How to Store a Random Walk

Emanuele Viola* Omri Weinstein' Huacheng Yu?

Abstract

Motivated by storage applications, we study the following data structure problem: An encoder wishes
to store a collection of jointly-distributed files X := (X1, Xa,...,Xn) ~ p which are correlated
(H,(X) < X, H,(X;)), using as little (expected) memory as possible, such that each individual file
X can be recovered quickly with few (ideally constant) memory accesses.

In the case of independent random files, a dramatic result by Patrascu (FOCS’08) and subsequently
by Dodis, Pitrascu and Thorup (STOC’10) shows that it is possible to store X using just a constant
number of extra bits beyond the information-theoretic minimum space, while at the same time decoding
each X in constant time. However, in the (realistic) case where the files are correlated, much weaker
results are known, requiring at least Q(n/polylgn) extra bits for constant decoding time, even for
“simple” joint distributions .

We focus on the natural case of compressing Markov chains, i.e., storing a length-n random walk on
any (possibly directed) graph G. Denoting by (G, n) the number of length-n walks on GG, we show that
there is a succinct data structure storing a random walk using lg, x(G, n) + O(lg n) bits of space, such
that any vertex along the walk can be decoded in O(1) time on a word-RAM. If the graph is strongly
connected (e.g., undirected), the space can be improved to only lg, x(G, n) + 5 extra bits. For the harder
task of matching the point-wise optimal space of the walk, i.e., the empirical entropy E;:ll lg(deg(v;)),
we present a data structure with O(1) extra bits at the price of O(lgn) decoding time, and show that any
improvement on this would lead to an improved solution on the long-standing Dictionary problem. All
of our data structures support the online version of the problem with constant update and query time.

1907.10874v1 [cs.DS] 25 Jul 2019

.
.

arxiv

*Northeastern University. Email: viola@ccs.neu.edu. Supported by NSF CCF award 1813930.

TColumbia University. Email: omri@cs.columbia.edu. Research supported by NSF CAREER award CCF-1844887.

*Harvard University. Email: yuhch123@gmail .com. Supported in part by ONR grant NO0014-15-1-2388, a Simons Inves-
tigator Award and NSF Award CCF 1715187. This work was initiated during a visit of the authors to the Simons Institute.

http://arxiv.org/abs/1907.10874v1

1 Introduction

Consider the following information-retrieval problem: an encoder (say, a Dropbox server) receives a
large collection of jointly-distributed files X := (X1, Xo,...,X,,) ~ u which are highly correlated,
fa
ie.,

H,(X) <Y Hu(X0), (1)

and needs to preprocess X into as little (expected) memory as possible, such that each individual file X;
can be retrieved quickly using few (ideally constant) memory accesses. This data structure problem has
two naiive solutions: The first one is to compress the entire collection using Huffman (or Arithmetic)
coding, achieving essentially optimal space s = H, (X) + 1 bits (in expectation), but such entropy-
coding schemes generally require decompressing the entire file even if only a single file X; needs to be
retrieved. The other extreme is to compress each file separately, achieving (highly) suboptimal space

s~ . H,(X;)+n> H,(X) at the upshot of constant decoding time ¢ = O(1). Is it possible to get
the best of both worlds (time and space), i.e., a locally-decodable data compression scheme? 2

This problem is motivated by large-scale storage applications. The proliferation in digital data be-
ing uploaded and analyzed on remote servers is posing a real challenge of scalability in modern storage
systems. This challenge is incurred, in part, by the redundancy of maintaining very large yet low-
entropy datasets. At the same time, in many modern storage applications such as genome sequencing
and analysis, real-time financial trading, image processing etc., databases are no longer merely serv-
ing archival purposes — data needs to be continually accessed and manipulated for training, predic-
tion and real-time statistical decision making [TBW18, HBB*18, GPLT00, THOW16, CS00]. This
inherent tension between compression and search, i.e., the need to perform local computations and
search over the compressed data itself without first decompressing the dataset, has motivated the de-
sign of compressions schemes which provide random access to individual datapoints, at a small com-
promise of the compression rate, giving rise to the notion of locally-decodable source coding (LDSC)
[Pat08, DLRR 13, MHMP15, MCW 15, TBW18]. Local decodability is also a crucial aspect in distributed
file systems, where the energy cost of random-accessing a memory address is typically much higher than
that of sending its actual content, especially in SSD hardware [APW08].

There is a long line of work successfully addressing the LDSC problem in i.i.d or nearly-i.i.d settings
(i.e., when (1) holds with equality or up to +o(n) additive factor [Pag02, BMRV02, GRROS, Pat08,
DPT10, MCW15, MHMP15, TBW18, BN13]), where succinct data structures are possible. In contrast,
the correlated case (1) is much less understood (more on this in Sections 1.3 and 4.2). Clearly, the
aforementioned tradeoff between compression and search is all the more challenging (yet appealing)
when the dataset exhibits many similarities/correlations (i.e., H, (X) < >_. H,(X;)), and this is indeed
the reality of a large portion of digital media [WSY T 16]. Once again, joint-compression of the entire
dataset is information-theoretically superior in terms of minimizing storage space, but at the same time,
global compression, by nature, extinguishes any “locality” in the original data, making it useless for
random-access applications.

Unfortunately, a simple observation (see Proposition 1) shows that the general LDSC problem in (1)
is a “complete” static data structure problem (in the cell-probe model), in the sense that any data structure
problem P (with an arbitrary set of n database queries) can be “embedded” as an LDSC problem on
some joint distribution g = p(P). This observation implies that locally-decodable data compression is
generally impossible, namely, for most low-entropy distributions y on n files (H,, := H, (X) < n), any
data structure requires either near-trivial storage space s > n'~°() or decoding time ¢ > (H,,)'~°(")

for each file (An explicit hard example is the family of (H,,)-wise independent distributions, for which

'H,,(X) denotes the Shannon entropy of X ~ 1
20f course, one could consider a combination of the two solutions by dividing the files into blocks of size ~ ¢, and compressing
each one optimally, but this method can in general be arbitrarily lossy in entropy (space) when the blocks are correlated.

our reduction implies ¢ > Q(lg H,) retrieval time unless super-linear s = w(H,,) storage space is used).
These unconditional impossibility results naturally raise the question:

Which statistical properties of low-entropy distributions y facilitate an efficient LDSC scheme

with space O(H,, (X)), in the word-RAM model?

Perhaps the most basic family of low-entropy joint distributions is that of Markov chains, which mod-
els “time-decaying” correlations in discrete-time sequences. Ergodicity is a standard statistical model
in many realistic datasets (e.g., financial time-series, DNA sequences and weather forecasting to men-
tion a few [THOW 16, CS00, GY07]). We study the LDSC question on Markov chains, captured by the
problem of storing a length-n random walk on (directed or undirected) graphs of finite size. Our data
strucutres greatly improve on previously known time-space tradeoffs for Markov chains obtained via
“universal compression” (e.g. [DLRR13, TBW18], see elaboration in Section 1.3), and also efficiently
support the dynamic version of the problem where the walk evolves step-by-step in an online fashion.
Throughout the paper, all logarithms are base 2 unless otherwise stated.

1.1 Main Results

To build intuition for the problem, let G be an undirected d-regular graph of finite (but arbitrarily large
constant) size, and consider a random walk W = (V,, V4, Va,...,V,,) on G starting from a random
vertex (for simplicity), where V; € [|G|] denotes the ith vertex v; visited in the walk. Excluding the
first vertex Vp for convenience of notation, the joint entropy of W is clearly H(W) = lg|G| 4+ nlgd,
whereas the sum-of-marginal entropies is

n

STHV) = (n+1)1g|6] > nlgd @)
1=0

since each V; is marginally uniform (as G was assumed to be regular and we started from a uniform ver-
tex). This simple instance already captures an interesting case of the LDSC problem: The information-
theoretic minimum space for storing the walk (lg |G| + n lg d bits) can be achieved by storing for each
vertex v; in the walk the next outgoing edge (when d is not a power of 2 we can use arithmetic coding to
compress the entire sequence jointly with 1 bit loss in space). In either case, such encoding does not en-
able random access: retrieving v; requires “unfolding” the walk all the way to the start, taking ¢ ~ Q(n)
time in the worst case (by preprocessing how to unfold consecutive lgn steps, the decoding time can
be improved to 2(n/lgn)). The other extreme is to store the walk explicitly (storing V; using [lg |G]]
bits), facilitating O(1) decoding time, at the price of highly redundant space (at least the LHS of (2)). Of
course, it is possible to combine the two approaches and compress each t-step subwalk optimally, losing
at most ~ 1g(|G|/d) bits per block, so that decoding time is O(t/w) and storage is suboptimal by an
additive term of r = O (n/t) bits, where r is the redundancy of the data structure. This linear tradeoff
implies, for example, that if we wish to decode each vertex in constant time, the redundancy of the data
structure is r ~ W on a word-RAM with word-size w = ©(Ign).

