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Abstract

Node-Kayles is an impartial game played on a simple graph. The Sprague-Grundy

theorem states that every impartial game is associated with a nonnegative integer

value called a Nimber. This paper studies the Nimber sequences of various families of

graphs, including 3-paths, lattice graphs, prism graphs, chained cliques, linked cliques,

linked cycles, linked diamonds, hypercubes, and generalized Petersen graphs. For most

of these families, we determine an explicit formula or a recursion on their Nimber

sequences.

1 Introduction

An impartial game is a combinatorial two-player game with complete information, in which
the allowable moves from any position are identical for both players. One of the classical
examples is the game of Nim. The Sprague-Grundy theorem [1] states that all impartial
games can be analyzed by assigning a nonnegative integer value, often called the Grundy

number or the Nimber, to each game position recursively. According to this theorem, the
Nimber of a game is 0 if and only if the game is second-player winning, i.e., the second
player has a winning strategy regardless of the moves of the first player. Readers may
refer to Winning Ways for Your Mathematical Plays: Volume 1 [2] for more information on
impartial games.

Node-Kayles, also known as the domination game [3], is an impartial game played on
a simple graph G. Players move alternately. A move involves removing a vertex v, its
neighbors NG(v), and all edges incident to all vertices in {v} ∪ NG(v) from G. The first
player unable to make a legal move loses the game. In the rest of this article, we let NG[v]
denote {v}∪NG(v), the closed neighborhood of v. Furthermore, we let Gv denote the residue
subgraph G − NG[v]. Since Node-Kayles is an impartial game, we can assign a Nimber to
every simple graph G, denoted by G(G). If G = ∅ is an empty graph, then the Node-Kayles
game on ∅ is second-player winning, since the first player loses by having no legal move.
Hence, G(∅) = 0. For any simple graph G, the Nimber of the Node-Kayles game on G is
given by

G(G) = mex{G(Gv) : v ∈ V (G)},

where mex represents the “minimal-excluded rule”: if S is a finite subset of N ∪ {0}, then

mex(S) = min{N ∪ {0} \ S}.

Furthermore, if G is a disjoint union of two simple graphs H and K, then

G(G) = G(H)⊕ G(K),

where x⊕ y denotes the bitwise XOR between two nonnegative integers x and y.
Nimbers will be our main tool in studying Node-Kayles in this paper. In order to famil-

iarize ourselves with this main tool, let us consider a few simple graphs and compute their
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respective Nimbers. Let Pn denote a path with n vertices. Since P1 has only one vertex v,
we have (P1)v = ∅, and

G(P1) = mex{G((P1)v)} = mex{G(∅)} = mex{0} = 1.

Since P2 has only one edge that connects two vertices u and v, we have (P2)u = (P2)v = ∅,
and hence

G(P2) = mex{G(∅)} = 1.

If G is a graph given by Figure 1, then as seen in Figure 2, the residue subgraphs Gv1 , Gv3 ,
and Gv4 are isomorphic to P2, while the residue subgraphs Gv2 and Gv5 are isomorphic to
P1.

v4 v3

v2v5

v1

Figure 1: A simple graph G

Gv1 Gv2 Gv3 Gv4 Gv5

v4 v3 v4

v5

v1 v1

v2
v3

Figure 2: The residue subgraphs Gv1 , Gv2 , Gv3 , Gv4 , and Gv5

Therefore,

G(G) = mex{G(Gvi) : i = 1, 2, 3, 4, 5} = mex{G(P1),G(P2)} = mex{1, 1} = 0.

Node-Kayles is a generalization of the game of Kayles. Some sources trace the origin of
the game of Kayles to the old Dutch game of Kugelspiel [6, p. 232], played with thirteen
bowling pins placed in a row, while other sources trace the origin to the French game of
quilles [4, pp. 118, 220]. Nevertheless, both versions agree on the rules of the game. In
the game of Kayles, players alternately bowled, knocking down one pin or two neighboring
pins with each throw. The objective of the game was to see who could knock down the last
standing pin. Notice that this game is not equivalent to the Node-Kayles on a path; rather,
in Section 4, we will prove that the game of Kayles is equivalent to the game of Node-Kayles
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on “n-linked cliques”. Although there is no documented proof on the historical development
of the game of Node-Kayles, Simon P. Norton claimed the invention of this game during a
personal encounter with the last author of this paper.

There has been literature studying the game of Node-Kayles [5]. Our goal in this paper is
to determine the sequence of Nimbers for Node-Kayles on various infinite families of simple
graphs. In particular, if (Gn : n ∈ N) is a sequence of graphs indexed by natural numbers,
then we can define a corresponding Nimber sequence (G(Gn) : n ∈ N). To that end, we begin
with paths and their derivatives in Section 2. We then present results on lattice graphs of
various sizes in Section 3, and apply the results on prism graphs. Section 4 contains results
on chained and linked cliques, while Section 5 studies linked cycles and diamonds. Finally,
we present results on other graphs such as hypercubes and generalized Petersen graphs in
Section 6.

2 Node-Kayles on paths and their derivatives

When we consider an infinite sequence of simple graphs, paths are naturally the first such
family that comes to mind. Node-Kayles on paths is well-studied in the literature as the
octal game ·137. An octal game is an impartial take-and-break game that involves removing
beans from heaps of beans [2]. Each octal game has a specific octal code

·d1d2d3 . . . ,

which specifies the set of permissible moves in the take-and-break game. In this code, the
k-th digit dk is the sum of a (possibly empty) subset of {1,2,4}, where

• 1 indicates a heap can be completely removed by removing k beans;

• 2 indicates a heap can be reduced into a smaller positive size by removing k beans;
and

• 4 indicates a heap can be split into two heaps of smaller positive sizes by removing k
beans.

For example, an octal game ·137 has d1 = 1, d2 = 3, and d3 = 7, and the code indicates
that one can remove one bean from a heap to completely remove that heap; remove two
beans from a heap to completely remove that heap or reduce the size of that heap; or remove
three beans from a heap to completely remove that heap, reduce the size of that heap, or
split that heap into two smaller heaps.

We can now see why Node-Kayles on a path Pn is equivalent to an octal game ·137. Recall
that each Node-Kayles move requires us to remove a vertex v together with its neighbors
N(v); and after each move, the resulting residue subgraph is a forest, where each connected
component is a path of the form Pj = v1v2 · · · vj for some positive integer j. Translating
to octal games, a connected component Pj is analogous to a heap of j beans. The only
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way to remove exactly one vertex from Pj is when j = 1, thus completely removing the
component. Therefore, d1 = 1. There are two ways to remove two vertices from Pj : we
can either completely remove this component when j = 2, or reduce the length of this
path by removing the closed neighborhoods N(Pj)[v1] or N(Pj)[vj] when j ≥ 3. Therefore,
d2 = 1+ 2 = 3. There are three ways to remove three vertices from Pj: we can completely
remove this component when j = 3, reduce the length of this path by removing NPj

[v2] or
NPj

[vj−1] when j ≥ 4, or split Pj into two shorter paths by removing NPj
[vi], 3 ≤ i ≤ j − 2,

when j ≥ 5. Therefore, d3 = 1 + 2 + 4 = 7. Due to this equivalence, the Nimber sequence
(G(Pn) : n ∈ N) of paths is the same as the Nimber sequence of the octal game ·137, which
appears on the On-Line Encyclopedia of Integer Sequences (OEIS) as A002187 [7].

Recall that for each positive integer m, the m-th power Gm of a simple graph G is a
new graph on the same vertex set such that two vertices are adjacent in Gm if and only if
their distance in G is at most m. It is not difficult to see that Node-Kayles on the square
(Pn)

2 and the cube (Pn)
3 of a path are equivalent to octal games ·11337 and ·1113337,

respectively. Hence, the Nimber sequences (G((Pn)
2) : n ∈ N) and (G((Pn)

3) : n ∈ N) are
also known, and they appear on the OEIS as A071426 and A071441 [7], respectively.

We can, of course, continue to explore the Nimber sequence (G((Pn)
m) : n ∈ N) when

m ∈ {4, 5, . . . }. Instead, we study a variation of the power of paths. Define an m-path

Pn(m) as a path Pn = v1v2 · · · vn with additional edges {vivj : |i− j| = m}. In this section,
we determine the Nimber sequence (G(Pn(3)) : n ∈ N) of 3-paths.

To achieve this, we need to further define two related families of graphs. A B-version of
a 3-path, denoted by PB

n (3), is a 3-path Pn(3) with an additional vertex v−1, and if n ≥ 2,
an additional edge v−1v2. A C-version of a 3-path, denoted by PC

n (3), is a B-version of a
3-path PB

n (3) with an additional vertex vn+2, and if n ≥ 2, an additional edge vn−1vn+2.
Figures 3 to 5 are examples of a 3-path, a B-version of a 3-path, and a C-version of a 3-path,
respectively.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Figure 3: The 3-graph P10(3)

v−1 v1 v2 v3 v4 v5 v6 v7 v8

Figure 4: The B-version of a 3-path PB
8 (3)
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v−1 v1 v2 v3 v4 v5 v6 v7 v8 v10

Figure 5: The C-version of a 3-path PC
8 (3)

To simplify the notation, we define A(n) = G(Pn(3)), B(n) = G(PB
n (3)), and C(n) =

G(PC
n (3)). The sequence (A(n) : n ∈ N) is now listed on the OEIS as A317367 [7].

Theorem 1. The Nimber sequences (A(n) : n ≥ 116), (B(n) : n ≥ 117), and (C(n) : n ≥
118) are periodic with period 62.

Proof. By definition,

C(n) = mex{G(PC
n (3)vi) : i = −1, 1, 2, . . . , n, n+ 2}.

By the symmetry of PC
n (3), we have

C(n) = mex{G(PC
n (3)vi) : i = −1, 1, 2, . . . , ⌈n/2⌉}.

It is easy to see that PC
n (3)v−1

has v−1 and v2 removed, so G(PC
n (3)v−1

) = C(n−2). Similarly,
we can easily see that G(PC

n (3)vi) = C(i− 4)⊕C(n− i− 3) for 5 ≤ i ≤ ⌈n/2⌉. To compute
G(PC

n (3)vi) for 1 ≤ i ≤ 4, it is convenient to extend the definition of PC
n (3) to cases when

−3 ≤ n ≤ 0 and determine the corresponding C(n) as follows.

n PC
n (3) C(n)

−3 1
−2 ∅ 0
−1 0

0 1

In this way, we find the recursion

C(n) = mex
(

{C(n− 2)} ∪ {C(i− 4)⊕ C(n− i− 3) : 1 ≤ i ≤ ⌈n/2⌉}
)

(1)

for all n ∈ N. Now, we are ready to prove that (C(n) : n ≥ 118) is periodic with period 62
by strong induction.

With recursion (1), together with the initial conditions (C(−3), C(−2), C(−1), C(0)) =
(1, 0, 0, 1), we can compute the values of the sequence (C(n) : 1 ≤ n ≤ 427), which is periodic
with period 62 when 118 ≤ n ≤ 427. Assume that for some n ≥ 428, C(i) = C(i − 62) for
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all 180 ≤ i < n. Then

C(n) = mex
(

{C(n− 2)} ∪ {C(i− 4)⊕ C(n− i− 3) : 1 ≤ i ≤ ⌈n/2⌉ − 31}

∪ {C(i− 4)⊕ C(n− i− 3) : ⌈n/2⌉ − 30 ≤ i ≤ ⌈n/2⌉}
)

= mex
(

{C((n− 62)− 2)} ∪ {C(i− 4)⊕ C((n− 62)− i− 3) : 1 ≤ i ≤ ⌈(n− 62)/2⌉}

∪ {C(i− 4)⊕ C((n− 62)− i− 3) : ⌈n/2⌉ − 30 ≤ i ≤ ⌈n/2⌉}
)

= mex
(

{C((n− 62)− 2)} ∪ {C(i− 4)⊕ C((n− 62)− i− 3) : 1 ≤ i ≤ ⌈(n− 62)/2⌉}

∪ {C(i− 4)⊕ C((n− 62)− i− 3) : ⌈n/2⌉ − 92 ≤ i ≤ ⌈n/2⌉ − 62}
)

= mex
(

{C((n− 62)− 2)} ∪ {C(i− 4)⊕ C((n− 62)− i− 3) : 1 ≤ i ≤ ⌈(n− 62)/2⌉}
)

= C(n− 62),

which completes our induction.
Next, we study B(n). By definition,

B(n) = mex{G(PB
n (3)vi) : i = −1, 1, 2, . . . , n}.

