [3] and show that they hold also
when the input X is not necessarily Gaussian.

— pn = 2, mmse(X|Y)
= p, = 3, mmse(X|Y)

=— = 4, mmse(X[Y) |

I

S| v n = 2,MSE
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Fig. 2: Comparison of the mmse(X[Y) and the MSE of the
estimator in (T2)) versus o.

In particular, Theorem [3] shows that, for any exchangeable
input X, the suboptimal estimator in (8] is asymptotically op-
timal in the low noise regime. Moreover, Theorem [3] provides
an upper bound on the penalty in the high noise regime.

Theorem 3. Let X be exchangeable and let Y|X = x ~
N (x,0%1,). Assume that E[X}?] < oo for all k € [n]. Then,
the approximation error in (10) satisfies the following

[}E}%Aup =0, (14)
. 1
lim A, =E [1X17] (1 - m) ) (15)

Proof: We start by noting that, by a simple application
of the dominated convergence theorem, we have that

lim P [X ceR,|Y = y] =1z (y), (16)
oc—0 n

. . 1
lim P {X eR,|Y :y} —Pp {X e Rn} —— a7
o—00 n!

Now observe that

. 2 =g
lim B [X7 g (Ye, () | Y € R,

lim,_,o E [X,? -9 (Ye, () 1z, (Y)}

n!

E {hmg_,o Xi-9(Yp, (o) 1z, (Y)}

- n!

i E [X,f g (Xp, () (1 - 1g, (Xanv:))) g, (X)}
= n!

@07 (18)

where the labeled equalities follow from: (a) using the dom-
inated convergence theorem with the bound

X}% ’ g (YP7L(.j7:))
=Xi gy (Yp,() (1 —Pmy(YPn(j,:))) 1g,(Y)

<X, (19)
with
Pxiy (Fe, 0 = P[X € EalY =¥, (5] -
and the assumption that E[X?] < oo; (b) using
the limit in (T6); and (c) wusing the fact that

g, (Xp,(.) (1 -1z, (Xpn(j,;))> = 0. Combining (T8)
with the definition of A, in (I0) we arrive at
lim A = 0.

o—0

We now focus on the case of o — oo, and we obtain

lim E[X2-g(Ye,(.) | Y € Ry

T—00

= lim E [X,f g <?Pn<j,:))}

a— 00

(20)

where the labeled equalities follow from: (a) using the dom-
inated convergence theorem with the bound in (T9) and the
assumption that E[X?] < oo; and (b) using the limit in (T7).
Combining (T8) with the definition of A, in (I0), we obtain

: . 1
lim Ay, =) E[XF] (1 —~ m) .
k=1

This concludes the proof of Theorem [3] u

As highlighted above, Theorem [3] shows that the estimator
proposed in (8) is asymptotically optimal in the low noise
regime, and its MMSE performance is always to within a con-
stant gap of the optimal MMSE. The plot of the upper bound
on the penalty in (T0) for the Gaussian input X ~ A(0,1,,)
is shown in Fig. 3} versus different values of 0.

Obtaining a closed-form expression for mmse(X|Y) is in
general not possible, and hence computable lower bounds
become necessary. The next theorem presents a lower bound
on the desired MMSE term, when the input X ~ A(0,1,,).
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Fig. 3: Plot of A, evaluated with X ~ A(0,I,) versus the

noise level o.

Theorem 4. Let X ~ N(0,L,). Then,

mmse (X | Y/) > mmse (|| X]| | Y)
= mmse ([ X[ [ [[Y]]). 21
Moreover,

mumse ([ X[ | 1Y)

20211 & S L'(5+k+m)

A Qm,
=N — —= n n ’
Tho 2y 2 e ()
where
L (k+25)
ag

TRT (k+2)
and T'(+) being the gamma function. In addition,

EQXI Y] = Iyl =E

I‘(L-H) 2026*202“5‘&2) 1
5 <n+ n.

no_ lyl?
2 7272021 +02) )’

X[ Y =y]
Tt

where Fy1(-,-;-) is the confluent hypergeometric function
defined in Definition [2}

Proof: We here prove the bound in (I), and
delegate the computations of mmse (||X]| | ||Y]|]) and
E[IX] | Y|l = lly]l]] to [L1, Appendix C]. We have

-z (1] - s % ]|
YE (X)) - E [HE 17| ”2]

=<\

mmse (X | ?)

> E[|X|?] —E {(E (1% ‘?m

E [IXI] - E [ 01X | Y]]
D g x| - £ [E 1) | )7
= mmse (X | ¥)., 2)

where the labeled (in)-equalities follow from: (a) since || X|| =
[IX]l; (b) using modulus inequality (i.e., |[E[U]|| < E[||U]|]
for any random vector U); (c) and (d) using the fact that

E [IIXII IYZF}:EHIXH HIYI=[F =B [IX] | Y=1],

which is formally proved in [[L1, Lemma 8], and holds under
the assumption of X ~ A(0,1,,). [

Observe that the approach taken in Theorem [ is an uncon-
ventional one. Indeed, instead of taking a usual approach, such
as finding a Bayesian Cramer-Rao lower bound, Theorem ]
produces a lower bound on the MMSE by finding a closed-
form expression for the MMSE of an ‘easier’ problem, namely
estimating the norm of X from the noisy observation Y. While

we are interested in finding lower bounds on mmse (X | ?) R
the result in Theorem [ might be of an independent interest.
V. CONCLUSIONS

In this paper, we have presented an estimation framework to
study the performance of the sorting function over perturbed
data. The main contribution of our work is three-fold: (1)
we have analyzed the optimal MMSE estimator and showed
that, under certain conditions, its structure depends on the
estimators on the unsorted data; (2) we have proposed a
suboptimal estimator, which offers guarantees with respect to
the optimal MMSE; and (3) for an i.i.d. Gaussian input, we
have derived a lower bound on the desired MMSE, which
also provides the solution to a novel estimation problem that
consists of estimating the norm of an unsorted vector from a
noisy observation of it.
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