We show that at the price of » = 3 extra bits of redundancy, each vertex in the walk can be decoded
in constant time, when the underlying graph is d-regular for any d (not necessarily a power of 2):

Theorem 1 (Informal). Given a walk (vg,...,v,) in G, there is a succinct cell-probe data structure
using 1g |G| 4+ nlg d + 3 bits of memory, supporting retrieval of any vertex v; (i € [n]) in constant time,
assuming word-size w > Q(lgn). Moreover, the data structure can be implemented on a word RAM,

assuming a precomputed” (-bit look-up table, supporting vertex retrievals in O(llgg lé 7) time.

Dealing with general (directed, non-regular) graphs is fundamentally more challenging, the main
reason being that: (a) the stationary distribution of non-regular graphs is not uniform; (b) the number

3This lookup table only contains precomputed information about the graph G and does not depend on the input walk
(vo, . . .,vn). If we are storing multiple walks, it can be shared across instances, hence has a small “amortized” cost.

of sub-walks between any two vertices (u,v) is not fixed when the graph is non-regular or directed,
i.e., the distribution on sub-walks is again nonuniform. (We elaborate why uniformity is crucial for
succinct solutions and how we resolve this challenge in the following Section 1.2). Intuitively, this
means that if we want our space to (roughly) match the entropy of the walk, then for non-regular graphs
variable-length coding must be used, making decoding in constant-time very challenging (as the memory
locations corresponding to substrings become unpredictable).

To this end, it is natural to consider two space benchmarks for general graphs. The first benchmark

is the point-wise optimal space for storing the walk v = (v, . .., v,), i.e., its empirical entropy
n—1
18]Gl + > lg(deg, (v3)), 3)
i=0

which is clearly the information-theoretic minimum space (as the expectation of this term over a random
walk V' is precisely the Shannon entropy of the walk). A somewhat more modest worst-case space
benchmark (depending on how “non-regular” the graph G is), is

lgr(G,n) =1g(1" Ag"1) 4)

where k(G, n) is the number of length-n walks on G and A is the adjacency matrix of G. Note that for
regular graphs the two benchmarks (3) and (4) are the same, hence Theorem 1 is best possible.

Our first result for general graphs, building on the work of [Pat08], is a data structure with O(1) extra
bits beyond the point-wise optimal space, and O(lg n) decoding time on a word-RAM.

Theorem 2 (Point-wise compression for general graphs, Informal). Given a length-n walk (vo, . .., vy)
on any directed graph G, there is a succinct data structure that uses 1g, |G| + Z;:Ol lg(deg(v;))+0O(1)
bits of space, and retrieves any vertex v; in O(Ign) time on a word-RAM, assuming a precomputed”
lookup-table of size { = O(nS).

Nevertheless, we show that if one is willing to match the worst-case space benchmark (4), then
constant query time is possible for any graph . This is our main result and the technical centerpiece of
the paper. We state this result in its most general form.

Theorem 3 (Worst-case compression for general graphs, Informal). Given a length-n walk on any
strongly connected directed graph G, there is a data structure that uses lg(1T A1) + O(1) bits of
space, and retrieves any vertex v; in O(llgg 112 7) time on a word-RAM, assuming a precomputed lookup
table of size L. For general directed graphs, the same holds albeit with O(lgn) bits of redundancy.

It is natural to ask whether constant-time decoding is possible even with respect to the point-wise
space benchmark. Our final result shows that any improvement on Theorem 2 would lead to an improve-
ment on the long-standing succinct Dictionary problem [Pag02, Pat08]: We present a succinct reduction
from Dictionary to storing a random walk on some non-regular (directed) graph, under the technical
restriction that all marginal symbol frequencies in the input dictionary string are powers of two °.

Theorem 4. Let D be a succinct cell-probe data structure for storing a walk (v, . .., vy,) over general
(directed) graphs G, using Y, 1g(deg(v;)) + 7 bits of space, and query time t for each v;. Then for any
constant-size alphabet 3, there is a succinct dictionary storing x € X", with space Hy(x) + r bits and
query time query time t, where Hy(x) is the zeroth-order empirical entropy of x. This reduction holds
for any input string x with empirical frequencies which are inverses of powers of 2 lower bounded by a
constant.

*Once again, this lookup table is independent of the walk and only contains precomputed information about G for decoding,
hence its “amortized” space cost is small as it is shared across instances.
This seems a minor condition when dealing with arbitrary (nonuniform) priors s, as the “hard” part is variable-length coding.

This reduction formalizes the intuition that the bottleneck in both problems is variable-length coding
(unlike the case of regular graphs), and provides evidence that Theorem 2 might be optimal (Indeed, in
the bit-probe model (w = 1), it is known that any succinct Dictionary with constant or even = O(lgn)
redundancy, must have Q(lgn) decoding time [Viol2]. For the related succinct Partial Sums problem
[PV10], an £2(1g n) lower bound holds even in the cell-probe model (w = O(I1gn))).

Remark 1. It is noteworthy that the assumption throughout the paper that the underlying graph G is of
finite size is necessary: A length-n random walk on the undirected n-cycle is equivalent to the succinct
Partial Sums problem, for which there is a cell-probe lower bound of t > Q(lgn/lglgn) for constant
redundancy [PV10]. A key feature that circumvents this lower bound in our proofs is the fact that the
walk mixes fast (which doesn’t happen on the n-cycle). This justifies the restriction to fixed sized graphs.

1.2 Technical Overview

At a high level, our data structures use a two-level dictionary scheme to encode the random walk. Let us
first focus on d-regular graphs G. To store a walk on G, we begin by storing the set of vertices V; that
are O(lg n)-far apart in the walk (called the milestones) using the succinct dictionary of [DPT10] (which
we will refer to as the DPT dictionary in the following). The DPT dictionary is able to store any string
z € ¥F with only constant redundancy (kg |X| + O(1) bits in total) and allow one to retrieve each z;
in constant time (Theorem 5). In particular, when the string z is drawn from the uniform distribution,
its space usage matches the input entropy. When G is regular (and hence has a uniform stationary
distribution), this is indeed the case, as a standard mixing-time argument implies that the milestones are
very close to being uniform and independent.

The second important feature of milestones is that they break the dependence across the remaining
vertices in the walk. That is, the milestones partitions the walk into “blocks” B; of length ©(lgn). The
Markov property of a random walk implies that these blocks of vertices are independent conditioned
on the milestones. Thus, the next idea is to use another (separate) dictionary to encode the vector of
intermediate blocks (Bj, ..., Bom/1g n)) e wO(/181) | conditioned on the milestones. Again because
of the mixing-time argument, for each block B;, the number of possible subwalks in the block given
the two milestones V; and V; _ o(1g ») is always approximately dBil /|G|, regardless of the actual values
that V; and Vi1 o,) take. Hence, one can encode each subwalk using an integer no larger than |X| =
(1+o0(1))d!B:1 /|G|, and the second dictionary is used to succinctly store these integer encodings. When
the input is uniformly random, these integer encodings are uniform and independent, hence DP T matches
the entropy. Also, note that since each block B; is of length O(Ilgn), it fits in a constant number of
words (as |G| = O(1)). To see why a vertex between two milestones V; and Vi g1z ») can be retrieved
efficiently, note that the DPT dictionary allows us to retrieve each symbol in the vector of milestones
in constant time. Therefore, it suffices to retrieve V;, Vi g(gn) as well as the block B; between them
using a constant number of probes to both dictionaries. This gives us enough information to recover the
entire subwalk from V; to V; ;g (14 n), and in particular, to recover the queried vertex. Although the above
argument assumes a uniformly random input, we emphasize that our data structure works for worst-case
input and queries.

Dealing with general graphs is a different ballgame, and the above construction does not obtain the
claimed worst-case space bound. The main reason is that for a uniformly sampled random length-n
walk, the marginal distribution of each (milestone) V; may be arbitrary and non-uniform. Hence, we
cannot apply the DPT dictionary directly on the milestone-vector, as for non-uniform vectors its space
usage would be much higher than the input entropy. To overcome this issue, we use an idea inspired
by rejection-sampling: We consider not only each milestone, but also the subwalks near it (with close
indices). We partition the set of subwalks into bundles, such that for a uniformly random input, the
bundle that contains the given subwalk is uniform. More precisely, for each milestone V;,

1. a bundle is a subset of length-2! subwalks that the input (V;—;, V41, ..., Viq;) can take the
value, for | = O(lgn);

2. all subwalks in the same bundle have an identical middle vertex V; = v; for some v; € [|G]];

3. each bundle consists of approximately the same number of subwalks, i.e., for a uniformly random
input, the bundle that contains it is roughly uniform;

4. for different V;, the bundles are almost “independent.”