Similar to the study of C(n), we have G(PB
n (3)v−1

) = B(n−2), and G(PB
n (3)vi) = C(i−4)⊕

B(n− i− 3) for 1 ≤ i ≤ n− 4. Again, it is convenient to extend the definition of PB
n (3) to

cases when −3 ≤ n ≤ 0 and determine the corresponding B(n) as follows.

n PB
n (3) B(n)

−3 ∅ 0
−2 ∅ 0
−1 1
0 1

In this way, we find the recursion

B(n) = mex
(

{B(n− 2)} ∪ {C(i− 4)⊕B(n− i− 3) : 1 ≤ i ≤ n}
)

(2)

for all n ∈ N. Again, we will prove that (B(n) : n ≥ 117) is periodic with period 62 by
strong induction.

With recursion (2), together with the initial conditions (B(−3), B(−2), B(−1), B(0)) =
(0, 0, 1, 1) and the sequence (C(n) : n ∈ N), we can compute the values of the sequence
(B(n) : 1 ≤ n ≤ 364), which is periodic with period 62 when 117 ≤ n ≤ 364. Assume that
for some n ≥ 365, B(i) = B(i− 62) for all 179 ≤ i < n. Then

B(n) = mex
(

{B(n− 2)} ∪ {C(i− 4)⊕ B(n− i− 3) : 1 ≤ i ≤ n− 182}

∪ {C(i− 4)⊕ B(n− i− 3) : n− 181 ≤ i ≤ n}
)

= mex
(

{B((n− 62)− 2)} ∪ {C(i− 4)⊕B((n− 62)− i− 3) : 1 ≤ i ≤ n− 182}

∪ {C(i− 4)⊕ B((n− 62)− i− 3) : n− 243 ≤ i ≤ n− 62}
)

= mex
(

{B((n− 62)− 2)} ∪ {C(i− 4)⊕B((n− 62)− i− 3) : 1 ≤ i ≤ n− 62}
)

= B(n− 62),

7



which completes our induction.
Finally, we study A(n). By definition,

A(n) = mex{G(Pn(3)vi) : i = 1, 2, . . . , n}.

By the symmetry of Pn(3), we have

A(n) = mex{G(Pn(3)vi) : i = 1, 2, . . . , ⌈n/2⌉}.

Similar to the study of B(n) and C(n), we have G(Pn(3)vi) = B(i − 4) ⊕ B(n − i − 3) for
1 ≤ i ≤ ⌈n/2⌉. Hence, we find the recursion

A(n) = mex
(

{B(i− 4)⊕B(n− i− 3) : 1 ≤ i ≤ ⌈n/2⌉}
)

(3)

for all n ∈ N. Once again, we will prove that (A(n) : n ≥ 116) is periodic with period 62 by
strong induction.

With recursion (3), together with the sequence (B(n) : n ∈ N), we can compute the values
of the sequence (A(n) : 1 ≤ n ≤ 424), which is periodic with period 62 when 116 ≤ n ≤ 424.
Assume that for some n ≥ 425, A(i) = A(i− 62) for all 178 ≤ i < n. Then

A(n) = mex
(

{B(i− 4)⊕B(n− i− 3) : 1 ≤ i ≤ ⌈n/2⌉ − 31}

∪ {B(i− 4)⊕ B(n− i− 3) : ⌈n/2⌉ − 30 ≤ i ≤ ⌈n/2⌉}
)

= mex
(

{B(i− 4)⊕B((n− 62)− i− 3) : 1 ≤ i ≤ ⌈(n− 62)/2⌉}

∪ {B(i− 4)⊕ B((n− 62)− i− 3) : ⌈n/2⌉ − 92 ≤ i ≤ ⌈n/2⌉ − 62}
)

= mex
(

{B(i− 4)⊕B((n− 62)− i− 3) : 1 ≤ i ≤ ⌈(n− 62)/2⌉}
)

= A(n− 62),

which completes our induction.

By computation, we further discover that the sequences (A(n) : n ≥ 50), (B(n) : n ≥ 51),
and (C(n) : n ≥ 52) are identical, and their repeating unit (A(n) : 116 ≤ n ≤ 177) is given
by

6, 4, 7, 5, 8, 4, 1, 1, 0, 2, 1, 3, 0, 2, 1, 3, 0, 1, 1, 3, 0, 2, 3, 3, 2, 2, 7, 4, 6, 5, 4,
4, 5, 5, 7, 9, 6, 3, 3, 2, 0, 3, 1, 1, 0, 3, 1, 2, 0, 3, 1, 2, 0, 1, 1, 4, 0, 5, 5, 4, 7, 5.

In particular, the maximum Nimber value is 9, occurring at A(151+62k) for all nonnegative
integers k. Also, when n ∈ N, A(n) = 0 if and only if

n ∈ {22, 58} or n ≡ 0, 4, 8, 12, 32, 36, 40, 44, or 48 (mod 62).

Unlike Node-Kayles on the powers of a path, Node-Kayles on a 3-path is not an octal
game. Nonetheless, the Nimber sequence (A(n) : n ∈ N) for 3-paths is almost identical to
that of the octal game ·124, listed on the OEIS as A071461 [7]. In fact, the two sequences are
different at only two positions, namely G(P21(3)) and G(P49(3)). Such level of resemblance
seems to indicate some deeper relationship hidden behind the two games.

It is worth noting that the recursions of the three different Nimber sequences, given by
equations (1), (2), and (3), are the key to the proof of periodicity of (A(n) : n ≥ 116).
Similar techniques are also employed in subsequent sections.
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3 Lattice graphs and prism graphs

Apart from the powers of paths, lattice graphs are another natural generalization of paths.
In this section, we study the Nimber sequences of some lattice graphs. Define an n×m lattice

Ln×m as the Cartesian product Pn�Pm with the vertex set {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and
the edge set {vi,jvi′,j′ : |i − i′| + |j − j′| = 1}. In particular, Ln×2 is a ladder graph with n
“rungs.”

To determine the Nimber sequence (G(Ln×2) : n ∈ N) of ladder graphs, we need to further
define three related families of graphs. The first variation, denoted by L−

n×2, is a ladder graph
Ln×2 with an additional vertex vn+1,2 and an additional edge vn,2vn+1,2; the second variation,
denoted by −L−

n×2, is the first variation L−
n×2 with an additional vertex v0,2 and an additional

edge v0,2v1,2; and the third variation, dented by −L
−
n×2, is the first variation L−

n×2 with an
additional vertex v0,1 and an additional edge v0,1v1,1. Figures 6 to 9 are examples of a ladder
graph, its first variation, second variation, and third variation, respectively.

v1,1

v1,2

v2,1

v2,2

v3,1

v3,2

v4,1

v4,2

v5,1

v5,2

v6,1

v6,2

v7,1

v7,2

v8,1

v8,2

Figure 6: The lattice graph L8×2

v1,1

v1,2

v2,1

v2,2

v3,1

v3,2

v4,1

v4,2

v5,1

v5,2

v6,1

v6,2

v7,1

v7,2

v8,1

v8,2 v9,2

Figure 7: The first variation of the lattice graph L−
8×2

v1,1

v1,2

v2,1

v2,2

v3,1

v3,2

v4,1

v4,2

v5,1

v5,2

v6,1

v6,2

v7,1

v7,2

v8,1

v8,2 v9,2v0,2

Figure 8: The second variation of the lattice graph −L−
8×2
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v1,1

v1,2

v2,1

v2,2

v3,1

v3,2

v4,1

v4,2

v5,1

v5,2

v6,1

v6,2

v7,1

v7,2

v8,1

v8,2 v9,2

v0,1

Figure 9: The third variation of the lattice graph −L
−
8×2

Theorem 2. The Nimber sequences (G(Ln×2) : n ∈ N), (G(L−
n×2) : n ∈ N), (G(−L−

n×2) : n ∈
N), and (G(−L

−
n×2) : n ∈ N) are given by the following:

G(Ln×2) =

{

1, if n is odd;

0, otherwise.

and

G(L−
n×2) = n+ 1, G(−L−

n×2) = 1, and G(−L
−
n×2) = 0

for all n ∈ N.

Proof. First, note that L1×2, L−
1×2, and −L

−
1×2 are isomorphic to paths P2, P3, and P4,

respectively, so G(L1×2) = G(P2) = 1, G(L−
1×2) = G(P3) = 2, and G(−L

−
1×2) = G(P4) = 0

from the Nimber sequence of the octal game ·137. We can also easily see that G(−L−
1×2) =

mex{1⊕ 1, 0} = mex{0, 0} = 1. Hence, the base cases for our strong induction are true.
Before we proceed with our induction proof, it is convenient to extend the definitions

of L−
n×2,

−L−
n×2, and −L

−
n×2 to cases when −1 ≤ n ≤ 0 and determine the corresponding

Nimbers as follows.

n L−
n×2 G(L−

n×2)
−L−

n×2 G(−L−
n×2) −L

−
n×2 G(−L

−
n×2)

−1 ∅ 0 = n+ 1 1 ∅ 0

0 1 = n+ 1 1 0

Now, we are ready to finish our proof by strong induction. Assume that for some integer
n ≥ 2,

G(L−
i×2) = i+ 1, G(−L−

i×2) = 1, and G(−L
−
i×2) = 0

for all integers −1 ≤ i < n. To find G(Ln×2), we exhaust all possible first moves in the
Node-Kayles game on Ln×2. For each 1 ≤ i ≤ n,

G((Ln×2)vi,1) = G((Ln×2)vi,2) = G(L−
(i−2)×2)⊕ G(L−

(n−i−1)×2) = (i− 1)⊕ (n− i).

Note that (i− 1)⊕ (n− i) = 0 if and only if i− 1 = n− i, which occurs precisely when n is
odd. Moreover, (i−1)⊕ (n− i) = 1 if and only if i−1 is even and n− i = (i−1)+1, or n− i
is even and i− 1 = (n− i) + 1, and either case occurs precisely when n is even. Therefore,
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if n is odd, then {G((Ln×2)v) : v ∈ V (Ln×2)} contains 0 but not 1, implying that G(Ln×2) =
mex{G((Ln×2)v) : v ∈ V (Ln×2)} = 1; if n is even, then {G((Ln×2)v) : v ∈ V (Ln×2)} does not
contain 0, implying that G(Ln×2) = mex{G((Ln×2)v) : v ∈ V (Ln×2)} = 0.

Similar to the proof technique above, we list out the Nimber of the Node-Kayles game
on the residue subgraph (L−

n×2)v for each vertex v in the following table.

Vertex v G((L−
n×2)v)

vi,1, where 1 ≤ i ≤ n G(L−
(i−2)×2)⊕ G(−L−

(n−i−1)×2) = (i− 1)⊕ 1

vi,2, where 1 ≤ i ≤ n G(L−
(i−2)×2)⊕ G(−L

−
(n−i−1)×2) = (i− 1)⊕ 0 = i− 1

vn+1,2 G(L−
(n−1)×2) = n

Note that for 1 ≤ i ≤ n, the quantity (i− 1)⊕ 1 = i− 2 if i is even and (i− 1)⊕ 1 = i if i
is odd. Therefore,

G(L−
n×2) = mex

(

{i− 2 : 1 ≤ i ≤ n and i is even} ∪ {i : 1 ≤ i ≤ n and i is odd}

∪ {i− 1 : 1 ≤ i ≤ n} ∪ {n}
)

= mex{0, 1, 2, . . . , n} = n+ 1.

To find G(−L−
n×2), we create the following table.