We prove the existence of such good partition to subwalks using a spectral argument which helps control
the number of subwalks delimited by any fixed pair of vertices (u,v). Given such bundling, instead
of using DPT to store the milestones themselves, we use it to store the name of the bundle near each
milestone. By Item 3 and 4 above, when the walk is uniformly random, the bundles to be stored are
uniform and independent. Hence, the size of DP T dictionary matches the input entropy, as desired. The
second part of the data structure is similar to the regular graph case at the high level. We store the blocks
between the consecutive milestones, but now conditioned on the bundles (not the milestones). The query
algorithm is also similar: to retrieve a vertex between two consecutive milestones, we first retrieve the
bundles that contain the subwalks near them, and then retrieve the block, which is encoded conditioned
on the bundles. The actual construction for the non-regular case is much more technical than regular
graphs. See Section 3 for details.

The final challenge in our scheme is implementing the decoding process on a RAM — The above
scheme only provides a cell-probe data structure (assuming arbitrary operations on O(lg n)-bit words),
since the aforementioned encoding of blocks + bundles is extremely implicit. Therefore, decoding
with standard RAM operations appears to require storing giant lookup tables to allow efficient retrieval.
Circumventing this intuition is one of our main contributions. It turns out that the basic problem that
needs to be solved is the following: Given a walk (v, ..., v;) of length I, for [= O(lgn), from z to
y (vo = = and v; = y), encode this walk using an integer between 1 and the number of such walks
(ex " (Ag)'ey), such that given an index i € [0,1], one can decode v; efficiently. Note that both two
endpoints and y are given, and do not need to be encoded. They would ultimately correspond to
the milestones, which have already been stored elsewhere. Our encoding procedure is based on a B-
way divide-and-conquer. As an example, when B = 2, we first recursively encode (vo, ..., v;/2) and
(vi/2,-..,v1), and then “merge” the halves. Given the encoding of the two halves, the final encoding of
the entire walk is the index in the lexicographic order of the triple: I) v; /5, II) encoding of (vo, . .., v;/2),
and III) encoding of (v J25 s vy). To decode v;, we first decode the entire triple by enumerate all
possible values for v;/2, and count how many length-/ walks have this particular value for v; /o (these
counts can be stored in the lookup table). Then we recurse into one of the two halves based on the
value of i. This gives us an O(lgl) = O(lglgn) time decoding algorithm. We can generalize this idea
to larger B, by recursing on each of the 1/B-fraction of the input. However, the decoding algorithm
becomes more complicated, as we cannot afford to recover the entire O(B)-tuple. It turns out that to
efficiently decode, one will need to do a predecessor search on a set of exp(B) integers with increasing
gaps. This set depends only on the underlying graph G, therefore, we can store this predecessor search
data structure in the lookup table, taking exp(B) space. Now, the recursion only has lgz 1 = l%;—g;
levels, each level still takes constant time, obtaining the claimed tradeoff.

It is worth noting that the DP T dictionary supports appending extra symbols in constant amortized
time, hence it supports the (append-only) online version of the problem. Since our data structure consists
of two instances of DPT, when the vertices in the random walk is given one at a time, our random-walk
data structure can be build online as well, with amortized constant update time. The sizes of the two
instances of DPT may increase over time, but their ratio remains fixed. By storing memory words of
the two instances in interleaving memory locations with respect to the right ratio, we will not need to
relocate the memory words when new vertices arrive.

For the harder task for matching the information-theoretic minimum space (i.e., the point-wise em-
pirical entropy of the walk > . lg(deg(v;))), we show how to efficiently encode the random-walk prob-
lem (on arbitrary constant-size graphs) using Pdtragcu’s aB-trees [Pat08]. This provides a constant-
redundancy scheme but increases decoding time to ¢ = O(lgn). We provide evidence that this blowup
might indeed be necessary: We design a succinct reduction showing how to “embed” the classic Dictio-
nary problem on inputs x € p', as a random-walk on the Huffiman Tree of i, augmented with certain

directed paths to enable fast decoding (this works for any distribution 1 where each p(7) is the inverse
of a power of 2). This reduction shows that any asymptotic improvement on the aforementioned random
walk data structure would lead to a improvement on the long-standing dictionary problem (see Theorem
9).

1.3 Related work

The “prior-free” version of the (generic) LDSC problem has been studied in the pattern-matching and
information-theory communities, where in this setting the compression benchmark is typically some
(high-order) empirical entropy Hy, () capturing “bounded-correlations” in the text (see e.g. [Man01] for
aformal definition). It has been shown that classical universal compression schemes (such as Lempel-Ziv
[ZL78] compression as well as the Burrows-Wheeler transform [BW94]) can be made to have random-
access to individual symbols at the price of small (but not succinct) loss in compression (e.g., [FMO5,
DLRRI13, TBW18, SW]). In general, these results are incomparable to our distributional setting of the
LDSC problem, as the space analysis is asymptotic in nature and based on the (ergodic) assumption that
the input (X1, ..., X,,) has finite-range correlations or restricted structure (Indeed, this is confirmed by
our impossibility result for general LDSC in Corollary 3). In the case of k-order Markov chains, where
the k’th empirical and Shannon entropies actually match (H(X) = H (X)), all previously known LDSC
schemes generally have redundancy at least r > Q(n/lgn) regardless of the entropy of the source and
decoding time (see e.g., [DLRR13, TBW18] and references therein). In contrast, our schemes for achieve
r = O(1) redundancy and constant (or at most logarithmic) query time on a RAM.

Technically speaking, the most relevant literature to our paper is the work on succinct Dictionary
problem [BMRV02, Pag02, RRS07, GRROS, Pat08, DPT10] (see Section 4.1 for the formal problem
definition). The state-of-art, Due to Patrascu [Pat08], is a succinct data structure (LDSC) for product
distributions on n-letter strings X ~ p™, with an exponential tradeoff between query time and redun-
dancy r = O(n/(Ign/t)!) over the expected (i.e., zeroth-order) entropy of X. Whether this tradeoff is
optimal is a long-standing open problem in succinct data structures (more on this in Section 4.1). Inter-
estingly, if u is the uniform distribution, a followup work of Dodis et. al [DPT10] showed that constant
redundancy and decoding time is possible on a word-RAM. (see Theorem 5, which will also play a key
role in our data structures). In some sense, our results show that such optimal tradeoff carries over to
strings with finite-length correlations.

2 Preliminaries

2.1 Graphs and Random walks.

Let GG be an unweighed graph, A be its adjacency matrix, and P be the transition matrix of the random
walk on G. P is A with every row normalized to sum equal to 1.

Undirected regular graphs. When G is undirected and d-regular, A is real symmetric, and P =
éA. All of the eigenvalues are real. In particular, the largest eigenvalue of A is equal to d, with eigenvec-
tor 1, the all-one vector. Moreover, if G is connected and non-bipartite, then all other eigenvalues have
absolute values strictly less than d. Suppose all other eigenvalues are all at most (1 — €)d, the following
lemma is known.

Lemma 1. Let X be a vector of dimension |G| corresponding to some distribution over the vertices. Let
U be the vector corresponding to the uniform distribution. We have

1
”E CAX =02 £ (1 =€) X =Ull2.

That is, every step of the random walk on G makes the distribution X close to the uniform by a
constant factor.

Strongly connected aperiodic graphs. For directed graph G, it is strongly connected if every node
can be reached from every other node via directed paths. For strongly connected G, it is aperiodic if the
greatest common divisor of the lengths of all cycles in G is equal to 1. One may view strongly connec-
tivity and aperiodicity as generalization of connectivity and non-bipartiteness for undirected graphs from
above.

For strongly connected aperiodic G, the Perron—Frobenius theorem asserts that

e let \ be the spectral radius of A, then A is an eigenvalue with multiplicity 1;

e let 7' and o be its left and right eigenvectors with eigenvalue) respectively, all coordinates of 7
and o are positive.

Similarly, for the transition matrix P,
e it has spectral radius 1, and 1 is an eigenvalue with multiplicity 1;
e let vT be its left eigenvector, then | is the unique stationary distribution.

Moreover, let X; and X5 be two vectors, we have the following approximation on X," A' X, (e.g.,
see [Fil91)).

Lemma 2. We have
<Ga X1> <7Ta X2>
(o, m)

Proof (sketch). Let us first decompose X into two vectors « - o and X’ such that (m, X’) = 0. Thus,
we have

XA = £ 0(11 [l X la) - expl-20))

o= <7T,X2>7
(o,)
and
XI = Xg — Q- 0.