Vertex v G((−L−
n×2)v)

vi,1, where 1 ≤ i ≤ n G(−L−
(i−2)×2)⊕ G(−L−

(n−i−1)×2) = 1⊕ 1 = 0

vi,2, where 1 ≤ i ≤ n G(−L
−
(i−2)×2)⊕ G(−L

−
(n−i−1)×2) = 0⊕ 0 = 0

v0,2 or vn+1,2 G(−L
−
(n−1)×2) = 0

Therefore, G(−L−
n×2) = mex{0} = 1.

Finally, to find G(−L
−
n×2), we create the following table.

Vertex v G((−L
−
n×2)v)

vi,1, where 1 ≤ i ≤ n G(−L
−
(i−2)×2)⊕ G(−L−

(n−i−1)×2) = 0⊕ 1 = 1

vi,2, where 1 ≤ i ≤ n G(−L−
(i−2)×2)⊕ G(−L

−
(n−i−1)×2) = 1⊕ 0 = 1

v0,1 or vn+1,2 G(−L−
(n−1)×2) = 1

Therefore, G(−L
−
n×2) = mex{1} = 0, and this completes the induction.

An immediate application of the proof of Theorem 2 is the following corollary on prism
graphs. For any integer n ≥ 3, a prism of order n, denoted by Πn, is the Cartesian product
Cn�P2. It is essentially a circular ladder with the vertex set {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ 2}
and the edge set {vi,jvi′,j′ : |i− i′|+ |j − j′| = 1} ∪ {v1,1vn,1, v1,2vn,2}.

Corollary 3. The Nimber sequence (G(Πn) : n ≥ 3) is constantly 0.

Proof. After any move of the first player, the residue graph is always isomorphic to −L−
(n−3)×2.

From the proof of Theorem 2, G(−L−
(n−3)×2) = 1 for all integers n ≥ 3. Therefore, G(Πn) =

mex{G((Πn)v) : v ∈ V (Πn)} = mex{1} = 0.
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Similar to the proof of Theorem 1, the technique in the proof of Theorem 2 is to recursively
compute the Nimbers of residue graphs. This technique is efficient since most residue graphs
of 3-paths and ladder graphs are disconnected, and each connected component is always one
of the few variations of the original graphs. Unfortunately, many residue graphs of lattices
Ln×m are connected when n and m are greater than 2. As a result, this method is far too
tedious to be applied to larger lattice graphs. For example, to determine the Nimber of the
Node-Kayles game on L3×3, we need to first find that

G( ) = mex{G( ),G( ),G( ),G( ),G( ),G( )}

= mex{G(−L−
1×2),G(P2), 1⊕ 1⊕ 1, 1⊕ 1⊕ 1,G(P2),G(

−L−
1×2)}

= mex{1, 1, 1, 1, 1, 1} = 0,

before we find

G(L3×3) = mex{G( ),G( ),G( )}

= mex{0,G(P5), 1⊕ 1⊕ 1⊕ 1) = mex{0, 3, 0} = 1.

The complexity of this process drastically increases when we try to determine G(L5×3) with
this method. Hence, in order to study the Nimber sequence of the Node-Kayles game on
lattice graphs in general, we need to adopt another approach.

Recall from the introduction that the Nimber of an impartial game is 0 if and only if it is
second-player winning. The following theorem specifies graphs with a special property that
will guarantee a winning strategy for the second-player. This theorem also appears in the
work of Duchêne et. al. [3], but the proof is included here for completion.

Theorem 4. Let G be a simple graph. If there exists a graph involution ϕ on G such that

for all v ∈ V (G), ϕ(v) is neither v nor a neighbor of v in G, then G(G) = 0.

Proof. In the first player’s initial move, if the closed neighborhood NG[v] of a vertex v is
removed from G, then the strategy of the second player is to remove NG[ϕ(v)] from G. Note
that this move is legal since ϕ(v) cannot be removed by the first player, as ϕ(v) /∈ NG[v].

Denote the residue graph after the second player’s initial move as

H := G− (NG[v] ∪NG[ϕ(v)]).

Note that for every vertex u ∈ H, since u /∈ NG[v], ϕ(u) /∈ NG[ϕ(v)]. Also, since u /∈
NG[ϕ(v)], ϕ(u) /∈ NG[ϕ

2(v)] = NG[v]. Hence, ϕ(u) ∈ H, and ϕ|H is a well-defined graph
homomorphism. As a result, ϕ|H is a graph involution on H such that for all u ∈ V (H),
ϕ(u) is neither u nor a neighbor of u in G. Hence, we can inductively apply the strategy
described above.

We are going to apply Theorem 4 on some lattice graphs.
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Theorem 5. The Nimber G(Ln×m) is 0 if both n and m are even, and is positive if both n
and m are odd.

Proof. If both n and m are even, then let ϕ be a graph automorphism on Ln×m such that
ϕ(vi,j) = vn+1−i,m+1−j . Essentially, ϕ rotates the lattice graph by 180◦. It is easy to check
that ϕ is an involution that satisfies the condition in Theorem 4, so G(Ln×m) = 0.

If both n and m are odd, then let ϕ be a graph automorphism on (Ln×m)vn+1
2

,
m+1

2

such

that ϕ(vi,j) = vn+1−i,m+1−j. Once again, ϕ is an involution that satisfies the condition in
Theorem 4, so G((Ln×m)vn+1

2
,
m+1

2

) = 0. As a result, {G((Ln×m)v) : v ∈ V (Ln×m)} contains

0, and hence, G(Ln×m) = mex{G((Ln×m)v) : v ∈ V (Ln×m)} > 0.

The winning strategy given by the graph involution described in Theorem 4 is by no
means the only one. In particular, we find another winning strategy for the second player
on lattice graphs Ln×4 in the following theorem.

Theorem 6. For all positive integers n, G(Ln×4) = 0.

Proof. Define property (P ) of a graph as follows: for any 1 ≤ i ≤ n and 1 ≤ j ≤ 4, the
vertex vi,j is in the graph if and only if the vertex vi,j+2 is in the graph, where j + 2 is
performed under modulo 4.

At the beginning of the game, the lattice graph Ln×4 clearly satisfies property (P ). After
any move of the first player, if the closed neighborhood N(Ln×4)[vi,j ] of the vertex vi,j is
removed from Ln×4, then the strategy of the second player is to remove N(Ln×4)[vi,j+2], where
j+2 is performed under modulo 4. After the move of the second player, note that the residue
graph still satisfies property (P ). As a result, the second player can win the Node-Kayles
game by inductively applying the strategy described above.

Table 1 summarizes our results on the Nimbers G(Ln×m) for 1 ≤ n,m ≤ 10. Note that
the values in shaded cells are computed using Python. The computer code, together with
the first few terms in the sequence (G(Ln×3) : n ∈ N), are listed on the OEIS as A316632 [7].
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m
n

1 2 3 4 5 6 7 8 9 10

1 1 1 2 0 3 1 1 0 3 3
2 1 0 1 0 1 0 1 0 1 0
3 2 1 1 0 3 3 2 2 2 3
4 0 0 0 0 0 0 0 0 0 0
5 3 1 3 0 3 3 2 > 0
6 1 0 3 0 3 0 0 0
7 1 1 2 0 2 > 0 > 0
8 0 0 2 0 0 0 0
9 3 1 2 0 > 0 > 0 > 0
10 3 0 3 0 0 0 0

Table 1: Table of Nimbers G(Ln×m), where shaded cells are computed using Python

4 Chained and linked cliques

In this section, we consider infinite families of graphs constructed using cliques as building
blocks. An n-chained clique, denoted by CKn, is a graph with n cliques {Kij : 1 ≤ j ≤ n}
linked together such that

(a) V (Kij) ∩ V (Kij′
) 6= ∅ if and only if |j − j′| = 1, and

(b) V (Kij) \
(

⋃

j′ 6=j V (Kij′
)
)

6= ∅ if and only if j = 1 or n.

If condition (b) is replaced by

(c) V (Kij) \
(

⋃

j′ 6=j V (Kij′
)
)

6= ∅ for 1 ≤ j ≤ n,

then the resultant graph is called an n-linked clique, denoted by LKn. Note that in an
n-chained clique, conditions (a) and (b) imply that ij ≥ 2 for all 1 ≤ j ≤ n, while in an
n-linked clique, conditions (a) and (c) imply that ij ≥ 3 for all 2 ≤ j ≤ n− 1.

K4 K5
K8 K6

K5 K4
K2 K3

Figure 10: An 8-chained clique that chains up K4, K5, K8, K6, K5, K4, K2, K3
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K4 K5
K7 K7

K3 K4
K6 K3

Figure 11: An 8-linked clique that links up K4, K5, K7, K7, K3, K4, K6, K3

When we try to analyze the Node-Kayles game on the n-chained cliques, we discover that
the Nimber sequence is quite familiar to us. In fact, for any vertex v in V (Kij) ∩ V (Kij+1

),
1 ≤ j ≤ n − 1, the set of neighbors N(v) is exactly V (Kij) ∪ V (Kij+1

). Hence, collapsing
each of V (Ki1) \ V (Ki2), V (Kij)∩ V (Kij+1

) with 1 ≤ j ≤ n− 1, and V (Kin) \ V (Kin−1
) to a

single vertex yields a graph whose Node-Kayles game is equivalent to the original n-chained
clique. This resultant collapsed graph is precisely the path graph Pn+1, which implies that
G(CKn) = G(Pn+1) for all n ∈ N.

Figure 12: Transforming a CK8 to P9

As for LKn, note that for any vertex v in V (Kij) \
(

⋃

j′ 6=j V (Kij′
)
)

, where 1 ≤ j ≤ n,

the set of neighbors N(v) is V (Kij), and for any vertex u in V (Kij) ∩ V (Kij+1
), where

1 ≤ j ≤ n − 1, the set of neighbors N(u) is V (Kij) ∪ V (Kij+1
). Hence, collapsing each of

V (Kij) \
(

⋃

j′ 6=j V (Kij′
)
)

with 1 ≤ j ≤ n and V (Kij) ∩ V (Kij+1
) with 1 ≤ j ≤ n − 1 to a

single vertex yields a graph whose Node-Kayles game is equivalent to the original n-linked
clique. This resultant collapsed graph is an n-linked clique that links up n − 2 copies of
K3 with a copy of K2 on each end. To be precise, the vertex set of this resultant graph is
{v1, v2, . . . , vn, u1, u2, . . . , un−1}, and the edge set is {vjuj, ujvj+1 : 1 ≤ j ≤ n−1}∪{ujuj+1 :
1 ≤ j ≤ n− 2}. We call this graph a triangular path, denoted by Tn, despite each of the two
ends of the triangular path has a pendant vertex.
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v1 v2 v3 v4 v5 v6 v7 v8

u1 u2 u3 u4 u5 u6 u7

Figure 13: Transforming an LK8 to T8

To find G(Tn), we first extend the definition of Tn to include the case n = 0, where T0

is defined as the empty graph. Next, we exhaust all possible first moves in the Node-Kayles
game on Tn and obtain the following recursions.

{

G((Tn)vj) = G(Tj−1)⊕ G(Tn−j), for 1 ≤ j ≤ n;

G((Tn)uj
) = G(Tj−1)⊕ G(Tn−j−1), for 1 ≤ j ≤ n− 1.

(4)

Recursions (4) are identical to the recursion given by the game of Kayles, introduced in
Section 1, and both games are equivalent to an octal game ·77. The equivalence can be seen
by identifying Tn as a heap of n beans, where each vj is a bean. Removing exactly one bean
can be performed by removing N(Tn)[vj] from Tn in the Node-Kayles game, and such action
may completely remove the heap if n = j = 1, may reduce the size of the heap if n ≥ 2 and
j = 1 or n, and may split the heap into two smaller heaps if n ≥ 3 and 2 ≤ j ≤ n − 1; so
d1 = 7. Removing exactly two beans can be performed by removing N(Tn)[uj ] from Tn in the
Node-Kayles game, and such action may completely remove the heap if n = 2 and j = 2,
may reduce the size of the heap if n ≥ 3 and j = 1 or n − 1, and may split the heap into
two smaller heaps if n ≥ 4 and 2 ≤ j ≤ n− 2; so d2 = 7. Finally, it is easy to see that it is
impossible to remove three or more beans in one move.

In conclusion, the Nimber sequence (G(LKn) : n ∈ N) = (G(Tn) : n ∈ N) is given by the
OEIS sequence A002186 [7].

5 Linked cycles and linked diamonds

In the previous section, we constructed the triangular path Tn (see Figure 13). Clearly, for
the purpose of studying the Node-Kayles game, replacing the pendant edge on each end of
Tn by a triangle does not change the game. Triangles, in the previous section, were treated
as complete graphs, but we can also think of them as cycles. In this section, we consider
infinite families of graphs constructed using cycles of the same length as building blocks. An
(ℓ, n)-linked k-cycle, denoted by (Ck)ℓ,n, is a graph with n copies of Ck linked together at
vertices ui, 1 ≤ i ≤ n − 1, such that the distance between ui and ui+1 is ℓ. To be precise,

16

https://oeis.org/A002186


to form an (ℓ, n)-linked k-cycle (Ck)ℓ,n, we begin with a collection of n copies of k-cycles
{vi,0vi,1vi,2 · · · vi,k−1vi,0 : 1 ≤ i ≤ n}, and we identify vertices such that vi,ℓ = vi+1,0 = ui for
all 1 ≤ i ≤ n− 1. The vertex vn,ℓ will also be called vn+1,0.

v1,0 v1,1

v1,2v1,3

v2,0 v2,1

v2,2v2,3

v3,0 v3,1

v3,2v3,3

v4,0 v4,1

v4,2v4,3

v5,0 v5,1

v5,2v5,3

v1,0

v1,1 = v2,0

v1,2v1,3

v2,1 = v3,0

v2,2v2,3

v3,1 = v4,0

v3,2v3,3

v4,1 = v5,0

v4,2v4,3

v5,1 = v6,0

v5,2v5,3
v1,3

v1,1

v2,3

v2,1

v3,3

v3,1

v4,3

v4,1

v5,3

v5,1

v1,0 v1,2 = v2,0
v2,2 = v3,0

v3,2 = v4,0
v4,2 = v5,0

v5,2 = v6,0

Figure 14: Linking 5 copies of C4 (top) as (C4)1,5 (bottom left) or (C4)2,5 (bottom right)

In this section, we completely determine the Nimber sequences (G((C4)2,n) : n ∈ N) and
(G((C5)2,n) : n ∈ N). We will also study the recursion of the Nimber sequence (G((C4)1,n) :
n ∈ N); however, this recursion does not give us a closed form, which is mildly surprising.

To determine the Nimber sequence (G((C4)2,n) : n ∈ N), we need to further define two
related families of graphs. The first variation, denoted by (C4)

<
2,n, is a (2, n)-linked 4-cycle

with additional vertices vn+1,1 and vn+1,3 and additional edges vn,2vn+1,1 and vn,2vn+1,3; the
second variation, denoted by >(C4)

<
2,n, is the first variation (C4)

<
2,n with additional vertices

v0,1 and v0,3 and additional edges v0,1v1,0 and v0,3v1,0. Figures 15 and 16 are examples of the
first and second variations of a (2, n)-linked 4-cycle, respectively.

v1,3

v1,1

v2,3

v2,1

v3,3

v3,1

v4,3

v4,1

v5,3

v5,1

v6,3

v6,1

v7,3

v7,1

v1,0 v1,2 = v2,0
v2,2 = v3,0

v3,2 = v4,0
v4,2 = v5,0

v5,2 = v6,0
v6,2 = v7,0

Figure 15: The first variation of the (2, 6)-linked 4-cycle (C4)
<
2,6
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v0,3

v0,1

v1,3

v1,1

v2,3

v2,1

v3,3

v3,1

v4,3

v4,1

v5,3

v5,1

v6,3

v6,1

v7,3

v7,1

v1,0 v1,2 = v2,0
v2,2 = v3,0

v3,2 = v4,0
v4,2 = v5,0

v5,2 = v6,0
v6,2 = v7,0

Figure 16: The second variation of the (2, 6)-linked 4-cycle >(C4)
<
2,6

Theorem 7. The Nimber sequences (G((C4)2,n) : n ∈ N), (G((C4)
<
2,n) : n ∈ N), and

(G(>(C4)
<
2,n) : n ∈ N) are given by the following:

G((C4)2,n) =

{

0, if n is odd;

1, otherwise

and

G((C4)
<
2,n) = G(>(C4)

<
2,n) =

{

0, if n is odd;

2, otherwise.

Proof. First, note that (C4)2,1 is isomorphic to the lattice graph L2×2, so G((C4)2,1) =
G(L2×2) = 0 by Theorem 2. We can also easily see that

G((C4)
<
2,1) = G( ) = mex{G( ),G( ),G( ),G( )}

= mex{G(P3), 1⊕ 1⊕ 1, 1,G(P3)⊕ 1}

= mex{2, 1, 1, 3} = 0,

and

G(>(C4)
<
2,1) = G( ) = mex{G( ),G( ),G( )}

= mex{1⊕mex{G( ),G(∅)},G(P3), 1⊕ 1⊕ 1⊕ 1⊕ 1}

= mex{1⊕ 2, 2, 1} = 0.

Hence, the base cases for our strong induction are true.
Before we proceed with our induction proof, it is convenient to extend the definitions of

(C4)2,n, (C4)
<
2,n, and

>(C4)
<
2,n to the cases when −1 ≤ n ≤ 0 and determine the corresponding

Nimbers as follows.
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n (C4)2,n G((C4)2,n) (C4)
<
2,n G((C4)

<
2,n)

>(C4)
<
2,n G(>(C4)

<
2,n)

−1 ∅ 0 ∅ 0 0

0 1 2 2

Now, we are ready to finish our proof by strong induction. Assume that for some integer
n ≥ 2,

G((C4)2,i) =

{

0, if n is odd;

1, otherwise

and

G((C4)
<
2,i) = G(>(C4)

<
2,i) =

{

0, if n is odd;

2, otherwise

for all integers −1 ≤ i < n. To find G((C4)2,n), we exhaust all possible first moves in the
Node-Kayles game on (C4)2,n. For each 1 ≤ i ≤ n+ 1,

G(((C4)2,n)vi,0) = G((C4)2,i−2)⊕ G((C4)2,n−i)

=

{

0⊕ 1 or 1⊕ 0, if n is odd;

0⊕ 0 or 1⊕ 1, otherwise

=

{

1, if n is odd;

0, otherwise,

and for 1 ≤ i ≤ n,

G(((C4)2,n)vi,1) = G(((C4)2,n)vi,3) = G((C4)
<
2,i−2)⊕ 1⊕ G((C4)

<
2,n−i−1)

=

{

0⊕ 1⊕ 0 or 2⊕ 1⊕ 2, if n is odd;

0⊕ 1⊕ 2 or 2⊕ 1⊕ 0, otherwise

=

{

1, if n is odd;

3, otherwise.

Therefore,

G((C4)2,n) =

{

mex{1, 1}, if n is odd;

mex{0, 3}, otherwise
=

{

0, if n is odd;

1, otherwise.

To find G((C4)
<
2,n), we exhaust all possible first moves in the Node-Kayles game on (C4)

<
2,n.
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For each 1 ≤ i ≤ n+ 1,

G(((C4)
<
2,n)vi,0) = G((C4)2,i−2)⊕ G((C4)

<
2,n−i)

=

{

0⊕ 2 or 1⊕ 0, if n is odd;

0⊕ 0 or 1⊕ 2, otherwise

=

{

2 or 1, if n is odd;

0 or 3, otherwise,

for 1 ≤ i ≤ n,

G(((C4)
<
2,n)vi,1) = G(((C4)

<
2,n)vi,3) = G((C4)

<
2,i−2)⊕ 1⊕ G(>(C4)

<
2,n−i−1)

=

{

0⊕ 1⊕ 0 or 2⊕ 1⊕ 2, if n is odd;

0⊕ 1⊕ 2 or 2⊕ 1⊕ 0, otherwise

=

{

1, if n is odd;

3, otherwise,

and for i = n+ 1,

G(((C4)
<
2,n)vn+1,1

) = G(((C4)
<
2,n)vn+1,3

) = G((C4)
<
2,n−1)⊕ 1

=

{

2⊕ 1, if n is odd;

0⊕ 1, otherwise

=

{

3, if n is odd;

1, otherwise.

Therefore,

G((C4)
<
2,n) =

{

mex{2, 1, 1, 3}, if n is odd;

mex{0, 3, 3, 1}, otherwise
=

{

0, if n is odd;

2, otherwise.

To find G(>(C4)
<
2,n), we exhaust all possible first moves in the Node-Kayles game on

>(C4)
<
2,n. For each 1 ≤ i ≤ n+ 1,

G((>(C4)
<
2,n)vi,0) = G((C4)

<
2,i−2)⊕ G((C4)

<
2,n−i)

=

{

0⊕ 2 or 2⊕ 0, if n is odd;

0⊕ 0 or 2⊕ 2, otherwise

=

{

2, if n is odd;

0, otherwise,
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for 1 ≤ i ≤ n,

G((>(C4)
<
2,n)vi,1) = G((>(C4)

<
2,n)vi,3) = G(>(C4)

<
2,i−2)⊕ 1⊕ G(>(C4)

<
2,n−i−1)

=

{

0⊕ 1⊕ 0 or 2⊕ 1⊕ 2, if n is odd;

0⊕ 1⊕ 2 or 2⊕ 1⊕ 0, otherwise

=

{

1, if n is odd;

3, otherwise,

and for i = 0 or n+ 1,

G((>(C4)
<
2,n)vi,1) = G((>(C4)

<
2,n)vi,3) = G(>(C4)

<
2,n−1)⊕ 1

=

{

2⊕ 1, if n is odd;

0⊕ 1, otherwise

=

{

3, if n is odd;

1, otherwise.

Therefore,

G(>(C4)
<
2,n) =

{

mex{2, 1, 3}, if n is odd;

mex{0, 3, 1}, otherwise
=

{

0, if n is odd;

2, otherwise.

To determine the Nimber sequence (G((C5)2,n) : n ∈ N), we need to further define five
related families of graphs. The first variation, denoted by (C5)

−
2,n, is a (2, n)-linked 5-cycle

with an additional vertex vn+1,1 and an additional edge vn,2vn+1,1; the second variation,
denoted by (C5)

❁

2,n, is the first variation (C5)
−
2,n with additional vertices vn+1,3 and vn+1,4

and an additional path vn,2vn+1,4vn+1,3; the third variation, denoted by −(C5)
−
2,n, is the first

variation (C5)
−
2,n with an additional vertex v0,1 and an additional edge v0,1v1,0; the fourth

variation, denoted by −(C5)
❁

2,n, is the second variation (C5)
❁

2,n with an additional vertex v0,1
and an additional edge v0,1v1,0; the fifth variation, denoted by ❂(C5)

❁

2,n, is the fourth variation
−(C5)

❁

2,n with additional vertices v0,3 and v0,4 and an additional path v0,4v0,3v1,0. Figures 17
to 22 are examples of a (2, n)-linked 5-cycle and its first to fifth variations, respectively.