For the first term, we have Al(a - 0) = Ma - 0. To estimate the second term, let D = diag(o /),
i.e., D is the diagonal matrix with the i-th diagonal entry equal to o; /7;. Since A is strongly connected
and aperiodic, there exists a constant ¢ such that all entries in A¢ are positive. We will show that A2 -
X'T(AT)! D=1 A' X" decreases exponentially. To this end, consider the matrix

Dl/Q(AT)chlAch/Q'
This matrix is positive real symmetric, and 7w " D'/? is its left eigenvector with eigenvalue *°. Since
7" D'/ is positive, by the Perron—Frobenius theorem, all other eigenvalues have magnitude strictly less
than A\%¢, and assume they are all at most ((1 — €)\)¢ for some € > 0.
For every i, since <7TTD1/2, D=1/241X") = 0, we have
X/T(AT)i+cD—lAi+cX/ < ((1 _ 6)/\)2c ~X/T(AT)iD_1AiXI.
Therefore, we have
X/T(AT)lD—lAlXI < exp(—Q(l)) .)\2lX/TD_1XI
< exp(=Q(D) - - O(| X[I3)
< exp(=0(1) - A - O(|| X2[3).

Thus, [[A'X"[|2 < A" O(|| Xz]2) - exp(—Q(1)).
Combining the two parts, we have

<U, X1> <7T,X2>

(o, 7)

X, A'X, = AN O X [|2]| Xzll2) - exp(—9(1)).

This proves the lemma. |

One can also prove a similar statement about P.
Lemma 3. XlTPlXQ = <1,X1> <I/, X2> + O(||X1||2HX2H2) . exp(—Q(l)).

2.2 Space Benchmarks

There are 17 A™1 different walks (vo, ..., v,) on G of length n. Thus, g1 A™1 bits is the optimal
worst-case space for storing a n-step random walk.

However, for non-regular graphs, some walk may appear with a higher probability than the others.
By Lemma 3, the marginal of V; quickly converges to v. Therefore, we have

H(Vigr | Vi) = v - lgdeg(a) + exp(—Q(i)).

By chain-rule and the Markov property of a random walk, we have

H(Vy,...,V\)=n- (Z Ve - 1gdeg(x)> +0(1).

This is the optimal expected space any data structure can achieve.
Finally, note that the point-wise space benchmark defined in the introduction

n—1
lg |G|+ Z lg deg(v;)
i=0
implies almost optimal expected, since it assigns [log 1/p] bits to a walk that appears with probability
D.

2.3 Word-RAM model and Succinct Data Structures

The following surprising (yet limited) result of [DPT10] will be used as a key subroutine in our data
structures.

Theorem 5 (Succinct dictionary for uniform strings, [DPT10]). For any |X| < w (not necessarily a
power of 2), there is a succinct Dictionary storing any string x € Y™ using [nlg|X|] bits of space,
supporting constant-time retrieval of any x;, on a word-RAM with word size w = O(lgn), assuming
pre-computed lookup tables of O(1gn) words. Moreover, the dictionary supports the online (“append-
only”) version with constant update and query times.

We remark that the cost of the pre-computed lookup tables is negligible and they are shared across
instances (they are essentially small code-books for decoding and hence do not depend on the input
itself). This is a standard requirement for variable-length coding schemes.

3 Succinct Data Structures for Storing Random Walks

3.1 Warmup: d-Regular Graphs

Fix a d-regular graph G with k vertices, we assume that G is connected and non-bipartite. Denote its
adjacency matrix by A. In the following, we show that a walk on G can be stored succinctly, and allow
efficient decoding of each vertex.

Theorem 6. Given a walk (vo,...,vy) in G, there is a succinct cell-probe data structure that uses at
most 1g4 |G| + nlgy d + 3 bits of memory, and supports retrieving each v in constant time for ¢ =
0,...,n, assuming the word-size w > Q(lgn). Moreover, the data structure can be implemented on a
word RAM using an extra r-bit lookup table, which depends only on G, supporting vertex retrievals in

O(léll%) time, for any r > Q(lg* n).

Proof. The idea is to divide the walk into blocks of length [for | = ©(Ign), so that if we take every I-th
node in a uniformly random walk (which we call the milestones), they look almost independent. We first
store all these milestones using the DP T dictionary, which introduces no more than one bit of redundancy.
Then note that conditioned on the milestones, the subwalk between any two adjacent milestones are also
independent and uniform over some set, then we store the subwalks conditioned on the milestones using
DPT again.

More formally, the top eigenvalue of A is equal to d. Suppose all other eigenvalues are at most
(1 —e€)d, wesetm = |5 -n/Inn], andl =n/m > 2 Inn. We divide the walk into m blocks of length
approximately [each. Leta; = [(¢ — 1) -] for 1 < i < m + 1, be the m + 1 milestones. Note that
a; = 0 and a,, 41 = n. The i-th block is from the i-th milestone v,, to the (i + 1)-th v, ,. Hence, the
length of the block isin (I — 1,1+ 1).

The first part of the data structure stores all milestones, i.e., v,, forall 1 <4 < m 4 1 using DPT.
This part uses [(m + 1) 1g, |G|] bits of memory.

Next, we store the subwalks between the adjacent milestones. By Lemma 1, after [steps of random
walk from any vertex v,,, the ¢5 distance to the uniform distribution U is at most (1 — ek)l < n~2, hence
the /., distance to U is also at most n 2. In particular, the probability that the random walk ends at each
vertex is upper bounded by 1/|G| + 1/n?. That is, given the milestones v,, and v, ,, the number of
possible subwalks in the i-th block (from v,, t0 vg,, ,) is always at most

1 1
4). geitrma
<|G| - n) ’

regardless of the values of vy, and vg, ;.

Hence, the subwalk can be encoded using a positive integer between 1 and [(1/|G| + 1/n?) -
dei+17% | Note that since I = O(lgn), this integer has O(w) bits. For cell-probe data structures,
one can hardwire an arbitrary encoding for every possible pair of milestones and every possible length
of the block. We will defer the implementation on RAM to the end of this subsection (Lemma 4), and
let us focus on the main construction for now.

We obtain an integer for each subwalk between adjacent milestones. We again use DPT to store these
integers. This part uses at most

> g ((1/IG] + 1/n?) - =)

i=1

bits of memory.
Therefore, the number of bits we use in total is at most

((m+D)lgy |Gl + 1)+ (Y 1gy (IG]7H +072) - de+174) +1)
=1

=(m+1)lg, |G|+ Z(aiﬂ —a))lgyd+mlg,(|GI7 +n72) +2
i=1

18 |G| + (amt1 — a1) gy d +mlgy(1 + |G| - n~?) 42

lgy |G| +nlgyd +m|G|-n~2 +2

lg, |G| +nlgyd + 3.

<
<

The query algorithm in the cell-probe model is straightforward. To retrieve v,, we first compute
the block it belongs to: ¢ = [¢/l]. Then we query the first part of the data structure to retrieve both
Vg, and v, ,, and query the second part to retrieve the integer that encodes the subwalk between them
conditioned on v,, and v, ,, . They together recover the whole subwalk, and in particular, v,.

O

Decoding on the word-RAM. Denote by N;(z,y), the number of different walks from x to y of
length [, i.e., Ni(z,y) = e] Ale,. In the following, we show that for every x,y and [= O(lgn), there
is a way to encode such a walk using an integer in [N (z, y)], which allows fast decoding.

Lemma 4. For | = O(lgn), given a length-l walk from x to y, one can encode it using an integer
K € [Ni(z,y)] such that with an extra lookup table of size r, depending only on the graph G, one can

retrieve the q-th vertex in the walk in O(ﬁ%) time, for any r > Q(lg* n).

Proof. To better demonstrate how we implement this subroutine, we will first present a solution with a
slower decoding time of O(lg E—Z) = O(lglgn —1glgr), and for simplicity, we assume [is a power of
two for now.

Given a length-l walk from z to y, the encoding procedure is based on divide-and-conquer. We
first find the vertex z in the middle of the walk, and recursively encode the two length-I/2 walks from
x to z and from z to y (given the endpoints). Suppose from the recursion, we obtained two integers
K1 € [Nyj2(x,2)] and Ky € [N/2(2,y)], then the final encoding will be the index in the lexicographic
order of the triple (z, K1, K3). That is, we encode the walk by the integer

K = Z M/2(Iaz/)M/2(’Z,ay) + (Kl - 1)M/2(Z7y) + KQ'

2'<z

Hence, K is an integer between 1 and }, N;/o(x, 2)Ni/2(2,y) = Ni(z,y).

We store the constants N (z,y) for all I’ € [1,(] and vertices z,y in the lookup table. The de-
coding procedure is straightforward. Given z,y and K, to decode the ¢-th vertex in the walk, we
first recover the triple (z, K1, K2). To this end, we cycle through all z in the alphabetic order: If
K > Njja(x, 2)Nyja(z,y), subtract K by Njjo(x, 2)Ny/2(2,), and increment z; Otherwise, the cur-
rent z is the correct middle vertex. Then K1 and K5 can be computed by Ky = | (K —1)/N;/2(z,y)]+1
and Ky = (K — 1) mod N;/5(z,y) + 1. Next,

e if ¢ =1/2, z is the queried vertex, and return z;

o if ¢ < /2, recursively query the g-th vertex in the length-l/2 walk from « to z;

e if ¢ > /2, recursively query the (¢ — [/2)-th vertex in the walk from z to y.
This gives us a decoding algorithm running in O(lglgn) time. To obtain a faster decoding time of
t < lglgn, we could run the above recursion for ¢ levels, and arrive at a subproblem asking to decode

a length-(//2!) walk from an integer no larger than 20(/2") Instead of continuing the recursion, we
simply store answers to all possible such decoding subproblems in a lookup table of size 7 = k2 - (1/2) -

20(/2") — 90(2""1sn) Hence, the decoding time is ¢ = O(lg 11%’).