v1,1

v1,3v1,4

v2,1

v2,3v2,4

v3,1

v3,3v3,4

v4,1

v4,3v4,4

v5,1

v5,3v5,4

v6,1

v6,3v6,4

v1,2 = v2,0 v2,2 = v3,0 v3,2 = v4,0 v4,2 = v5,0 v5,2 = v6,0 v6,2 = v7,0v1,0

Figure 17: The (2, 6)-linked 5-cycle (C5)2,6
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v1,1

v1,3v1,4

v2,1

v2,3v2,4

v3,1

v3,3v3,4

v4,1

v4,3v4,4

v5,1

v5,3v5,4

v6,1

v6,3v6,4

v1,2 = v2,0 v2,2 = v3,0 v3,2 = v4,0 v4,2 = v5,0 v5,2 = v6,0 v6,2 = v7,0v1,0

v7,1

Figure 18: The first variation of the (2, 6)-linked 5-cycle (C5)
−
2,6

v1,1

v1,3v1,4

v2,1

v2,3v2,4

v3,1

v3,3v3,4

v4,1

v4,3v4,4

v5,1

v5,3v5,4

v6,1

v6,3v6,4

v1,2 = v2,0 v2,2 = v3,0 v3,2 = v4,0 v4,2 = v5,0 v5,2 = v6,0 v6,2 = v7,0v1,0

v7,1

v7,3v7,4

Figure 19: The second variation of the (2, 6)-linked 5-cycle (C5)
❁

2,6

v1,1

v1,3v1,4

v2,1

v2,3v2,4

v3,1

v3,3v3,4

v4,1

v4,3v4,4

v5,1

v5,3v5,4

v6,1

v6,3v6,4

v1,2 = v2,0 v2,2 = v3,0 v3,2 = v4,0 v4,2 = v5,0 v5,2 = v6,0 v6,2 = v7,0v1,0

v7,1v0,1

Figure 20: The third variation of the (2, 6)-linked 5-cycle −(C5)
−
2,6

v1,1

v1,3v1,4

v2,1

v2,3v2,4

v3,1

v3,3v3,4

v4,1

v4,3v4,4

v5,1

v5,3v5,4

v6,1

v6,3v6,4

v1,2 = v2,0 v2,2 = v3,0 v3,2 = v4,0 v4,2 = v5,0 v5,2 = v6,0 v6,2 = v7,0v1,0

v7,1

v7,3v7,4

v0,1

Figure 21: The fourth variation of the (2, 6)-linked 5-cycle −(C5)
❁

2,6
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v1,1

v1,3v1,4

v2,1

v2,3v2,4

v3,1

v3,3v3,4

v4,1

v4,3v4,4

v5,1

v5,3v5,4

v6,1

v6,3v6,4

v1,2 = v2,0 v2,2 = v3,0 v3,2 = v4,0 v4,2 = v5,0 v5,2 = v6,0 v6,2 = v7,0v1,0

v7,1

v7,3v7,4

v0,1

v0,4 v0,3

Figure 22: The fifth variation of the (2, 6)-linked 5-cycle ❂(C5)
❁

2,6

Theorem 8. The Nimber sequences (G((C5)2,n) : n ∈ N), (G((C5)
−
2,n) : n ∈ N), (G((C5)

❁

2,n) :
n ∈ N), (G(−(C5)

−
2,n) : n ∈ N), (G(−(C5)

❁

2,n) : n ∈ N), and (G(❂(C5)
❁

2,n) : n ∈ N) are given by

the following:

G((C5)2,n) = G(−(C5)
−
2,n) = G(❂(C5)

❁

2,n) =

{

0, if n is odd;

2, otherwise,

G((C5)
−
2,n) =

{

3, if n is odd;

1, otherwise,
G((C5)

❁

2,n) =

{

2, if n is odd;

0, otherwise,

and G(−(C5)
❁

2,n) =

{

1, if n is odd;

3, otherwise.

Proof. First, we are going to prove the base cases for our strong induction.

G((C5)2,1) = G( ) = mex{G( )} = mex{G(P2)} = mex{1} = 0.

G((C5)
−
2,1) = G( ) = mex{G( ),G( ),G( ),G( )}

= mex{G(P3),G(P2)⊕ 1,G(P2),G(P4)}

= mex{2, 1⊕ 1, 1, 0} = 3.

G((C5)
❁

2,1) = G( )

= mex{G( ),G( ),G( ),G( ),G( ),G( )}

= mex{mex{G( ),G( ),G( ),G( )},G(P2)⊕ G(P2)⊕ 1,

G(P2)⊕ 1,G(P4)⊕ G(P2),G(P4)⊕ 1,G((C5)
−
2,1)}

= mex{mex{0, 1, 0, 2}, 1⊕ 1⊕ 1, 1⊕ 1, 0⊕ 1, 0⊕ 1, 3} = 2.
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G(−(C5)
−
2,1) = G( ) = mex{G( ),G( ),G( ),G( )}

= mex{3,G(P3), 1⊕ G(P2)⊕ 1, 1⊕ G(P3)}

= mex{3, 2, 1⊕ 1⊕ 1, 1⊕ 2} = 0.

G(−(C5)
❁

2,1) = G( )

= mex{G( ),G( ),G( ),G( ),G( ),

G( ),G( ),G( ),G( )}

= mex{mex{G( ),G( ),G( ),G( )}, 3,

1⊕ G(P2)⊕ G(P2)⊕ 1,G(P3)⊕ 1,G(P3)⊕ G(P2)⊕ 1, 1⊕ 3, 3⊕ G(P2),

3⊕ 1,G(−(C5)
−
2,1)}

= mex{mex{1, 0, 1, 3}, 3, 1⊕ 1⊕ 1⊕ 1, 2⊕ 1, 2⊕ 1⊕ 1, 2, 3⊕ 1, 2, 0} = 1.

G(❂(C5)
❁

2,1) = G( )

= mex{G( ),G( ),G( ),G( ),G( ),

G( )}

= mex{G(P2)⊕ 2, 1⊕ 3, 1⊕ 2,G(−(C5)
❁

2,1), 1⊕ G(P2)⊕ G(P2)⊕ G(P2)⊕ 1,

1⊕ G(P2)⊕ 3}

= mex{3, 2, 3, 1, 1, 3} = 0.

Before we proceed with our induction proof, it is convenient to extend the definitions of
(C5)

−
2,n, (C5)

❁

2,n, and
−(C5)

−
2,n to the case when n = 0, as well as the definitions of −(C5)

❁

2,n

and ❂(C5)
❁

2,n to the cases when −1 ≤ n ≤ 0 and determine the corresponding Nimbers as
follows.

n (C5)
−
2,n G((C5)

−
2,n) (C5)

❁

2,n G((C5)
❁

2,n)
−(C5)

−
2,n G(−(C5)

−
2,n)

0 1 0 2
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n −(C5)
❁

2,n G(−(C5)
❁

2,n)
❂(C5)

❁

2,n G(❂(C5)
❁

2,n)

−1 1 0

0 3 2

Now, we are ready to finish our proof by strong induction. Assume that for some integer
n ≥ 2,

G((C5)2,i) =

{

0, if i is odd;

2, otherwise

for all integers 1 ≤ i < n,

G((C5)
−
2,i) =

{

3, if i is odd;

1, otherwise,
G((C5)

❁

2,i) =

{

2, if i is odd;

0, otherwise,

and G(−(C5)
−
2,i) =

{

0, if i is odd;

2, otherwise,

for all integers 0 ≤ i < n, and

G(−(C5)
❁

2,i) =

{

1, if i is odd;

3, otherwise
and G(❂(C5)

❁

2,i) =

{

0, if i is odd;

2, otherwise

for all integers −1 ≤ i < n. To find G((C5)2,n), we exhaust all possible first moves in the
Node-Kayles game on (C5)2,n. For each 2 ≤ i ≤ n,

G(((C5)2,n)vi,0) = G((C5)
−
2,i−2)⊕ G((C5)

−
2,n−i)

=

{

3⊕ 1 or 1⊕ 3, if n is odd;

3⊕ 3 or 1⊕ 1, otherwise

=

{

2, if n is odd;

0, otherwise,

for 2 ≤ i ≤ n− 1,

G(((C5)2,n)vi,1) = G((C5)
❁

2,i−2)⊕ G(P2)⊕ G((C5)
❁

2,n−i−1)

=

{

2⊕ 1⊕ 2 or 0⊕ 1⊕ 0, if n is odd;

2⊕ 1⊕ 0 or 0⊕ 1⊕ 2, otherwise

=

{

1, if n is odd;

3, otherwise
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and

G(((C5)2,n)vi,3) = G(((C5)2,n)vn−i+1,4
) = G((C5)

−
2,i−1)⊕ G((C5)

❁

2,n−i−1)

=

{

3⊕ 0 or 1⊕ 2, if n is odd;

3⊕ 2 or 1⊕ 0, otherwise

=

{

3, if n is odd;

1, otherwise,

and for i = 1 or n,

G(((C5)2,n)v1,0) = G(((C5)2,n)v1,4) = G(((C5)2,n)vn,2
) = G(((C5)2,n)vn,3

)

= G((C5)
−
2,n−1)

=

{

1, if n is odd;

3, otherwise

and

G(((C5)2,n)v1,1) = G(((C5)2,n)v1,3) = G(((C5)2,n)vn,1
) = G(((C5)2,n)vn,4

)

= G(P2)⊕ G((C5)
❁

2,n−2)

=

{

1⊕ 2, if n is odd;

1⊕ 0, otherwise

=

{

3, if n is odd;

1, otherwise.

Therefore,

G((C5)2,n) =

{

mex{2, 1, 3, 1, 3}, if n is odd;

mex{0, 3, 1, 3, 1}, otherwise
=

{

0, if n is odd;

2, otherwise.

To find G((C5)
−
2,n), we exhaust all possible first moves in the Node-Kayles game on (C5)

−
2,n.

For each 2 ≤ i ≤ n,

G(((C5)
−
2,n)vi,0) = G((C5)

−
2,i−2)⊕ G(−(C5)

−
2,n−i)

=

{

3⊕ 2 or 1⊕ 0, if n is odd;

3⊕ 0 or 1⊕ 2, otherwise

=

{

1, if n is odd;

3, otherwise,
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G(((C5)
−
2,n)vi,1) = G((C5)

❁

2,i−2)⊕ G(P2)⊕ G(−(C5)
❁

2,n−i−1)

=

{

2⊕ 1⊕ 1 or 0⊕ 1⊕ 3, if n is odd;

2⊕ 1⊕ 3 or 0⊕ 1⊕ 1, otherwise

=

{

2, if n is odd;

0, otherwise,

G(((C5)
−
2,n)vi,3) = G((C5)

−
2,i−1)⊕ G(−(C5)

❁

2,n−i−1)

=

{

3⊕ 3 or 1⊕ 1, if n is odd;

3⊕ 1 or 1⊕ 3, otherwise

=

{

0, if n is odd;

2, otherwise,

and

G(((C5)
−
2,n)vi,4) = G((C5)

❁

2,i−2)⊕ G(−(C5)
−
2,n−i)

=

{

2⊕ 2 or 0⊕ 0, if n is odd;

2⊕ 0 or 0⊕ 2, otherwise

=

{

0, if n is odd;

2, otherwise,

for i = 1,

G(((C5)
−
2,n)v1,0) = G(((C5)

−
2,n)v1,4) = G(−(C5)

−
2,n−1) =

{

2, if n is odd;

0, otherwise

and

G(((C5)
−
2,n)v1,1) = G(((C5)

−
2,n)v1,3) = G(P2)⊕ G(−(C5)

❁

2,n−2)

=

{

1⊕ 1, if n is odd;

1⊕ 3, otherwise

=

{

0, if n is odd;

2, otherwise,

and for i = n+ 1,

G(((C5)
−
2,n)vn+1,0

) = G((C5)
−
2,n−1) =

{

1, if n is odd;

3, otherwise
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and

G(((C5)
−
2,n)vn+1,1

) = G((C5)
❁

2,n−1) =

{

0, if n is odd;

2, otherwise.

Therefore,

G((C5)
−
2,n) =

{

mex{1, 2, 0, 0, 2, 0, 1, 0}, if n is odd;

mex{3, 0, 2, 2, 0, 2, 3, 2}, otherwise
=

{

3, if n is odd;

1, otherwise.

To find G((C5)
❁

2,n), we exhaust all possible first moves in the Node-Kayles game on (C5)
❁

2,n.
For each 2 ≤ i ≤ n+ 1,

G(((C5)
❁

2,n)vi,0) = G((C5)
−
2,i−2)⊕ G(−(C5)

❁

2,n−i)

=

{

3⊕ 3 or 1⊕ 1, if n is odd;

3⊕ 1 or 1⊕ 3, otherwise

=

{

0, if n is odd;

2, otherwise,

for 2 ≤ i ≤ n,

G(((C5)
❁

2,n)vi,1) = G((C5)
❁

2,i−2)⊕ G(P2)⊕ G(❂(C5)
❁

2,n−i−1)

=

{

2⊕ 1⊕ 0 or 0⊕ 1⊕ 2, if n is odd;

2⊕ 1⊕ 2 or 0⊕ 1⊕ 0, otherwise

=

{

3, if n is odd;

1, otherwise,

G(((C5)
❁

2,n)vi,3) = G((C5)
−
2,i−1)⊕ G(❂(C5)

❁

2,n−i−1)

=

{

3⊕ 2 or 1⊕ 0, if n is odd;

3⊕ 0 or 1⊕ 2, otherwise

=

{

1, if n is odd;

3, otherwise,

and

G(((C5)
❁

2,n)vi,4) = G((C5)
❁

2,i−2)⊕ G(−(C5)
❁

2,n−i)

=

{

2⊕ 3 or 0⊕ 1, if n is odd;

2⊕ 1 or 0⊕ 3, otherwise

=

{

1, if n is odd;

3, otherwise,
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for i = 1,

G(((C5)
❁

2,n)v1,0) = G(((C5)
❁

2,n)v1,4) = G(−(C5)
❁

2,n−1) =

{

3, if n is odd;

1, otherwise

and

G(((C5)
❁

2,n)v1,1) = G(((C5)
❁

2,n)v1,3) = G(P2)⊕ G(❂(C5)
❁

2,n−2)

=

{

1⊕ 0, if n is odd;

1⊕ 2, otherwise

=

{

1, if n is odd;

3, otherwise,

and for i = n+ 1,

G(((C5)
❁

2,n)vn+1,1
) = G((C5)

❁

2,n−1)⊕ G(P2)

=

{

0⊕ 1, if n is odd;

2⊕ 1, otherwise

=

{

1, if n is odd;

3, otherwise,

G(((C5)
❁

2,n)vn+1,3
) = G((C5)

−
2,n) =

{

3, if n is odd;

1, otherwise,

and

G(((C5)
❁

2,n)vn+1,4
) = G((C5)

❁

2,n−1)⊕ 1

=

{

0⊕ 1, if n is odd;

2⊕ 1, otherwise

=

{

1, if n is odd;

3, otherwise.

Therefore,

G((C5)
❁

2,n) =

{

mex{0, 3, 1, 1, 3, 1, 1, 3, 1}, if n is odd;

mex{2, 1, 3, 3, 1, 3, 3, 1, 3}, otherwise
=

{

2, if n is odd;

0, otherwise.
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To find G(−(C5)
−
2,n), we exhaust all possible first moves in the Node-Kayles game on

−(C5)
−
2,n. For each 2 ≤ i ≤ n,

G((−(C5)
−
2,n)vi,0) = G(−(C5)

−
2,i−2)⊕ G(−(C5)

−
2,n−i)

=

{

0⊕ 2 or 2⊕ 0, if n is odd;

0⊕ 0 or 2⊕ 2, otherwise

=

{

2, if n is odd;

0, otherwise,

for 1 ≤ i ≤ n,

G((−(C5)
−
2,n)vi,1) = G(−(C5)

❁

2,i−2)⊕ G(P2)⊕ G(−(C5)
❁

2,n−i−1)

=

{

1⊕ 1⊕ 1 or 3⊕ 1⊕ 3, if n is odd;

1⊕ 1⊕ 3 or 3⊕ 1⊕ 1, otherwise

=

{

1, if n is odd;

3, otherwise

and

G((−(C5)
−
2,n)vi,3) = G((−(C5)

−
2,n)vn−i+1,4

) = G(−(C5)
−
2,i−1)⊕ G(−(C5)

❁

2,n−i−1)

=

{

0⊕ 3 or 2⊕ 1, if n is odd;

0⊕ 1 or 2⊕ 3, otherwise

=

{

3, if n is odd;

1, otherwise,

for i = 1 or n+ 1,

G((−(C5)
−
2,n)vi,0) = G(−(C5)

−
2,n−1) =

{

2, if n is odd;

0, otherwise

and for i = 0 or n+ 1,

G((−(C5)
−
2,n)vi,1) = G(−(C5)

❁

2,n−1) =

{

3, if n is odd;

1, otherwise.

Therefore,

G(−(C5)
−
2,n) =

{

mex{2, 1, 3, 3, 2, 3}, if n is odd;

mex{0, 3, 1, 1, 0, 1}, otherwise
=

{

0, if n is odd;

2, otherwise.
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To find G(−(C5)
❁

2,n), we exhaust all possible first moves in the Node-Kayles game on
−(C5)

❁

2,n. For each 2 ≤ i ≤ n+ 1,

G((−(C5)
❁

2,n)vi,0) = G(−(C5)
−
2,i−2)⊕ G(−(C5)

❁

2,n−i)

=

{

0⊕ 3 or 2⊕ 1, if n is odd;

0⊕ 1 or 2⊕ 3, otherwise

=

{

3, if n is odd;

1, otherwise,

for 1 ≤ i ≤ n,

G((−(C5)
❁

2,n)vi,1) = G(−(C5)
❁

2,i−2)⊕ G(P2)⊕ G(❂(C5)
❁

2,n−i−1)

=

{

1⊕ 1⊕ 0 or 3⊕ 1⊕ 2, if n is odd;

1⊕ 1⊕ 2 or 3⊕ 1⊕ 0, otherwise

=

{

0, if n is odd;

2, otherwise,

G((−(C5)
❁

2,n)vi,3) = G(−(C5)
−
2,i−1)⊕ G(❂(C5)

❁

2,n−i−1)

=

{

0⊕ 2 or 2⊕ 0, if n is odd;

0⊕ 0 or 2⊕ 2, otherwise

=

{

2, if n is odd;

0, otherwise,

and

G((−(C5)
❁

2,n)vi,4) = G(−(C5)
❁

2,i−2)⊕ G(−(C5)
❁

2,n−i)

=

{

1⊕ 3 or 3⊕ 1, if n is odd;

1⊕ 1 or 3⊕ 3, otherwise

=

{

2, if n is odd;

0, otherwise,

for i = 1,

G((−(C5)
❁

2,n)v1,0) = G(−(C5)
❁

2,n−1) =

{

3, if n is odd;

1, otherwise,

for i = 0,

G((−(C5)
❁

2,n)v0,1) = G(❂(C5)
❁

2,n−1) =

{

2, if n is odd;

0, otherwise,
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and for i = n+ 1,

G((−(C5)
❁

2,n)vn+1,1
) = G(−(C5)

❁

2,n−1)⊕ G(P2)

=

{

3⊕ 1, if n is odd;

1⊕ 1, otherwise

=

{

2, if n is odd;

0, otherwise,

G((−(C5)
❁

2,n)vn+1,3
) = G(−(C5)

−
2,n) =

{

0, if n is odd;

2, otherwise,

and

G((−(C5)
❁

2,n)vn+1,4
) = G(−(C5)

❁

2,n−1)⊕ 1

=

{

3⊕ 1, if n is odd;

1⊕ 1, otherwise

=

{

2, if n is odd;

0, otherwise.

Therefore,

G(−(C5)
❁

2,n) =

{

mex{3, 0, 2, 2, 3, 2, 2, 0, 2}, if n is odd;

mex{1, 2, 0, 0, 1, 0, 0, 2, 0}, otherwise
=

{

1, if n is odd;

3, otherwise.

To find G(❂(C5)
❁

2,n), we exhaust all possible first moves in the Node-Kayles game on
❂(C5)

❁

2,n. For each 1 ≤ i ≤ n+ 1,

G((❂(C5)
❁

2,n)vi,0) = G(−(C5)
❁

2,i−2)⊕ G(−(C5)
❁

2,n−i)

=

{

1⊕ 3 or 3⊕ 1, if n is odd;

1⊕ 1 or 3⊕ 3, otherwise

=

{

2, if n is odd;

0, otherwise,

for 1 ≤ i ≤ n,

G((❂(C5)
❁

2,n)vi,1) = G(❂(C5)
❁

2,i−2)⊕ G(P2)⊕ G(❂(C5)
❁

2,n−i−1)

=

{

0⊕ 1⊕ 0 or 2⊕ 1⊕ 2, if n is odd;

0⊕ 1⊕ 2 or 2⊕ 1⊕ 0, otherwise

=

{

1, if n is odd;

3, otherwise
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and

G((❂(C5)
❁

2,n)vi,3) = G((❂(C5)
❁

2,n)vn−i+1,4
) = G(−(C5)

❁

2,i−1)⊕ G(❂(C5)
❁

2,n−i−1)

=

{

1⊕ 2 or 3⊕ 0, if n is odd;

1⊕ 0 or 3⊕ 2, otherwise

=

{

3, if n is odd;

1, otherwise,

for i = 0 or n+ 1,

G((❂(C5)
❁

2,n)vi,1) = G(P2)⊕ G(❂(C5)
❁

2,n−1)

=

{

1⊕ 2, if n is odd;

1⊕ 0, otherwise,

=

{

3, if n is odd;

1, otherwise,

G((❂(C5)
❁

2,n)v0,3) = G((❂(C5)
❁

2,n)vn+1,4
) = 1⊕ G(❂(C5)

❁

2,n−1)

=

{

1⊕ 2, if n is odd;

1⊕ 0, otherwise,

=

{

3, if n is odd;

1, otherwise,

and

G((❂(C5)
❁

2,n)v0,4) = G((❂(C5)
❁

2,n)vn+1,3
) = G(−(C5)

❁

2,n) =

{

1, if n is odd;

3, otherwise.

Therefore,

G(❂(C5)
❁

2,n) =

{

mex{2, 1, 3, 3, 3, 1}, if n is odd;

mex{0, 3, 1, 1, 1, 3}, otherwise
=

{

0, if n is odd;

2, otherwise.

To study the Nimber sequence (G((C4)1,n) : n ∈ N), we need to further define two
related families of graphs. The first variation, denoted by (C4)

∨
1,n, is a (1, n)-linked 4-cycle

with additional vertices vn+1,2 and vn+1,3 and an additional path vn,1vn+1,3vn+1,2; the second
variation, denoted by ∨(C4)

∨
1,n, is the first variation (C4)

∨
1,n with additional vertices v0,2 and

v0,3 and an additional path v1,0v0,2v0,3. Figures 23 and 24 are examples of the first and second
variations of a (1, n)-linked 4-cycle, respectively.
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v1,0

v1,1 = v2,0

v1,2v1,3

v2,1 = v3,0

v2,2v2,3

v3,1 = v4,0

v3,2v3,3

v4,1 = v5,0

v4,2v4,3

v5,1 = v6,0

v5,2v5,3

v6,1 = v7,0

v6,2v6,3

v7,2v7,3

Figure 23: The first variation of the (1, 6)-linked 4-cycle (C4)
∨
1,6

v0,2v0,3

v0,1 = v1,0

v1,1 = v2,0

v1,2v1,3

v2,1 = v3,0

v2,2v2,3

v3,1 = v4,0

v3,2v3,3

v4,1 = v5,0

v4,2v4,3

v5,1 = v6,0

v5,2v5,3

v6,1 = v7,0

v6,2v6,3

v7,2v7,3

Figure 24: The second variation of the (1, 6)-linked 4-cycle ∨(C4)
∨
1,6

It is also convenient to extend the definition of (C4)1,n to the case when n = 0, the
definition of (C4)

∨
1,n to the cases when −1 ≤ n ≤ 0, as well as the definition of ∨(C4)

∨
1,n to

the cases when −2 ≤ n ≤ 0 and determine the corresponding Nimbers as follows.

n (C4)1,n G((C4)1,n) (C4)
∨
1,n G((C4)

∨
1,n)

∨(C4)
∨
1,n G(∨(C4)

∨
1,n)

−2 N/A N/A N/A N/A ∅ 0
−1 N/A N/A ∅ 0 1

0 1 2 3

Theorem 9. The Nimber sequences (G((C4)1,n) : n ∈ N), (G((C4)
∨
1,n) : n ∈ N), and

(G(∨(C4)
∨
1,n) : n ∈ N) satisfy recursions

G((C4)1,n) = mex
(

{G((C4)
∨
1,i−3)⊕ G((C4)

∨
1,n−i−1) : 2 ≤ i ≤ n}

∪ {G((C4)1,i−1)⊕ G((C4)
∨
1,n−i−1) : 1 ≤ i ≤ n}

)

,

G((C4)
∨
1,n) = mex

(

{G((C4)
∨
1,i−3)⊕ G(∨(C4)

∨
1,n−i−1) : 2 ≤ i ≤ n}

∪ {G((C4)1,i−1)⊕ G(∨(C4)
∨
1,n−i−1),

G((C4)
∨
1,i−2)⊕ G((C4)

∨
1,n−i) : 1 ≤ i ≤ n}

)

,
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and

G(∨(C4)
∨
1,n) = mex

(

{G(∨(C4)
∨
1,i−3)⊕ G(∨(C4)

∨
1,n−i−1) : 1 ≤ i ≤ n+ 1}

∪ {G((C4)
∨
1,i−1)⊕ G(∨(C4)

∨
1,n−i−1) : 0 ≤ i ≤ n+ 1}

)

.