To obtain the claimed decoding time of O(lé lé ™), the encoding algorithm will be based on a B-way
divide-and-conquer for some parameter B > 2. Given a length-/ walk from z to y, we first consider B+1
vertices (x =)z1, 22, ..., 28, 2B+1(= y) such that z; is the | (i — 1)I/B|-th vertex in the walk, and re-
cursively encode the length-// B walks from z; to z;41 fori = 1,..., B, obtaining integers K1, ..., Kp.
Next, we encode the vertices 2a, ..., zp by an integer Z € [|G|®~1]. The final encoding is according
to the lexicographic order of the tuple (Z, K1, ..., Kg). To decode a vertex between z; and z;41, the
algorithm will need to recover z;, 2,41 and K; in order to recurse. However, when B is large, we cannot
afford to enumerate Z as before. Instead, we will use a trick from [Pat08], which allows us to recover
each z; in constant time, as well as K;.
More specifically, for each tuple (23, .. ., z5), consider the number of walks that go through them at
the corresponding vertices
B
HNLil/ijL(ifl)l/Bj (i, 2ig1)-
i=1

10

In the lookup table, we store all these tuples in the sorted order by this number (break ties arbitrarily),
using |G|~ - (B — 1)[1g|G]|] bits. The encoding Z of the tuple will be the index in this order. There-
fore, to decode Z from z,y and K, it suffices to find the largest Z such that the total number of walks
corresponding to a tuple (22, ..., zp) ranked prior to Z, is smaller than K. This is precisely a predeces-
sor search data structure problem over a set of size |G|®~! with monotone gaps, where the set consists
of for all Z, the total number of walks corresponding to a tuple ranked prior to Z, and the query is K.
Because we sort the tuples by the number of corresponding walks, the numbers in the set have monotone
gaps. It was observed in [Pat08] that the monotone gaps allow us to solve predecessor search with linear
space and constant query time. Hence, we further store in the lookup table, this linear space predecessor
search data structure, using O(|G|®~1) words (the standard predecessor search problem only returns the
number, however, it is not hard to have the data structure also return the index Z.) From the predecessor
search data structure, we obtain Z, hence z; and z;1 from the first lookup table above, as well as K,
the rank of the tuple (K71, ..., Kp) given Z. Thus, K; can be computed by

B
Ki=|(K'-1)/ H Ny - —1i/B) (zir, zig1)] mod Ny || i-1)/8) (%is zit1) + 1.

i'=i+1
It can be computed in constant time, once we also have stored in the lookup table, for all (22, ..., 25)
and all 7, the number
B
H NLi’l/BJfL(i’fl)l/BJ(Zi’azi’-i—l)-
i'=it1

Finally, the recursion has O(lgg 1) = O(I%gl%”) levels, and each level takes constant time. We store
in the lookup table for all z, y and I’ < [, the above tables and the predecessor search data structure using
in total r = O(|G|B~1 - 12) = 29(B) . 1g% n bits. Thus, for r > lg? n, the decoding time is O(12187),

; Iglgr
This proves the lemma.

3.2 General Graphs

In this subsection, we prove our theorem for storing a walk in a general directed graph with respect to
worst-case space bound. Fix a strongly connected aperiodic directed graph G. Let A be its adjacency
matrix. The total number of length-n walks in G is equal to 1T A™1.

Theorem 7. Let G be a strongly connected aperiodic directed graph. Given a length-n walk (v, . . ., vy,)
on G, one can construct a data structure that uses 1g(17 A™1) + 5 bits of space. Then there is a query
algorithm that given an index q € [0, n], retrieves vy in O(lé lé =) time with access to the data structure
and a lookup table of v > Q(lg2 n) bits, where the lookup table only contains precomputed information
about G, on a word RAM of word-size w = ©(lgn).

The previous solution fails for general graph G. The main reason is that if we take a uniformly
random length-n walk, the marginal distribution of each milestone is not uniform. In other words,
the entropy of each milestone is strictly less than lg |G|. If we store them as before, using lg |G| bits
per milestone, this part of the data structure already introduces an unaffordable amount of redundancy
(constant bits per milestone).

To circumvent this issue, we partition the set of subwalks near each milestone into subsets, which
we refer to as the bundles. More specifically, let | = ©(lgn) be a parameter. For each milestone v;, we
partition the set of all possible subwalks from v; to v;4; into groups {g, ;}, such that

1. all subwalks in g, ; have v; = x;
2. the size |g,,;| is roughly the same for all z and j;

3. if we sample a uniformly random walk from g, ;, the marginal distribution of v;4; is roughly the
same for all x and j.

11

The second property above implies that if the input walk is random, then the group g, ; that contains the
subwalk is uniformly random. The third property implies that which group g, ; contains the subwalk
almost does not reveal anything about the walk after v;y;, as the distribution already “mixes” at v;4;.
We then partition the set of subwalks from v;_; to v; into groups {h, ;} with the similar properties.
Finally, a bundle B; ;, j, will be the product set of h, ;, and g j,, i.€., it is obtained by concatenating
one subwalk from h; ;, and one from g, ;, (they both have v; = x, and thus, can be concatenated). The
bundles constructed in this way have the following important properties:

1. all subwalks in each bundle go through the same vertex at the milestone;
2. each bundle consists of approximately the same number of subwalks;
3. adjacent bundles are almost “independent”.

The data structure first stores for each milestone v;, which bundle contains the subwalk near it, using
DPT (Item 2 and 3 above guarantee that this part introduces less than one bit of redundancy). Next,
the data structure stores the exact subwalk between each pair of adjacent milestones, given bundles
that contain (part of) it. In the following, we elaborate on this idea, and present the details of the
data structure construction. To prove the theorem, we will use the following property about strongly
connected aperiodic graphs, which is a corollary of Lemma 2.

Lemma 5. Let \ be the largest eigenvalue of A, ™' and o be its left and right eigenvectors, i.e., 1 ' A =
At and Ao = \o. Then o and T both have positive coordinates. For large | > Q(Ign), we have the
following approximation on X, A Xy for vectors X and X»:

<0’, X1> . <7T,X2>

(o, 7)

XTAX, = X (Lo ||X1|2||X2|2>) |

Proof of Theorem 7. Let m = ©O(n/lgn) be an integer, such that [= n/2m is large enough for
Lemma 5 and \! > n*. Similar to the regular graph case, we divide the walk into m blocks of roughly
equal length. Fori = 0,...,m, let a; = |2il]. The i-th block is from the a;_1-th vertex in the walk to
the a;-th, and each a; is a milestone. Let b; be the midpoint between the milestones a; and a;41, i.e.,
b = [(2i + 1)I].

Consider the set of all possible subwalks from b;_1 to b;, we will partition this set into bundles, such
that all subwalks in each bundle has the same v, (different bundles may not necessarily have different
vertex at a;). To formally define the bundles, let us first consider the subwalk from v,, to v,, which
has length b; — a; = [. In total, there are 1T Abi—ai1 subwalks of length b; — a;. For any vertices z, y,
e] AYi~ai1 of them have v,, = , and e} A% e, have v,, = x and v;, = y. Using the notation from
Lemma 4, we have N, _q, (7,y) = e] Abi~%e,.

Now we partition the set of all possible subwalks from v,, to vy, such that v,, = z into

Sy = 781—141)1_(11’1 . n2
T lTAbifail

groups gz 1, - - - , gz,s,- By Lemma 5, we have
(0,€q) (m,1) A"~
(o, 1) (m, 1) Abi—ai

- <an1> n2(1+0(n"?2)). (5)

For each vertex y, we ensure that the number of subwalks with v, = y in each g, ; for j € [s4]
is approximately the same. More specifically, we use Lemma 4 to encode the subwalk from v, to vy,

Sy =

n? (1+£0(n™?))

using an integer Kéi) € [My;—a, (Va,, vv,)]. This subwalk belongs to g, ; for z = v,, and

(2)
j= {—(KQ sk Sw)J i1 ®)

Nbi*ai (vai) Ub;

12

Therefore, by Lemma 5 and Equation (5) for every «, y, j, the number of subwalks from « to y in g, ; is
at most

Ny, —a, (2, y) +1= Tally | \bi=ai . {0, 1) 2 (1£0(n7?)
Sz {o,m) o
_ DT a2+ 0m?)), 7
(o, m)

Note that it is important that the +1 term is absorbed into the O(n~2) term, since *~% = Q(\) >
Q(n?).

Similarly, we also partition the set of subwalks from vy, _, to v,, into groups hy. 1, ...,y , for
1T Aei—bi-1g T
ty = | ——2 . 0% = —=_ . 021+ 0(n?)). 8
g | = £ o) ®

Again, we use Lemma 4 to encode the subwalk from vy, , to v,, using an integer K 1(i) € WNai—b;_1 (Vb;_1,va,)]-
This subwalk belongs to h, ; for z = v,, and

(@)
j:{ (K —1) ¢,)J+1. ©

Nai*bi—l (vbi—l y Va;

The number of subwalks from y to x in h,_; is at most

Nai*bi—l(y5x) +1= Oy * <7Ta 1>

S\t =2(1 £ 0(n™?)). (10)
te (o,)

Now we describe how we partition the subwalks from vy, , to vp, into bundles. Each bundle has the
form h j, X gq. j, for some vertex x and ji € [t], j2 € [sg]. Thatis, we define the bundle B, ;, ;, as

By jij, = {p10op2 1 p1 € hajy ;P2 € gu o}

where p; o py concatenates the two paths. It is not hard to verify that {8, ;, ;, } is a partition, and the
number of different bundles is

ZSmtm = % -t (1+0(n™?)) (11

by Equation (5) and (8). In particular, the index of the bundle (z, j1, j2) can be encoded using the integer

D swter + (G = Dt + jo.

x'<x

As special cases, for ¢+ = 0, the subwalk is from v,, to vp,, and the bundles are defined to be
Ba..j, = ga,j, for vertex and js € [s;]. For i = m, the bundles are B, j, := h, ;, for vertex « and
J1 € [tz]. In both cases, the number of bundles is at most n?.

Data structure construction and space analysis. Now, we are ready to describe how to construct

the data structure from the input (vp, ..., v,). We first use Lemma 4 to encode the subwalks from v,,
to vp, obtaining K. (l), and subwalk from v,, , to vp, obtaining K Y), and compute the m + 1 bundles
consisting of each subwalk. More specifically, we compute j;l), e ,j§m) and 79, ... ,jém_l) using

Equation (9) and (6).
The first part of the data structure stores the indices of the m + 1 bundles using DPT. These indices

can be stored using
{2lgn2 +(m—-1)lg (Z smth)—‘ +1

13

bits of space, which by Equation (11) is at most

!
41gn+(m—1)1gm+0(m-n*2)+2. (12)
(o,1) (m, 1)
Next, we compute the index of the subwalk within each bundle. More specifically, we compute
kil), o kim) and k9, .. ., kémfl) as follows:
i 3 (i Nai—bi— (Ubi— 7va1)

R L |

and

i i (1 Nbi*ai(vaivvbi)
kY = K — [(]5)—1)'— :

They are the indices within each g, ; and h ;.
The second part of the data structure stores the subwalk between the milestones within the bundles.

In particular, we store the triples (vy, kf), kél)) forevery i = 0,...,m — 1. By Equation (7) and (10),
the number of triples is at most
Z (0,1) my z\bi—aig -2, %y (m, 1) AGHTb L =2 (1 £ O(n72))
” (o,7) (o,)
1 1
~ @D yaen i1 £ 0(n2)).
(o, m)
Again, we store these triples using DPT. The total space of the second part is at most
1 1
mlgw—l-nlg/\—i—O(m-rﬂ)—i—Q. (13)
(o,m)n
Finally, summing up Equation (12) and (13), the total space usage of the data structure is at most
<Uaﬂ-> -n? +m1g <Uv 1> <7T51>
(0,1) (m, 1) (o,7) n*

+nlgA+O0(m-n"?) +4

4lgn+ (m—1)lg +nlgA+0(m-n"%) +4

Cplotinn
=lg <M-)\"> +0(m-n"%)+4

(o, 7)
which by Lemma 5 again, is at most

<lg(1TA"1) +5.

Query algorithm. Given an integer g € [0, n], we first compute the block that contains v, suppose
a; < q < a;q1. Suppose q is in the first half (a; < ¢ < b;), we use the query algorithm of DPT on the
first part of the data structure, retrieving the index of the bundle containing the subwalk from b;_; to b;,
(va,, 537, 5$7). Similarly, we retrieve the triple (vy,, k", k§”) from the second part. Then the encoding
of the subwalk from v,, to vp, can be computed

i i (i N, —a, (Va,, Vs,
K <)+ [) Amalen)]

x

Finally, we use the query algorithm of Lemma 4 to decode the (¢ — a;)-th vertex in this subwalk, which
is v;. The case where ¢ is in the second of the block (b; < ¢ < a;4+1) can be handled similarly. With an
extra lookup table of size r for Lemma 4, each query can be answered in O(lli lé =) time. This proves the
theorem. O

14

The above data structure also extends to general directed graphs.

Corollary 1. With an extra O(1) bits of space, Theorem 7 also applies to general strongly connected
graph G.

Proof. Suppose G is periodic with period p. Then its vertices can be divided into p sets V1, ..., V,, such
that each vertex V; only has outgoing edges to V; 1 (defining V},41 = V7). We can reduce the problem
to the aperiodic case as follows.

Let us first only consider walks that both start and end with vertices in V;. Therefore, the length
of the walk n must be a multiple of p. We divide the walk into subwalks of length p, and view each
length-p subwalk as a vertex in a new graph. That is, consider the graph GP|y, whose vertices are all
possible length-p walks that start and end with vertices in V; in G, such that directed edges connect two
subwalks if they can be concatenated, i.e., if the last vertex in u is the same as the first vertex in v/, then
there is an edge from u to u’. It is easy to verify that this graph is strongly connected and aperiodic, and
a length-n walk on G can be viewed as a length-n/p walk on this graph. Then we apply Theorem 7 to
store the length-n/p walk on GP |y, . To retrieve vy, it suffices to retrieve the |g/p]-th vertex in the walk
on GP|y,, and recover v, via a look-up table.

For general inputs that do not necessarily start or end in V;, we store a prefix and suffix of walk of
length at most p naively, such that the remaining middle part starts and ends in V7, for which we use the
above construction. (|

Finally, our data structure also applies to general directed graphs.

Corollary 2. With an extra O(lgn) bits of space, Theorem 7 also applies to general directed graph G.

Proof. We precompute the strongly connected components (SCC) of G. Given input walk (vp, ..., v,),
observe that it can only switch between different SCCs a constant number of times, since after the walk
leaves an SCC, it could never come back. Hence, we first store the steps in the input that switch from
one SCC to another using O(lg n) bits, then apply Corollary 1 on each subwalk within an SCC. (|

3.3 Matching the point-wise optimal space for non-regular graphs

The data structure from Theorem 7 used approximately lg 17 A1 bits of space uniformly on any pos-
sible input sequence. This means that our data structure achieves the best possible space for a uniformly
chosen length-n walk in G, by Shannon’s source coding theorem. However, the distribution we actually
care about is that of a random walk of length n starting from a random vertex in G, which for non-regular
graphs may have much lower Shannon entropy. In the other words, for non-regular G, the following two
distributions may be very far in KL divergence:

e v, A uniformly chosen length-n walk in G.
® (i,: An n-step random walk starting from a random vertex in G.

By Huffman coding, H (u,,) is therefore the correct expected space benchmark. To achieve this expecta-

tion, the corresponding poin-wise space benchmark per walk (vg, . .., v,) ~ p, in G is
n—1
NG+ lgdeg(vi)]
=0
bits of space, since the space allocated to each sequence (vg, . . ., v,) is approximately 1/ 1g Pr[(vg, . . ., vn)].

To match the above point-wise space bound, we use the augmented B-tree from [Pat08]. Fix a
parameter B > 2, [PatO8] defines data structure aB-trees as follows:

o The data structure stores an array A € X™. The data structure is a B-ary tree with n leaves storing
elements in A.

15

e Every node is augmented with a label from some alphabet ®, such that the label of the ¢-th leaf is
a function of A[i], and the label of an internal node is a function of the labels of its B children, and
the size of the subtree.

e The query algorithm examines the label of the root’s children, decides which child to recurse on,
examines all labels of that child’s children, recurses to one of them, and so on. The algorithm must
output the query answer when it reaches a leave.

Pétragcu proves a general theorem to compress any such aB-tree, almost down to its input entropy:

Theorem 8 ([Pat08], Theorem 8). Let B < O(m), and let N'(n, @) be the number of instances
of A € X" that has the root labeled by p. An aB-tree of size n with root label ¢ can be stored using
lgo N'(n,) + 2 bits. The query time is O(lgg n), assuming a precomputed lookup tables of O(|X] +
|®|B+ + B - |®|P) words, which only depend on n, B and the aB-tree algorithm.