Proof. For each positive integer n, to find G((C4)1,n), we exhaust all possible first moves in
the Node-Kayles game on (C4)1,n. For each 2 ≤ i ≤ n,

G(((C4)1,n)vi,0) = G((C4)
∨
1,i−3)⊕ 1⊕ 1⊕ G((C4)

∨
1,n−i−1) = G((C4)

∨
1,i−3)⊕ G((C4)

∨
1,n−i−1),

for 1 ≤ i ≤ n,

G(((C4)1,n)vi,2) = G(((C4)1,n)vn−i+1,3
) = G((C4)1,i−1)⊕ G((C4)

∨
1,n−i−1),

and for i = 1 or n,

G(((C4)1,n)v1,0) = G(((C4)1,n)vn,1
) = G((C4)1,0)⊕ G((C4)

∨
1,n−2).

Therefore,

G((C4)1,n) = mex
(

{G((C4)
∨
1,i−3)⊕ G((C4)

∨
1,n−i−1) : 2 ≤ i ≤ n}

∪ {G((C4)1,i−1)⊕ G((C4)
∨
1,n−i−1) : 1 ≤ i ≤ n}

)

.

To find G((C4)
∨
1,n), we exhaust all possible first moves in the Node-Kayles game on (C4)

∨
1,n.

For each 2 ≤ i ≤ n+ 1,

G(((C4)
∨
1,n)vi,0) = G((C4)

∨
1,i−3)⊕ 1⊕ 1⊕ G(∨(C4)

∨
1,n−i−1) = G((C4)

∨
1,i−3)⊕ G(∨(C4)

∨
1,n−i−1),

for 1 ≤ i ≤ n+ 1,

G(((C4)
∨
1,n)vi,2) = G((C4)1,i−1)⊕ G(∨(C4)

∨
1,n−i−1)

and
G(((C4)

∨
1,n)vi,3) = G((C4)

∨
1,i−2)⊕ G((C4)

∨
1,n−i),

and for i = 1,
G(((C4)

∨
1,n)v1,0) = G((C4)1,0)⊕ G(∨(C4)

∨
1,n−2).

Therefore,

G((C4)
∨
1,n) = mex

(

{G((C4)
∨
1,i−3)⊕ G(∨(C4)

∨
1,n−i−1) : 2 ≤ i ≤ n+ 1}

∪ {G((C4)1,i−1)⊕ G(∨(C4)
∨
1,n−i−1),

G((C4)
∨
1,i−2)⊕ G((C4)

∨
1,n−i) : 1 ≤ i ≤ n+ 1}

)

.
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Finally, to find G(∨(C4)
∨
1,n), we exhaust all possible first moves in the Node-Kayles game

on ∨(C4)
∨
1,n. For each 1 ≤ i ≤ n+ 1,

G((∨(C4)
∨
1,n)vi,0) = G(∨(C4)

∨
1,i−3)⊕ 1⊕ 1⊕ G(∨(C4)

∨
1,n−i−1)

= G(∨(C4)
∨
1,i−3)⊕ G(∨(C4)

∨
1,n−i−1),

and for 0 ≤ i ≤ n+ 1,

G((∨(C4)
∨
1,n)vi,2) = G((∨(C4)

∨
1,n)vn−i+1,3

) = G((C4)
∨
1,i−1)⊕ G(∨(C4)

∨
1,n−i−1).

Therefore,

G(∨(C4)
∨
1,n) = mex

(

{G(∨(C4)
∨
1,i−3)⊕ G(∨(C4)

∨
1,n−i−1) : 1 ≤ i ≤ n+ 1}

∪ {G((C4)
∨
1,i−1)⊕ G(∨(C4)

∨
1,n−i−1) : 0 ≤ i ≤ n+ 1}

)

.

With the recursions given by Theorem 9, we can easily compute the first 100, 000 terms
in the Nimber sequence (G((C4)1,n) : n ∈ N), which is now listed on the OEIS as A316629
[7]. Note that sequence (G((C4)1,n) : n ∈ N) does not seem to be periodic, nor are we able
to find a closed form. It is mildly surprising that the Nimber sequences of the Node-Kayles
game on linked 4-cycles differ so drastically by changing the link vertices.

We finish this section with our study on the Nimber sequence of linked diamonds. A
diamond is formed by adding an additional diagonal edge to a 4-cycle, i.e., a diamond
has vertex set {v0, v1, v2, v3} and edge set {v0v1, v1v2, v2v3, v3v0, v0v2}. To form an n-linked
diamond Dn, we begin with a collection of n diamonds with vertex sets {vi,0, vi,1, vi,2, vi,3}
for 1 ≤ i ≤ n, and we identify vertices such that vi,2 = vi+1,0 for all 1 ≤ i ≤ n − 1. The
vertex vn,2 will also be called vn+1,0.

v1,0 v1,1

v1,2v1,3

v2,0 v2,1

v2,2v2,3

v3,0 v3,1

v3,2v3,3

v4,0 v4,1

v4,2v4,3

v5,0 v5,1

v5,2v5,3

v1,3

v1,1

v2,3

v2,1

v3,3

v3,1

v4,3

v4,1

v5,3

v5,1

v1,0 v1,2 = v2,0
v2,2 = v3,0

v3,2 = v4,0
v4,2 = v5,0

v5,2 = v6,0

Figure 25: Linking 5 diamonds (top) as D5 (bottom)

If we try to link n diamonds after rotating each of them by 90 degrees, we will obtain a
2n-chained clique that chains up 2n copies of K3, which was studied in Section 4. Hence, we
do not consider the graph in Figure 26 as a linked diamond.
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v1,0

v1,2

v2,0

v2,2

v3,0

v3,2

v4,0

v4,2

v5,0

v5,2

v1,1 v1,3 = v2,1
v2,3 = v3,1

v3,3 = v4,1
v4,3 = v5,1

v5,3

Figure 26: A 2n-chained clique CK2n

To study the Nimber sequence (G(Dn) : n ∈ N), we need to further define two related
families of graphs. The first variation, denoted byD<

n , is an n-linked diamond with additional
vertices vn+1,1 and vn+1,3 and additional edges vn,2vn+1,1 and vn,2vn+1,3; the second variation,
denoted by >D<

n , is the first variation D<
n with additional vertices v0,1 and v0,3 and additional

edges v0,1v1,0 and v0,3v1,0. Figures 27 and 28 are examples of the first and second variations
of an n-linked diamond, respectively.

v1,3

v1,1

v2,3

v2,1

v3,3

v3,1

v4,3

v4,1

v5,3

v5,1

v6,3

v6,1

v7,3

v7,1

v1,0 v1,2 = v2,0
v2,2 = v3,0

v3,2 = v4,0
v4,2 = v5,0

v5,2 = v6,0
v6,2 = v7,0

Figure 27: The first variation of the 6-linked diamond D<
6

v0,3

v0,1

v1,3

v1,1

v2,3

v2,1

v3,3

v3,1

v4,3

v4,1

v5,3

v5,1

v6,3

v6,1

v7,3

v7,1

v1,0 v1,2 = v2,0
v2,2 = v3,0

v3,2 = v4,0
v4,2 = v5,0

v5,2 = v6,0
v6,2 = v7,0

Figure 28: The second variation of the 6-linked diamond >D<
6

It is also convenient to extend the definitions of D<
n and >D<

n to the cases when −2 ≤
n ≤ 0 and determine the corresponding Nimbers as follows.
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n D<
n G(D<

n )
>D<

n G(>D<
n )

−2 ∅ 0 ∅ 0

−1 ∅ 0 0

0 2 2

To simplify the notation, we define a(n) = G(Dn), b(n) = G(D<
n ), and c(n) = G(>D<

n ).
The sequence (a(n) : n ∈ N) is now listed on the OEIS as A316781 [7].

Theorem 10. The Nimber sequences (a(n) : n ≥ 69), (b(n) : n ≥ 69), and (c(n) : n ≥ 69)
are periodic with period 12.

Proof. By the symmetry of >D<
n , we have

c(n) = mex
(

{G((>D<
n )vi,0) : 1 ≤ i ≤ ⌈(n+ 1)/2⌉} ∪ {G((>D<

n )vi,1) : 0 ≤ i ≤ ⌊(n+ 1)/2⌋}
)

.

It is easy to see that
G((>D<

n )vi,0) = G(>D<
i−3)⊕ G(>D<

n−i−1)

and
G((>D<

n )vi,1) = G(>D<
i−2)⊕ 1⊕ G(>D<

n−i−1),

so

c(n) = mex
(

{c(i− 3)⊕ c(n− i− 1) : 1 ≤ i ≤ ⌈(n+ 1)/2⌉}

∪ {c(i− 2)⊕ 1⊕ c(n− i− 1) : 0 ≤ i ≤ ⌊(n+ 1)/2⌋}
)

(5)

for all n ∈ N. Now, we are ready to prove that (c(n) : n ≥ 69) is periodic with period 12 by
strong induction.

With recursion (5), together with the initial conditions (c(−2), c(−1), c(0)) = (0, 0, 2), we
can compute the values of the sequence (c(n) : 1 ≤ n ≤ 175), which is periodic with period
12 when 69 ≤ n ≤ 175. Assume that for some n ≥ 176, c(i) = c(i − 12) for all 81 ≤ i < n.
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Then

c(n) = mex
(

{c(i− 3)⊕ c(n− i− 1) : 1 ≤ i ≤ ⌈(n+ 1)/2⌉ − 6}

∪ {c(i− 3)⊕ c(n− i− 1) : ⌈(n+ 1)/2⌉ − 5 ≤ i ≤ ⌈(n+ 1)/2⌉}

∪ {c(i− 2)⊕ 1⊕ c(n− i− 1) : 0 ≤ i ≤ ⌊(n+ 1)/2⌋ − 6}

∪ {c(i− 2)⊕ 1⊕ c(n− i− 1) : ⌊(n+ 1)/2⌋ − 5 ≤ i ≤ ⌊(n+ 1)/2⌋}
)

= mex
(

{c(i− 3)⊕ c((n− 12)− i− 1) : 1 ≤ i ≤ ⌈((n− 12) + 1)/2⌉}

∪ {c(i− 3)⊕ c((n− 12)− i− 1) : ⌈(n+ 1)/2⌉ − 5 ≤ i ≤ ⌈(n+ 1)/2⌉}

∪ {c(i− 2)⊕ 1⊕ c((n− 12)− i− 1) : 0 ≤ i ≤ ⌊((n− 12) + 1)/2⌋}

∪ {c(i− 2)⊕ 1⊕ c((n− 12)− i− 1) : ⌊(n+ 1)/2⌋ − 5 ≤ i ≤ ⌊(n+ 1)/2⌋}
)

= mex
(

{c(i− 3)⊕ c((n− 12)− i− 1) : 1 ≤ i ≤ ⌈((n− 12) + 1)/2⌉}

∪ {c(i− 3)⊕ c((n− 12)− i− 1) : ⌈(n+ 1)/2⌉ − 17 ≤ i ≤ ⌈(n+ 1)/2⌉ − 12}

∪ {c(i− 2)⊕ 1⊕ c((n− 12)− i− 1) : 0 ≤ i ≤ ⌊((n− 12) + 1)/2⌋}

∪ {c(i− 2)⊕ 1⊕ c((n− 12)− i− 1) : ⌊(n+ 1)/2⌋ − 17 ≤ i ≤ ⌊(n+ 1)/2⌋ − 12}
)

= mex
(

{c(i− 3)⊕ c((n− 12)− i− 1) : 1 ≤ i ≤ ⌈((n− 12) + 1)/2⌉}

∪ {c(i− 2)⊕ 1⊕ c((n− 12)− i− 1) : 0 ≤ i ≤ ⌊((n− 12) + 1)/2⌋}
)

= c(n− 12),

which completes our induction.
Next, we study b(n). By the symmetry of D<

n , we have

b(n) = mex{G((D<
n )vi,0),G((D

<
n )vi,1) : 1 ≤ i ≤ n+ 1}.