We build an aB-tree on top of the input. The alphabet size |¥| = |G|. For each node of the tree
that corresponds to a subwalk (v, ..., v,.), we set its label ¢ to be the triple (v;, v,., S), such that S is an

integer equal to
r—1

> Inlg, deg(vi)],

=l

with the exception of root, whose label is only the integer S = Z?:_Ol [nlg, deg(v;)], without vy and
vp. In the other words, S encodes the optimal “space” that this subsequence uses. Thus, the alphabet
size of the labels |®| is O(n?). The label of a leaf v; is (v;,v;,0), a function of v;. To see why the
label of an internal node is a function of the labels of its B children, suppose the B children have
labels (vg, Vmy—1,51)s (Umys Vma—1,592); -« o (Ump_1,0r, Sp) respectively. Then the label of this node
is (vg, vy, S) (or just S for the root) for

B B-1
S=3 Sp+ Y [n*lg,deg(vm,1)].
=1 =1

Theorem 8 compresses this data structure to lg, N'(n + 1,) + 2 bits, where ¢ is the label of the
root, and supports queries in O(lg z n) time. The following lemma bounds the value of N'(n + 1, ¢).

Lemma 6. For root label ¢ = S, we have N'(n + 1, ¢) < 2'81GI+S/n,

Proof. Let V be a uniformly random walk V' = (Vj,...,V,,) with root label ¢. Then H(V) =
lgo N'(n+1,¢). On the other hand, by the chain rule and the fact that conditioning only reduces entropy,
we have

n—1 n—1
H(V)=HVo,...,Va) < HVo)+ Y H(Via|Vi) <1g|G| + Y Ellgdeg(v:)] < Ig|G| + S/n,
i=0 1=0
where the last inequality is by definition of N'(n,). Rearranging sides completes the proof. |

Therefore, the space usage is at most

n—1

Ig|G|+5/n+2<lg|G|+ > lgdeg(vi) + 3.
1=0

In particular, setting B = 2 gives us query time O(lgn) and lookup table size O(nf).

16

4 Lower Bounds

4.1 A Succinct Reduction from Dictionaries to Directed Random Walks

In this section, we exhibit a succinct reduction from the well-studied Dictionary data structure problem
to the LDSC problem of storing random walks on (directed) non-regular graphs. Before we describe the
reduction, we begin with several definitions. Recall that the zeroth-order empirical entropy of a string
v € X"is Ho(x) :=) oy folg(n/fo(x)) where f, is the number of occurrences (frequency) of the
symbol ¢ in z. The succinct Dictionary problem is defined as follows:

Definition 1 (Succinct Dictionaries). Preprocess an n-letter string x € X" into Hy(x) + r bits of space,
such that each x; can be retrieved in time t. We denote this problem Dictionarys, ,,.

Note that in the special case of bit-strings (X = {0,1}), this is the classic Membership problem
[Pag02, GMO7, PatO8]. The best known time-space tradeoff for Dictionaryy, ,, (for constant-size al-

phabets) is r = O(n/ (lgT")t) [Pat08].° While this exponential tradeoff is known to be optimal in the
bit-probe model (w = 1) [Viol2], no cell-probe lower bounds are known, and this is one of the long-
standing open problems in the field of succinct data structures.

A key component in our reduction will be the Huffiman tree (c.f, Huffman code) of a distribution.

Definition 2 (Huffman Tree). The Huffman Tree 7, of a discrete distribution . supported on alphabet
Y., is a rooted binary tree (not necessarily complete) with 3. leaves, one per alphabet symbol. For every
symbol o € 3, the unique root-to-leaf path to the symbol o is of length exactly £, := [1g5(1/1(0))].

We remark that the existence of such trees for any discrete distribution w is guaranteed by Kraft’s
inequality (for more context and construction of the Huffman tree, see [CT06]). We are now ready to
prove Theorem 4, which we restate below.

Theorem 9. Let D be a succinct cell-probe data structure for storing a walk (v, . .., vy,) over general
(directed) graphs G, using Y, 1g(deg(v;)) + r bits of space, and query time t for each v;. Then for any
constant-size alphabet 3, there is a succinct dictionary storing x € 3", with space Ho(x) + r bits and
query time query time t + 1. This reduction holds for any input x with empirical frequencies (f5(x)/n)
which are inverses of powers of 2 lower bounded by a constant.

Proof. First, we claim that the Dictionary problem can be reformulated as follows: Store an n-letter
string drawn from some arbitrary product distribution X ~ ™, using expected space s = nH (u) +r
bits, decoding X; in time ¢, where H () is the Shannon entropy of p. Indeed, let p = p(x) denote
the empirical distribution of the input string = € X" to Dictionaryy, ,,. Since the zeroth-order space
benchmark Hy(x) only depends on the marginal frequencies of symbols in the input string, we may as-
sume that each coordinate X; is drawn independently from the induced distribution p (which is arbitrary
nonuniform), and Hy(x) = H(u"™) = nH (p) holds.

By this reformulation, we may assume the input to Dictionaryy, ,, is X ~ p" for some p. We
now define a (directed) graph such that a uniform random walk on this graph encodes the input string
X1,...,Xn ~ p" without losing entropy. Let T,, be the Huffman Tree of the distribution p, where all
edges are directed downwards from root to leaves. By Definition 2, the probability that a random walk W
on 7, starting from the root reaches leaf o € X is precisely 2~te = 2~Me2(1/1(o)]_[f all probabilities
in p are (inverses of) powers of 2, then the probability of this event is exactly

Pr[Wreaches leaf o] = 27 182(1/1(9) — ;(5). (14)

®0On a RAM, there is an extra n' ~* additive term for storing lookup-tables whose “amortized” cost is small, see Theorem 1 in
[Pat08].

17

In other words, under the assumption that all probabilities are powers of 2, sampling X; ~ p is equivalent
to sampling a random leaf of 7, according to a uniform random walk starting from the root v,.. Let

d, = In;}xﬁg

be the height of the tree 7, (i.e., the length of the deepest path max, lg(1/x(c))). To complete the
construction of the graph, we connect each leaf (corresponding to symbol) o back to the root of 7,, via a
vertex-disjoint directed path of length d,, + 1 — £,. Call the resulting graph G,. This simple trick makes
sure that all “cycles” have fixed length d,, 4 1, hence each sampled leaf in the walk can be decoded from
a fixed block, despite the fact that each leaf is sampled at unpredictable depth. The key observation is
that adding these vertex-disjoint paths does not increase the entropy of a random walk (Ig,(1) = 0), but
merely increases the size of the graph by a constant factor |G| = O(|X|d,) = O(1).

Let (V4,...,V,) be a uniform random walk of length n’ := (d, + 1)n on G, starting from the
root. By (14) and definition of G, it follows that the unique leaf V;, € X sampled in the 7th “cycle”
of the walk (j; € [(¢ — 1)(d, + 1),i(d, + 1)]), is distributed precisely as X; ~ . In particular,
H(Vj,,...,V;,) = nH(p), while the (conditional) entropies of all the rest of the V;’s are identically
0 (as all previous vertices V., in the ith “cycle” are determined by Vj, by the tree structure, and all
remaining vertices V5, in the ith cycle correspond to the part of the walk that is a vertex-disjoint path
and hence the conditional entropy of this subwalk is 0). Thus, by the chain rule and the premise of
the theorem, we conclude that there is a succinct data structure storing a random walk Vi, ..., V,, on
G, using space nH (p) + r bits of space, which by the above reformulation implies the same space
for storing € X" up to the O(|X|1gn) additive term, so long as marginal frequencies (f,(z)/n) are
inverses of powers of 2.

Decoding of z; is straightforward: Go to the second-before-last vertex Vj(g,41)—1 in the ith cycle
(i.e., the one just before coming back to the root); Either V;(4, 1)1 is a leaf of T, or it belongs to a
unique path corresponding to some leaf ¢, (as all back-tracking paths are vertex disjoint) hence we know
immediately that X; = o. By the premise of the theorem, the decoding time of each vertex in the walk
is t, hence so is that of X;. We conclude that the resulting succinct data structure is an (r, ¢)-Dictionary,
as claimed.

O

4.2 Completeness of LDSC in the static cell-probe model

In this section, we prove unconditional (cell-probe) lower bounds on the LDSC problem, demonstrating
that for some (in fact, most) classes of non-product distributions, this storage problem does not admit
efficient time-space tradeoffs. Our first observation is that the LDSC problem under an arbitrary joint
distribution p is a “complete” static data structure problem:

Proposition 1 (Completeness of LDSC). For any prior i on n files, LDSCﬁ_’E is equivalent to some static
data structure problem P = P () with | Q| = n queries, on an input database Y of size E[|Y|] < H,,+1
bits. Conversely, any static data structure problem P with | Q| iueries on a database x € X", can be

embedded as an LDSC problem on some 1 = j1(P), where H,,(X) = n. These equivalences hold in the
cell-probe model with word size w > Q(lg|X]).