It is easy to see that
G((D<

n )vi,0) = G(D<
i−3)⊕ G(>D<

n−i−1)

and
G((D<

n )vi,1) = G(D<
i−2)⊕ 1⊕ G(>D<

n−i−1),

so

b(n) = mex{b(i− 3)⊕ c(n− i− 1), b(i− 2)⊕ 1⊕ c(n− i− 1) : 1 ≤ i ≤ n+ 1} (6)

for all n ∈ N. Now, we are ready to prove that (b(n) : n ≥ 69) is periodic with period 12 by
strong induction.

With recursion (6), together with the initial conditions (b(−2), b(−1), b(0)) = (0, 0, 2) and
the sequence (c(n) : n ∈ N), we can compute the values of the sequence (b(n) : 1 ≤ n ≤ 164),
which is periodic with period 12 when 69 ≤ n ≤ 164. Assume that for some n ≥ 165,
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b(i) = b(i− 12) for all 81 ≤ i < n. Then

b(n) = mex
(

{b(i− 3)⊕ c(n− i− 1), b(i− 2)⊕ 1⊕ c(n− i− 1) : 1 ≤ i ≤ n− 82}

∪ {b(i− 3)⊕ c(n− i− 1), b(i− 2)⊕ 1⊕ c(n− i− 1) : n− 81 ≤ i ≤ n+ 1}
)

= mex
(

{b(i− 3)⊕ c((n− 12)− i− 1), b(i− 2)⊕ 1⊕ c((n− 12)− i− 1) :

1 ≤ i ≤ n− 82}

∪ {b(i− 3)⊕ c((n− 12)− i− 1), b(i− 2)⊕ 1⊕ c((n− 12)− i− 1) :

n− 93 ≤ i ≤ n− 11}
)

= mex{b(i− 3)⊕ c((n− 12)− i− 1), b(i− 2)⊕ 1⊕ c((n− 12)− i− 1) :

1 ≤ i ≤ (n− 12) + 1}

= b(n− 12),

which completes our induction.
Finally, we study a(n). By the symmetry of Dn, we have

a(n) = mex
(

{G((Dn)vi,0) : 1 ≤ i ≤ ⌈(n+ 1)/2⌉} ∪ {G((Dn)vi,1) : 1 ≤ i ≤ ⌊(n+ 1)/2⌋}
)

.

It is easy to see that
G((Dn)vi,0) = G(D<

i−3)⊕ G(D<
n−i−1)

and
G((Dn)vi,1) = G(D<

i−2)⊕ 1⊕ G(D<
n−i−1),

so

a(n) = mex
(

{b(i− 3)⊕ b(n− i− 1) : 1 ≤ i ≤ ⌈(n+ 1)/2⌉}

∪ {b(i− 2)⊕ 1⊕ b(n− i− 1) : 1 ≤ i ≤ ⌊(n+ 1)/2⌋}
)

(7)

for all n ∈ N. Now, we are ready to prove that (a(n) : a ≥ 69) is periodic with period 12 by
strong induction.

With recursion (7), together with the sequence (b(n) : n ∈ N), we can compute the values
of the sequence (a(n) : 1 ≤ n ≤ 175), which is periodic with period 12 when 69 ≤ n ≤ 175.
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Assume that for some n ≥ 176, a(i) = a(i− 12) for all 81 ≤ i < n. Then

a(n) = mex
(

{b(i− 3)⊕ b(n− i− 1) : 1 ≤ i ≤ ⌈(n+ 1)/2⌉ − 6}

∪ {b(i− 3)⊕ b(n− i− 1) : ⌈(n+ 1)/2⌉ − 5 ≤ i ≤ ⌈(n+ 1)/2⌉}

∪ {b(i− 2)⊕ 1⊕ b(n− i− 1) : 1 ≤ i ≤ ⌊(n+ 1)/2⌋ − 6}

∪ {b(i− 2)⊕ 1⊕ b(n− i− 1) : ⌊(n+ 1)/2⌋ − 5 ≤ i ≤ ⌊(n+ 1)/2⌋}
)

= mex
(

{b(i− 3)⊕ b((n− 12)− i− 1) : 1 ≤ i ≤ ⌈((n− 12) + 1)/2⌉}

∪ {b(i− 3)⊕ b((n− 12)− i− 1) : ⌈(n+ 1)/2⌉ − 5 ≤ i ≤ ⌈(n+ 1)/2⌉}

∪ {b(i− 2)⊕ 1⊕ b((n− 12)− i− 1) : 1 ≤ i ≤ ⌊((n− 12) + 1)/2⌋}

∪ {b(i− 2)⊕ 1⊕ b((n− 12)− i− 1) : ⌊(n+ 1)/2⌋ − 5 ≤ i ≤ ⌊(n+ 1)/2⌋}
)

= mex
(

{b(i− 3)⊕ b((n− 12)− i− 1) : 1 ≤ i ≤ ⌈((n− 12) + 1)/2⌉}

∪ {b(i− 3)⊕ b((n− 12)− i− 1) : ⌈(n+ 1)/2⌉ − 17 ≤ i ≤ ⌈(n+ 1)/2⌉ − 12}

∪ {b(i− 2)⊕ 1⊕ b((n− 12)− i− 1) : 1 ≤ i ≤ ⌊((n− 12) + 1)/2⌋}

∪ {b(i− 2)⊕ 1⊕ b((n− 12)− i− 1) : ⌊(n+ 1)/2⌋ − 17 ≤ i ≤ ⌊(n+ 1)/2⌋ − 12}
)

= mex
(

{b(i− 3)⊕ b((n− 12)− i− 1) : 1 ≤ i ≤ ⌈((n− 12) + 1)/2⌉}

∪ {b(i− 2)⊕ 1⊕ b((n− 12)− i− 1) : 1 ≤ i ≤ ⌊((n− 12) + 1)/2⌋}
)

= a(n− 12),

which completes our induction.

By computation, we further discover that the sequences (a(n) : n ≥ 4), (b(n) : n ≥ 4),
(c(n) : n ≥ 4) are identical, and their repeating unit (a(n) : 69 ≤ n ≤ 80) is given by

7, 5, 0, 2, 8, 1, 4, 6, 3, 1, 8, 2.

In particular, the maximum Nimber value is 8, occurring at a(25), a(31), a(43), a(49), and
a(61 + 6k) for all nonnegative integers k. Also, a(n) = 0 if and only if n = 3 or

n ≡ 11 (mod 12).

It is worth mentioning that the Nimber sequence (c(n) : n ≥ −1) is precisely the Nimber
sequence for the “Remove-a-Square game” on an n × 2 rectangle, listed on the OEIS as
A286332 [7]. The Remove-a-Square game on an n × 2 rectangle is also an impartial game,
where two players alternate to remove a 1× 1 or a 2× 2 square from the n× 2 rectangle. If
we label the 1×1 squares by si,j for 0 ≤ i ≤ n−1 and j ∈ {1, 3}, then we can easily see that
removing the 1×1 square si,j is equivalent to removing N(>D<

n−2
)[vi,j ], and removing the 2×2

square composed of si,1, si,3, si+1,1, si+1,3 is equivalent to removingN(>D<
n−2

)[vi+1,0]. Therefore,
the Remove-a-Square game on an n× 2 rectangle is equivalent to the Node-Kayles game on
>D<

n−2, thus the Nimber sequence (c(n) : n ≥ −1) is the same as the Nimber sequence for
the Remove-a-Square game on an n× 2 rectangle.
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6 Nimbers of the Node-Kayles game on other graphs

and concluding remarks

In the previous sections, we studied the Nimbers of the Node-Kayles game on 3-paths, lattice
graphs, prism graphs, chained cliques, linked cliques, linked cycles, and linked diamonds.
There are many other interesting families of graphs for us to examine. Two such families
are hypercubes and generalized Petersen graphs. An n-dimensional hypercube, denoted by
Qn, is a graph with the vertex set {0, 1}n, and between any two vertices (x1, x2, . . . , xn) and
(y1, y2, . . . , yn) in {0, 1}n, there is an edge if and only if

∑n
i=1 |xi − yi| = 1.

Theorem 11. The Nimber G(Qn) is 1 if n = 1 and is 0 otherwise.

Proof. When n = 1, Q1 is isomorphic to the path P2, so G(Q1) = 1. When n > 1, let ϕ
be a graph homomorphism on Qn such that ϕ(x1, x2, . . . , xn) = (1− x1, 1− x2, . . . , 1− xn).
Essentially, ϕ reflects the hypercube about the center of the hypercube. It is easy to check
that ϕ is an involution that satisfies the condition in Theorem 4, so G(Qn) = 0.

For each integer n ≥ 5, a generalized Petersen graph, denoted by GP (n, 2), is a graph
with the vertex set {u0, u1, . . . , un−1, v0, v1, . . . , vn−1} and the edge set {uiui+1, uivi, vivi+2 :
1 ≤ i ≤ n}, where addition in the indices is performed modulo n. The first twenty terms in
the Nimber sequence (G(GP (n, 2)) : n ≥ 5) are calculated and now listed on the OEIS as
A316533 [7]. In general, we can determine the Nimber G(GP (n, 2)) when n is even, due to
the following theorem.

Theorem 12. The Nimber G(GP (n, 2)) is 0 if n is even.

Proof. Let n = 2k for some integer k ≥ 3. For any vertex w ∈ V (GP (n, 2)), let ϕ be a graph
homomorphism on GP (n, 2) such that

ϕ(w) =

{

vi+n/2, if w = vi;

ui+n/2, if w = ui,

where addition in the indices is performed modulo n. Essentially, ϕ rotates the generalized
Petersen graph by 180◦. It is easy to check that ϕ is an involution that satisfies the condition
in Theorem 4, so G(GP (2k, 2)) = 0.

We are unable to determine any explicit formula or recursion for the odd terms of this
sequence at the moment, and this is one of our future goals. Additional goals include
expanding the results of Sections 3 and 5. For example, our technique of studying the
recursion will work for determining the Nimber sequence of (3, n)-linked 6-cycle, but it will
not work for other linked cycles, such as (1, n)-linked 5-cycle, since removing a vertex no
longer necessarily disconnects a component. It is in our interest to discover other techniques
for determining the Nimber sequence of (1, n)-linked 5-cycle and other graphs that we fail
to handle at the moment, such as the n× 3 lattice graph or all lattice graphs in general.
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Furthermore, as mentioned in Section 5, the Nimber sequence of (1, n)-linked 4-cycle
does not seem to be periodic. Another seemingly nonperiodic Nimber sequence is for the
Node-Kayles game on the square of paths, namely (G((Pn)

2) : n ∈ N). However, there is an
important open conjecture by Richard Guy that the Nimber sequences of all octal games are
periodic. As we have shown in this paper, there are many connections between Node-Kayles
games and octal games, so we would like to prove or disprove the periodicity of these Nimber
sequences.
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