Proof. The converse statement is straightforward: Given any static problem P on input z € X with
query set Q, consider the distribution u(P) of (q1(X), g2(X), ..., qg|(X)), i.e., of all query answers
(A1,...,A|g) to problem P under a uniformly random input database X € X". The joint entropy of
u(P)is H(Aq,...,Ajg) < H(X) = NlgX, since X determines all query answers. Hence this is a
valid LDSC instance on n = | Q)| files, over a joint distribution x(P) with entropy H,, < Nlg¥ < n.
For the first direction of the proposition, let X := (X1, ..., X,,) be the (random variable) input files
to LDSC, ,, and let Y := Huff(X1,..., X,,) denote the Huffinan code of the random variable X. By

the properties of the Huffman code (c.f. Definition 2), Y = Huff(X) is invertible and has expected

18

length E,,[Y] < H,(X) + 1 bits. This implies that Y is a uniformly distributed random variable with
entropy H(Y) = H(X). Now, define the data structure problem P, in which the answer to the ith query
is P(i,Y) := (Huff ' (Y)); = X, where the last inequality follows from the fact that Huffman coding
is lossless and hence X is determined by some deterministic function g(Y"). While this provides a bound
only on the expected size of the input (“database”) Y, a standard Markov argument can be applied for
bounding the worst-case size, if one is willing to tolerate an arbitrarily small failure probability of the
data structure over the distribution .

O

Corollary 3 (LDSC Lower Bounds). Proposition I has the following lower bound implications:

1. (k-wise independent distributions) Using the cell-sampling arguments of [Sie04, Lar12], the above
reduction implies that any linear-space data-structure (storing O(H,,) bits) for LDSC",, s when
p is an (H,,)-wise independent distribution, requires

t>QgH,) =Q(gn)

decoding time even in the cell-probe model (note that this type of tradeoff is the highest explicit
lower bound known for any static problem).

2. A rather simple counting argument ([Mil93]) implies that for most joint distributions . with en-
tropy H(u) := h < n, locally decodable source coding is impossible, in the sense that decoding
requires h'=°M) time unless trivial = n'~°W) space is used (and this is tight by Huffman coding).
Such implicit hard distribution 1 can be defined by n random functions on a random h-bit string,
where h = n°.

References

[APWT08] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse, and Rina
g jay
Panigrahy. Design tradeoffs for ssd performance. In USENIX 2008 Annual Technical Con-
ference, ATC 08, pages 57-70, Berkeley, CA, USA, 2008. USENIX Association.

[BMRVO02] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh. Are bitvectors optimal?
SIAM J. Comput., 31(6):1723-1744, June 2002.

[BN13] Jérémy Barbay and Gonzalo Navarro. On compressing permutations and adaptive sorting.
Theor. Comput. Sci., 513:109-123, November 2013.

[BW94] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Tech-
nical Report 124, Digital Equipment Corporation, 1994.

[CS00] Tarun Chordia and Bhaskaran Swaminathan. Trading volume and cross-autocorrelations in
stock returns. Journal of Finance, 55(2):913-935, 2000.

[CTO6] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, New York, NY, USA,
2006.

[DLRR13] Akashnil Dutta, Reut Levi, Dana Ron, and Ronitt Rubinfeld. A simple online competitive
adaptation of lempel-ziv compression with efficient random access support. In 2013 Data
Compression Conference, DCC 2013, Snowbird, UT, USA, March 20-22, 2013, pages 113—
122,2013.

[DPT10] Yevgeniy Dodis, Mihai Patrascu, and Mikkel Thorup. Changing base without losing space.
In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cam-
bridge, Massachusetts, USA, 5-8 June 2010, pages 593-602, 2010.

19

[Filo1]

[FMO5]
[GMO7]

[GPL'00]

[GRROS]

[GYO7]

[HBB+18]

[Lar12]

[ManO1]

[MCW15]

[MHMPI15]

[Mil93]

[Pag02]
[Pat08]

[PV10]

[RRS07]

James Allen Fill. Eigenvalue bounds on convergence to stationarity for nonreversible
markov chains, with an application to the exclusion process. Ann. Appl. Probab., 1(1):62—
87,02 1991.

Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552-581,
July 2005.

Anna G4l and Peter Bro Miltersen. The cell probe complexity of succinct data structures.
Theoretical Computer Science, 379:405-417, July 2007.

P Gopikrishnan, V Plerou, Y Liu, L.A.n Amaral, Xavier Gabaix, and H.e Stanley. Scaling
and correlation in financial time series. Physica A: Statistical Mechanics and its Applica-
tions, 287(3):362-373,2000.

Alexander Golynski, Rajeev Raman, and S. Srinivasa Rao. On the redundancy of succinct
data structures. In Algorithm Theory - SWAT 2008, 11th Scandinavian Workshop on Algo-
rithm Theory, Gothenburg, Sweden, July 2-4, 2008, Proceedings, pages 148—159, 2008.

Mark Gales and Steve Young. The application of hidden markov models in speech recog-
nition. Found. Trends Signal Process., 1(3):195-304, January 2007.

Kim M. Hazelwood, Sarah Bird, David M. Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law, Kevin
Lee, Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong, and Xiaodong Wang.
Applied machine learning at facebook: A datacenter infrastructure perspective. In IEEE In-
ternational Symposium on High Performance Computer Architecture, HPCA 2018, Vienna,
Austria, February 24-28, 2018, pages 620-629, 2018.

Kasper Green Larsen. The cell probe complexity of dynamic range counting. In Proceed-
ings of the 44th Symposium on Theory of Computing Conference, STOC 2012, pages 85-94,
2012.

Giovanni Manzini. An analysis of the burrows-wheeler transform. J. ACM, 48(3):407-430,
May 2001.

Arya Mazumdar, Venkat Chandar, and Gregory W. Wornell. Local recovery in data com-
pression for general sources. In Proceedings - 2015 IEEE International Symposium on In-
formation Theory, ISIT 2015, volume 2015-June, pages 2984-2988, United States, 9 2015.
Institute of Electrical and Electronics Engineers Inc.

Ali Makhdoumi, Shao-Lun Huang, Muriel Médard, and Yury Polyanskiy. On locally de-
codable source coding. In 2015 IEEE International Conference on Communications, ICC
2015, London, United Kingdom, June 8-12, 2015, pages 4394-4399, 2015.

Peter Bro Miltersen. The bit probe complexity measure revisited. In STACS 93, 10th Annual
Symposium on Theoretical Aspects of Computer Science, Wiirzburg, Germany, February

25-27, 1993, Proceedings, pages 662—671, 1993.

Rasmus Pagh. Low redundancy in static dictionaries with constant query time. SIAM J.
Comput., 31(2):353-363, February 2002.

Mihai Patrascu. Succincter. In 49th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 305-313, 2008.

Mihai Patragcu and Emanuele Viola. Cell-probe lower bounds for succinct partial sums.
In Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 10, pages 117-122, Philadelphia, PA, USA, 2010. Society for Industrial and Ap-
plied Mathematics.

Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algo-
rithms, 3(4), November 2007.

20

[Sie04]
[SW]

[TBW18]

[THOW16]

[Viol2]
[WSY™*16]

[ZL78]

Alan Siegel. On universal classes of extremely random constant-time hash functions. SIAM
J. Comput., 33(3):505-543,2004.

Sandip Sinha and Omri Weinstein. Local decodability of the burrows-wheeler transform.
Submitted, 2018.

Kedar Tatwawadi, Shirin Saeedi Bidokhti, and Tsachy Weissman. On universal compres-
sion with constant random access. In 2018 IEEE International Symposium on Information
Theory, ISIT 2018, Vail, CO, USA, June 17-22, 2018, pages 891-895, 2018.

Kedar Tatwawadi, Mikel Hernaez, Idoia Ochoa, and Tsachy Weissman. GTRAC: fast re-
trieval from compressed collections of genomic variants. Bioinformatics, 32(17):479-486,
2016.

Emanuele Viola. Bit-probe lower bounds for succinct data structures. SIAM J. Comput.,
41(6):1593-1604,2012.

Hao Wu, Xiaoyan Sun, Jingyu Yang, Wenjun Zeng, and Feng Wu. Lossless compression of
jpeg coded photo collections. Trans. Img. Proc., 25(6):2684-2696, June 2016.

J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24(5):530-536, September 1978.

21

	1 Introduction
	1.1 Main Results
	1.2 Technical Overview
	1.3 Related work

	2 Preliminaries
	2.1 Graphs and Random walks.
	2.2 Space Benchmarks
	2.3 Word-RAM model and Succinct Data Structures

	3 Succinct Data Structures for Storing Random Walks
	3.1 Warmup: d-Regular Graphs
	3.2 General Graphs
	3.3 Matching the point-wise optimal space for non-regular graphs

	4 Lower Bounds
	4.1 A Succinct Reduction from Dictionaries to Directed Random Walks
	4.2 Completeness of LDSC in the static cell-probe model

